Week 3 Invertible Matrices **Determinants**

Theorem.

Let A be an $n \times n$ matrix. The following statements are equivalent:

- 1. A is invertible.
- 2. The matrix equation $A\vec{x}=\vec{0}$ has $\vec{x}=\vec{0}$ as its only solution.
- 3. A is row equivalent to I .

Proof of 1 [implying](#page-0-0) 2

If A^{-1} exists, then:

$$
\vec{x} = (A^{-1}A)\vec{x} = A^{-1}(A\vec{x}) = A^{-1}\vec{0} = \vec{0}.
$$

So, $\vec{x} = \vec{0}$ is the only solution.

Proof of 2 [implying](#page-0-1) 3

This follows from our previous discussion of Gaussian elimination on augmented matrices, and the fact that a matrix in strict triangular form is row equivalent to the identity matrix.

Proof of 3 [implying](#page-0-2) 1

If A is row equivalent to I , then there exists a sequence of elementary matrices E_1, E_2, \ldots, E_k such that:

$$
E_k\cdots E_2E_1A=I.
$$

It is easy to see that every elementary matrix is invertible (**Exercise.**). Multiplying from the left both sides of the above equation with the inverses of the E_i 's, we obtain:

$$
A=E_1^{-1}E_2^{-1}\cdots E_k^{-1},
$$

which is a product of invertible matrices. Hence, A is invertible, with inverse $A^{-1} = E_k \cdots E_2 E_1$.

Corollary.

Let A be an $n \times n$ matrix. If there exists an $n \times n$ matrix B such that either BA or AB is equal I , then A is invertible, with $A^{-1} = B$.

Proof.

[>](#page-1-0)

If $BA = I$, then for any vector \vec{x} satisfying $A\vec{x} = \vec{0}$, we have:

$$
\vec{x} = (BA)\vec{x} = B(A\vec{x}) = B\vec{0} = \vec{0}.
$$

Hence, $\vec{x} = \vec{0}$ is the only solution to $A\vec{x} = \vec{0}$, which by the previous theorem implies that A is invertible. Moreover, $BA = I$ now implies that:

$$
A^{-1} = IA^{-1} = (BA)A^{-1} = B(AA^{-1}) = BI = B.
$$

If $AB = I$, then by the same argument as before B is invertible. We have $A = A(BB^{-1}) = (AB)B^{-1} = B^{-1}$. Hence, A is invertible, with $A^{-1} = (B^{-1})^{-1} = B$.

Finding the Inverse of a Matrix

Suppose an $n \times n$ matrix A is invertible, then we know from the theorem that A is row equivalent to I_n . In other words, there exist elementary matrices E_1, E_2, \ldots, E_k such that $E_k \cdots E_2 E_1 A = I$. Moreover, we have $A^{-1} = E_k \cdots E_2 E_1$. Consider the augmented matrix:

$$
\left(\begin{array}{c|c}A & I_n\end{array}\right)
$$

Performing a row operation corresponding to E_1 on the augmented matrix, we obtain: [>](#page-1-1)

$$
E_1\left(\begin{array}{c|c}A & I_n\end{array}\right)=\left(\begin{array}{c|c}E_1A & E_1\end{array}\right)
$$

Performing a row operation corresponding E_2 on this new augmented matrix, we obtain: [>](#page-1-2)

$$
\left(\begin{array}{c|c} E_2E_1A & E_2E_1 \end{array}\right)
$$

After performing successive row operations corresponding to the E_i 's, we obtain: [>](#page-1-3)

$$
\left(\begin{array}{c|c|c|c} E_k \cdots E_2 E_1 A & E_k \cdots E_2 E_1 \end{array}\right) = \left(\begin{array}{c|c|c} I & A^{-1} \end{array}\right)
$$

In other words... [>](#page-2-0)

to find A^{-1} , we perform Gaussian elimination on $(A|I)$ until the left half is reduced to I . Once the left half is reduced to I , the right half is precisely $A^{-1}.$ If an $n\times n$ matrix A cannot be row reduced to I (i.e. A is row equivalent to a matrix which has a row whose entries are all zero), then it is not invertible.

Find the inverse of

$$
A = \begin{pmatrix} -1 & 3 & -3 \\ 0 & -6 & 5 \\ -5 & -3 & 1 \end{pmatrix},
$$

if it exists.

Example.

We perform Gaussian elimination on the following augmented matrix:

$$
\left(\begin{array}{ccc|ccc}\n-1 & 3 & -3 & 1 & 0 & 0\\
0 & -6 & 5 & 0 & 1 & 0\\
-5 & -3 & 1 & 0 & 0 & 1\n\end{array}\right)
$$

We get: [>](#page-2-1)

$$
\left(\begin{array}{rrrrr}1 & 0 & 0 & 3/2 & 1 & -1/2 \\ 0 & 1 & 0 & -25/6 & -8/3 & 5/6 \\ 0 & 0 & 1 & -5 & -3 & 1 \end{array}\right)
$$

Hence, A is row equivalent to I , which implies that it is invertible. Moreover,

$$
A^{-1}=\left(\begin{array}{ccc}3/2&1&-1/2\\-25/6&-8/3&5/6\\-5&-3&1\end{array}\right)
$$

Useful Fact: If $A = \begin{pmatrix} a & b \ c & d \end{pmatrix}$, and $ad - bc \neq 0$, then A is invertible, with: $\left(\begin{array}{cc} a & b\ c & d \end{array}\right)$, and $ad-bc\neq0$, then A i $A^{-1} = \frac{1}{cd - bc} \begin{pmatrix} d & -b \end{pmatrix}$ $\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$

Determinants

For a 1×1 matrix $A = (a)$. We define the **determinant** of A to be:

$$
\det A=a.
$$

Now, let $A = (a_{ij})$ be an $n \times n$ matrix, with $n > 1$. For $i, j \in \{1, 2, \ldots, n\}$, let M_{ij} denote the $(n-1) \times (n-1)$ minor matrix obtained from A by removing the i -th row and j -th column of A . The **determinant** of A is defined recursively as follows:

 \mathbf{r}

$$
\det A = |A| := \sum_{k=1}^{n} \underbrace{a_{1k}(-1)^{1+k} \det M_{1k}}_{1k-\text{th cofactor}}
$$
\n
$$
= a_{11} |M_{11}| - a_{12} |M_{12}| + a_{13} |M_{13}| - \cdots + a_{1n}(-1)^{1+n} |M_{1n}|.
$$
\n
$$
A = \begin{pmatrix} * & * & \cdots & * & |a_{1k}| & * & \cdots & * \\ \hline a_{21} & a_{22} & \cdots & a_{2(k-1)} & * & a_{2(k+1)} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & a_{3(k-1)} & * & a_{3(k+1)} & \vdots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix},
$$

$$
A = \left(\begin{array}{cccccc} a_{21} & a_{22} & \cdots & a_{2(k-1)} & * & a_{2(k+1)} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & a_{3(k-1)} & * & a_{3(k+1)} & \vdots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & & * & \vdots & \vdots \\ a_{n1} & \cdots & \cdots & a_{n(k-1)} & * & a_{n(k+1)} & \cdots & a_{nn} \end{array}\right),
$$

$$
M_{1k} = \left(\begin{array}{cccccc} a_{21} & a_{22} & \cdots & a_{2(k-1)} & a_{2(k+1)} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & a_{3(k-1)} & a_{3(k+1)} & \vdots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & \cdots & \cdots & a_{n(k-1)} & a_{n(k+1)} & \cdots & a_{nn} \end{array}\right).
$$

The sum defining $\det A$ written above is called the cofactor expansion along the first row.

Theorem.

The determinant $\det A$ can be computed using a cofactor expansion along any row or any column:

$$
\det A = \sum_{k=1}^n a_{ik} (-1)^{i+k} \det M_{ik} = \sum_{l=1}^n a_{lj} (-1)^{l+j} \det M_{lj}
$$

The resulting values will be the same.

Exercise.

For a 2×2 matrix, we have:

$$
\det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc
$$

Example.

$$
A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 5 \\ 7 & 1 & -2 \end{pmatrix}
$$

\n
$$
M_{11} = \begin{pmatrix} 0 & 5 \\ 1 & -2 \end{pmatrix}, M_{12} = \begin{pmatrix} -1 & 5 \\ 7 & -2 \end{pmatrix}, M_{13} = \begin{pmatrix} -1 & 0 \\ 7 & 1 \end{pmatrix}
$$

\n
$$
\det A = 1 \cdot \begin{vmatrix} 0 & 5 \\ 1 & -2 \end{vmatrix} - 2 \cdot \begin{vmatrix} -1 & 5 \\ 7 & -2 \end{vmatrix} + 3 \cdot \begin{vmatrix} -1 & 0 \\ 7 & 1 \end{vmatrix} = 58.
$$

Properties of the Determinant

Let A be an $n \times n$ matrix.

 \bullet

$$
\det A=\det A^\top,
$$

where A^{\top} is the transpose of A, defined by $A_{ij}^{\top} = A_{ji}$. This follows from the fact that $\det A$ may be computed from the cofactor expansion along any row or column.

• If A is an upper or lower triangular matrix, then $\det A$ is equal to the product of its diagonal entries:

det $\begin{pmatrix} a_{11} & * & * & * & * \\ 0 & a_{22} & * & * & * \\ & 0 & 0 & \ddots & * \\ & & \ddots & 0 & 0 & a_{mn} \end{pmatrix} = a_{11}a_{22}\cdots a_{nn}$

• If one row or one column of A consists entirely of zeroes, then $\det A = 0$.

$$
\det \begin{pmatrix} 1 & 2 & 3 & -5 \\ 0 & 0 & 0 & 0 \\ 3 & 4 & -7 & 9 \\ 0 & 3 & 1 & 8 \end{pmatrix} = 0
$$

$$
\det \begin{pmatrix} 1 & 2 & 0 & -5 \\ 6 & -7 & 0 & 3 \\ 3 & 4 & 0 & 9 \\ 0 & 3 & 0 & 8 \end{pmatrix} = 0
$$

- \bullet If one row (column) of A is equal to a scalar multiple of another row (column), then $\det A = 0$.
- If a matrix B is obtained from a square matrix A by switching two rows, then $\det B = - \det A$.
- The determinant of an elementary matrix is nonzero.
- \bullet If E is elementary an $n \times n$ matrix, then $\det(EA) = (\det E)(\det A).$