Week 3 Invertible Matrices Determinants

Theorem.

Let A be an $n \times n$ matrix. The following statements are equivalent:

- 1. A is invertible.
- 2. The matrix equation $A\vec{x} = \vec{0}$ has $\vec{x} = \vec{0}$ as its only solution.
- 3. A is row equivalent to I.

Proof of 1 implying 2

If A^{-1} exists, then:

$$ec{x} = (A^{-1}A)ec{x} = A^{-1}(Aec{x}) = A^{-1}ec{0} = ec{0}.$$

So, $\vec{x} = \vec{0}$ is the only solution.

Proof of 2 implying 3

This follows from our previous discussion of Gaussian elimination on augmented matrices, and the fact that a matrix in strict triangular form is row equivalent to the identity matrix.

Proof of 3 implying 1

If A is row equivalent to I, then there exists a sequence of elementary matrices E_1, E_2, \ldots, E_k such that:

$$E_k \cdots E_2 E_1 A = I.$$

It is easy to see that every elementary matrix is invertible (**Exercise.**). Multiplying from the left both sides of the above equation with the inverses of the E_i 's, we obtain:

$$A = E_1^{-1} E_2^{-1} \cdots E_k^{-1},$$

which is a product of invertible matrices. Hence, A is invertible, with inverse $A^{-1} = E_k \cdots E_2 E_1$.

Corollary.

Let A be an $n \times n$ matrix. If there exists an $n \times n$ matrix B such that either BA or AB is equal I, then A is invertible, with $A^{-1} = B$.

Proof.

>

If BA = I, then for any vector \vec{x} satisfying $A\vec{x} = \vec{0}$, we have:

$$\vec{x} = (BA)\vec{x} = B(A\vec{x}) = B\vec{0} = \vec{0}.$$

Hence, $\vec{x} = \vec{0}$ is the only solution to $A\vec{x} = \vec{0}$, which by the previous theorem implies that *A* is invertible. Moreover, BA = I now implies that:

$$A^{-1} = IA^{-1} = (BA)A^{-1} = B(AA^{-1}) = BI = B.$$

If AB = I, then by the same argument as before *B* is invertible. We have $A = A(BB^{-1}) = (AB)B^{-1} = B^{-1}$. Hence, *A* is invertible, with $A^{-1} = (B^{-1})^{-1} = B$.

Finding the Inverse of a Matrix

Suppose an $n \times n$ matrix A is invertible, then we know from the theorem that A is row equivalent to I_n . In other words, there exist elementary matrices E_1, E_2, \ldots, E_k such that $E_k \cdots E_2 E_1 A = I$. Moreover, we have $A^{-1} = E_k \cdots E_2 E_1$. Consider the augmented matrix:

$$\left(egin{array}{c|c} A & I_n \end{array}
ight)$$

Performing a row operation corresponding to E_1 on the augmented matrix, we obtain: >

$$E_1\left(\begin{array}{c|c}A & I_n\end{array}\right) = \left(\begin{array}{c|c}E_1A & E_1\end{array}\right)$$

Performing a row operation corresponding E_2 on this new augmented matrix, we obtain: >

$$\left(\begin{array}{c} E_2 E_1 A \end{array} \middle| \begin{array}{c} E_2 E_1 \end{array} \right)$$

After performing successive row operations corresponding to the E_i 's, we obtain: >

$$\left(\begin{array}{c} E_k \cdots E_2 E_1 A \mid E_k \cdots E_2 E_1 \end{array} \right) = \left(\begin{array}{c} I \mid A^{-1} \end{array} \right)$$

In other words... >

to find A^{-1} , we perform Gaussian elimination on (A|I) until the left half is reduced to I. Once the left half is reduced to I, the right half is precisely A^{-1} . If an $n \times n$ matrix A cannot be row reduced to I (i.e. A is row equivalent to a matrix which has a row whose entries are all zero), then it is not invertible.

Find the inverse of

$$A=egin{pmatrix} -1 & 3 & -3 \ 0 & -6 & 5 \ -5 & -3 & 1 \ \end{pmatrix},$$

if it exists.

Example.

We perform Gaussian elimination on the following augmented matrix:

$$\left(\begin{array}{ccc|c} -1 & 3 & -3 & 1 & 0 & 0 \\ 0 & -6 & 5 & 0 & 1 & 0 \\ -5 & -3 & 1 & 0 & 0 & 1 \end{array}\right)$$

We get: >

$$\left(egin{array}{c|c|c|c|c|c|c|c|c|} 1 & 0 & 0 & 3/2 & 1 & -1/2 \ 0 & 1 & 0 & -25/6 & -8/3 & 5/6 \ 0 & 0 & 1 & -5 & -3 & 1 \end{array}
ight)$$

Hence, A is row equivalent to I, which implies that it is invertible. Moreover,

$$A^{-1}=\left(egin{array}{cccc} 3/2 & 1 & -1/2\ -25/6 & -8/3 & 5/6\ -5 & -3 & 1\end{array}
ight)$$

Useful Fact: If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, and $ad - bc \neq 0$, then A is invertible, with: $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$

Determinants

For a 1×1 matrix A = (a). We define the **determinant** of A to be:

$$\det A = a.$$

Now, let $A = (a_{ij})$ be an $n \times n$ matrix, with n > 1. For $i, j \in \{1, 2, ..., n\}$, let M_{ij} denote the $(n - 1) \times (n - 1)$ minor matrix obtained from A by removing the *i*-th row and *j*-th column of A. The **determinant** of A is defined recursively as follows:

>

$$\det A = |A| := \sum_{k=1}^{n} \underbrace{a_{1k}(-1)^{1+k} \det M_{1k}}_{1k- ext{th cofactor}}$$

= $a_{11} |M_{11}| - a_{12} |M_{12}| + a_{13} |M_{13}| - \dots + a_{1n}(-1)^{1+n} |M_{1n}|$

	[_	*	*	•••	*	a_{1k}	*	• • •	*		
A =		a_{21}	a_{22}	•••	$a_{2(k-1)}$	l) *	$a_{2(k+1)}$	•••	a_{2n}		
	:		• • •	•	$a_{3(k-1)}$	*	$a_{3(k+1)}$	•	a_{3n}		,
		:	:	•	•	*	:	:	•		
		a_{n1}	•••	•••	$a_{n(k-1)}$	L) *	$a_{n(k+1)}$	•••	a_{nn}	J	
			(a_{21})	a_{22}	··· a	2(k-1)	$a_{2(k+1)}$		a_{2n}		
				:	: a	2(k - 1)	$a_{2(k+1)}$:	a _{3n}		
M_{\uparrow}	1k	=	•	•	•	:	J(k⊤1)	•	:		
			a_{n1}	•	$\cdots a$	$\dot{n}(k-1)$	$\dot{a}_{n(k+1)}$	••••	$\left. \begin{array}{c} \cdot \\ a_{nn} \end{array} \right)$		

The sum defining $\det A$ written above is called the **cofactor expansion** along the first row.

Theorem.

The determinant $\det A$ can be computed using a cofactor expansion along any row or any column:

$$\det A = \sum_{k=1}^n a_{ik} (-1)^{i+k} \det M_{ik} = \sum_{l=1}^n a_{lj} (-1)^{l+j} \det M_{lj}$$

The resulting values will be the same.

Exercise.

For a 2×2 matrix, we have:

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Example.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 5 \\ 7 & 1 & -2 \end{pmatrix}$$
$$M_{11} = \begin{pmatrix} 0 & 5 \\ 1 & -2 \end{pmatrix}, M_{12} = \begin{pmatrix} -1 & 5 \\ 7 & -2 \end{pmatrix}, M_{13} = \begin{pmatrix} -1 & 0 \\ 7 & 1 \end{pmatrix}$$
$$\det A = 1 \cdot \begin{vmatrix} 0 & 5 \\ 1 & -2 \end{vmatrix} - 2 \cdot \begin{vmatrix} -1 & 5 \\ 7 & -2 \end{vmatrix} + 3 \cdot \begin{vmatrix} -1 & 0 \\ 7 & 1 \end{vmatrix} = 58.$$

Properties of the Determinant

Let A be an $n \times n$ matrix.

•

$$\det A = \det A^{\top},$$

where A^{\top} is the transpose of A, defined by $A_{ij}^{\top} = A_{ji}$. This follows from the fact that det A may be computed from the cofactor expansion along any row or column.

• If A is an upper or lower triangular matrix, then det A is equal to the product of its diagonal entries:

 $\det \begin{pmatrix} a_{11} & * & * & * \\ 0 & a_{22} & * & * \\ & & & \\ 0 & 0 & \ddots & * \\ 0 & 0 & 0 & a_{nn} \end{pmatrix} = a_{11}a_{22}\cdots a_{nn}$

• If one row or one column of A consists entirely of zeroes, then $\det A = 0$.

$$\det \begin{pmatrix} 1 & 2 & 3 & -5\\ 0 & 0 & 0 & 0\\ 3 & 4 & -7 & 9\\ 0 & 3 & 1 & 8 \end{pmatrix} = 0$$

$$\det \begin{pmatrix} 1 & 2 & 0 & -5 \\ 6 & -7 & 0 & 3 \\ 3 & 4 & 0 & 9 \\ 0 & 3 & 0 & 8 \end{pmatrix} = 0$$

- If one row (column) of A is equal to a scalar multiple of another row (column), then det A = 0.
- If a matrix B is obtained from a square matrix A by switching two rows, then det $B = -\det A$.
- The determinant of an elementary matrix is nonzero.
- If E is an $n \times n$ elementary matrix, then det(EA) = (det E)(det A).