Taylor's Theorem for Functions in Two Variables

Let $f(x,y)$ be a function in two variables, $n\in \mathbb{N}.$ Suppose the partial derivatives of f of all orders up to $n+1$ exist and are continuous at all points in an open ball B of positive radius centred at (a, b) , then for $(x, y) \in B$, we have:

where:

and:

[>](#page-0-0)

Week 12 Taylor's Theorem Local Extrema

$$
f(x,y)=p_n(x,y)++R_n(x,y),\quad
$$

$$
p_n(x,y) = \sum_{k=0}^n \frac{1}{k!} \sum_{j=0}^k {k \choose j} \frac{\partial^k f}{\partial x^{k-j} \partial y^j} \Big|_{(a,b)} (x-a)^{k-j} (y-b)^j
$$

= $f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$
+ $\frac{1}{2!} (f_{xx}(a,b)(x-a)^2 + 2f_{xy}(a,b)(x-a)(y-b) + f_{yy}(a,b)(y-b)^2)$
+ $\frac{1}{3!} (f_{xxx}(a,b)(x-a)^3 + 3f_{xxy}(a,b)(x-a)^2 (y-b)$
+ $3f_{xyy}(a,b)(x-a)(y-b)^2 + f_{yyy}(a,b)(y-b)^3) + \cdots,$

$$
R_n(x,y)=\frac{1}{(n+1)!}\sum_{j=0}^{n+1}\binom{n+1}{j}\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^j}\bigg|_{(a+c(x-a),b+c(x-b))}(x-a)^{n+1-j}(y-b)^j,
$$

for some $c \in (0,1)$.

The polynomial $p_n(x, y)$ is called the n-th Taylor Polynomial of $f(x, y)$ about (a, b) .

Example.

Let $f(x, y) = \sin x \sin y$. Approximate the value of $f(0.01, -0.2)$ using the second Taylor Polynomial of f about $(0, 0)$.

We have:

[>](#page-1-0)

Hence, the second Taylor Polynomial of f about $(0, 0)$ is:

The error of the approximation is:

[>](#page-1-2)

Computing the 3-rd order partial derivatives of f , we have:

Example.

Find the 3rd Taylor polynomial of $f(x, y) = \ln(2x + y)$ at the point $(0, 1)$.

In general, for a function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ in n variables, its *l*-th Taylor polynomial at a point $\vec{a} = (a_1, a_2, \ldots, a_n)$ is:

$$
f_x(x,y) = \cos x \sin y, \quad f_y(x,y) = \sin x \cos y,
$$

$$
f_{xx}(x,y) = -\sin x \sin y, \quad f_{xy}(x,y) = \cos x \cos y, \quad f_{yy}(x,y) = -\sin x \sin y.
$$

$$
\begin{aligned} p(x,y) & = f(0,0) + f_x(0,0)x + f_y(0,0)y \\ & + \frac{1}{2!} \big(f_{xx}(0,0)x^2 + 2f_{xy}(0,0)xy + f_{yy}(0,0)y^2 \big) \\ & = 0 + 0 + 0 + \frac{1}{2!} (0 + 2 \cdot 1 \cdot xy + 0) = xy. \end{aligned}
$$

So, $f(0.01, -0.2)$ is approximately equal to $p(0.01, -0.2) = (0.01)(-0.2) = -0.002$. \mathbf{R}

$$
|f(0.01, -0.2) - p(0.01, -0.2)| = |R_2(0.01, -0.2)|
$$

=
$$
\left| \frac{1}{3!} (f_{xxx}(0.01c, -0.2c)(0.01)^3 + 3f_{xxy}(0.01c, -0.2c)(0.01)^2(-0.2) +3f_{xyy}(0.01c, -0.2c)(-0.2)^3) \right|,
$$

for some $c \in (0,1)$.

$$
\begin{aligned} |R_2(0.01,-0.2)|\\&= \left|\frac{1}{3!}\left(-\cos(0.01c)\sin(-0.2c)(0.01)^3-3\sin(-0.01c)\cos(-0.2c)(0.01)^2(-0.2)\right.\right.\\&\left.-3\cos(0.01c)\sin(-0.2c)(0.01)(-0.2)^2-\sin(0.01c)\cos(-0.2c)(-0.2)^3)\right|\\&\leq \frac{1}{6}\left(|0.01|^3+3|0.01|^2|-0.2|+3|0.01|\left|-0.2\right|^2+|-0.2|^3\right), \end{aligned}
$$

since the sine and cosine functions have absolute values less than or equal to 1.

Local Extrema

We say that a function f in two variables has a local minimum (resp. local maximum) at (a, b) if there exists an open disk D of positive radius, centred at (a, b) , such that $f(a, b) \le f(x, y)$ (resp. $f(a, b) \ge f(x, y)$) for all $(x, y) \in D$.

Definition.

Let f be a function defined on a region D in $\mathbb{R}^2.$ We say that an interior point $(a,b)\in D$ is a critical point of f if $\nabla f(a, b)$ is either equal to $\langle 0, 0 \rangle$ or underfined (i.e. one or both of $f_x(a, b)$, $f_y(a, b)$ does not exist.) $(a, b) \in D$

Definition.

We say that $f(x, y)$ has a **saddle point** at a critical point (a, b) if for all open disks D of positive radius centred at (a, b) , there exists $(x_1, y_1) \in D$ such that $f(a, b) \le f(x_1, y_1)$, and there exists $(x_2, y_2) \in D$ such that $f(a, b) \ge f(x_2, y_2)$.

Let $f(x, y)$ be a function in two variables (with continuous second order partial derivatives). Define:

Theorem.

If a function f defined on a region $D\subseteq \mathbb{R}^2$ has a local extremum (i.e. local max or min) at $(a, b) \in D$, then (a, b) is either a critical point of f or a boundary point of D.

Second Deriviative Test

$$
p_n(\vec{x}) = \sum_{k=0}^l \frac{1}{k!} \sum_{j_1+j_2+\ldots+j_n=k} \frac{k!}{\dfrac{j_1!j_2!\cdots j_n!}{\dfrac{j_1!j_2!\cdots j_n!}{\dfrac{j_1!j_2!\cdots j_n!}{\dfrac{j_1!j_2!\cdots j_n!}{\dfrac{j_1!j_2!\cdots \dfrac{j_n}{\dfrac{j_n}{\ddots}}}}}} \frac{\partial^k f}{\partial^{j_1}x_1 \partial^{j_2}x_2\cdots \partial^{j_n}x_n}\bigg|_{\vec{x}=\vec{a}}}{\left.\left.(x_1-a_1)^{j_1}(x_2-a_2)^{j_2}\cdots (x_n-a_n)^{j_n}\right.\right.}\\= \sum_{k=0}^l \sum_{j_1+j_2+\ldots+j_n=k} \frac{1}{j_1!j_2!\cdots j_n!} \frac{\partial^k f}{\partial^{j_1}x_1 \partial^{j_2}x_2\cdots \partial^{j_n}x_n}\bigg|_{\vec{x}=\vec{a}} (x_1-a_1)^{j_1}(x_2-a_2)^{j_2}\cdots (x_n-a_n)^{j_n}}
$$

$$
D(x,y) = f_{xx}f_{yy} - f_{xy}^2 \quad \left(= \det \underbrace{\begin{pmatrix} f_{xx} & f_{yx} \\ f_{xy} & f_{yy} \end{pmatrix}}_{\text{YHessian'' matrix}} \right)
$$

Theorem.

(Second Derivative Test) Suppose (a, b) is a critical point of f , and the first and second order partial derivatives of f are continuous on an open neighborhood of (a, b) (in particular $\nabla f(a, b) = \vec{0}$). Then:

If $D(a, b) > 0$: If $f_{xx}(a, b) > 0$, then f has a local minimum at (a, b) . If $f_{xx}(a, b) < 0$, then f has a local maximum at (a, b) . If $D(a, b) < 0$: f has a saddle point at (a, b) .

If $D(a, b) = 0$, The second derivative test is inconclusive.

Example.

Let:

[>](#page-3-0)

[>](#page-3-1)

Solving:

We obtain:

[>](#page-3-2)

Hence,

[>](#page-3-3)

 \geq

Evaluating $D(x, y)$ at the critical points, we have:

This implies that:

 $(0, 0)$ corresponds to a saddle point,

and that $(2, 2)$ corresponds to either a local maximum or minimum.

$$
f(x,y) = 3y^2 - 2y^3 - 3x^2 + 6xy.
$$

Classify the critical points of f .

$$
\nabla f(x,y) = \langle -6x + 6y, 6y - 6y^2 + 6x \rangle,
$$

which is defined for all (x, y) .

$$
\nabla f(x,y) = \langle 0,0 \rangle,
$$

$$
(x, y) = (0, 0)
$$
 or $(2, 2)$.

$$
f_{xx} = -6, \quad f_{xy} = 6, \quad f_{yy} = 6 - 12y.
$$

$$
D(x,y) = f_{xx}f_{yy} - f_{xy}^2 = 72(y-1).
$$

$$
D(0,0) = -72 < 0. \\
D(2,2) = 72 > 0.
$$

Since, $f_{xx}(2, 2) = -6 < 0$, we conclude that:

 $(2, 2)$ corresponds to a local maximum.

Idea Behind the Second Derivative Test

Let (a, b) be the critical point under consideration. By Taylor's Theorem, over a small neighborhood of (a, b) , $f(x, y)$ is closely approximated by the polynomial:

Upward paraboloid. This corresponds to $D(a, b) > 0$, $f_{xx}(a, b) > 0$. [>](#page-4-2)

Hyperbolic paraboloid. This corresponds to $D(a, b) < 0$. \mathbf{r}

[>](#page-4-1)

$$
\begin{aligned} Q(x,y) & = f(a,b) + \underbrace{f_x(a,b)}_{=0}(x-a) + \underbrace{f_y(a,b)}_{=0}(y-b) \\ & + \frac{1}{2}\big(f_x(a,b)(x-a)^2 + 2f_{xy}(a,b)(x-a)(y-b) + f_{yy}(a,b)(y-b)^2\big)\,. \end{aligned}
$$

The polynomial Q is of degree 2, and the graphs of such polynomials fall into 3 categories:

Downward paraboloid. This corresponds to $D(a, b) > 0$, $f_{xx}(a, b) < 0$.

From the pictures one can see that the three cases correspond to local maximum, minimum, and saddles points, respectively.

(Illustration by [Blacklemon67](http://en.wikipedia.org/wiki/User:Blacklemon67) ‑ made with mathematica, CC [BY‑SA 3.0,](https://creativecommons.org/licenses/by-sa/3.0/) [Link.](https://en.wikipedia.org/w/index.php?curid=46494709))

Multiple Integrals Double Integrals over Rectangular Regions

Let $f(x, y)$ be a continuous function on a rectangular region:

[>](#page-5-0)

Partition the interval $[a, b]$ into m subintervals of equal length $\Delta x = \frac{b-a}{m}$, $b - a$ $\,m$

http://www2.stetson.edu/~wmiles/coursedocs/Fall_05/MS_203/calc3labs/Calculus%20III%20-%20Lab%209.htm

[>](#page-5-1)

[>](#page-5-2)

and likewise partition $[c, d]$ into n subintervals of equal length $\Delta y = \frac{a-c}{n}$. $d - c$ \boldsymbol{n}

Definition.

Given that f is continuous, the **double integral** $\iint f(x,y) dA$ of f over R is the limit as $n,m\to\infty$ of the double Riemann sum: R $f(x, y) dA$ of f over R

where:

[>](#page-5-3)

Definition.

The integrals:

[>](#page-6-0)

$$
R=[a,b]\times [c,d]=\{(x,y)\in \mathbb{R}^2\;:\;a\leq x\leq b,c\leq y\leq d\}
$$

$$
\sum_{\substack{0\leq i\leq m-1\\0\leq j\leq n-1}}f(x_i,y_j)\Delta x\Delta y,
$$

$$
x_i = a + i\Delta x, \quad y_j = c + j\Delta y.
$$

$$
\int_a^b \int_c^d f(x, y) dy dx := \int_{x=a}^{x=b} \left[\int_{y=c}^{y=d} f(x, y) dy \right] dx
$$

$$
\int_c^d \int_a^b f(x, y) dx dy := \int_{y=c}^{y=d} \left[\int_{x=a}^{x=b} f(x, y) dx \right] dy
$$

are called **iterated integrals** of f over $R = [a, b] \times [c, d]$.

Hence,

[>](#page-6-2)

Likewise,

where $F(x, y)$ is a function in two variables such that $\frac{\partial F}{\partial x} = f(x, y)$. [>](#page-6-1) ∂F ∂y

Theorem.

(Fubini's Theorem) If $f(x, y)$ is continuous over $R = [a, b] \times [c, d]$, then:

Example.

[>](#page-6-4)

Compute:

∫ 1 $\int_0^1 f_2$ 4 $\overline{2}$ $3x^2y\,dy\,dx$

Here, $\int_{c}^{d} f(x, y) dy$ should be viewed as the integral of a one-variable function $f(x, y)$ in y , with x fixed. In other words: $\int_{c}^{d} f(x,y) \, dy$ should be viewed as the integral of a one-variable function $f(x,y)$ in y_{d}

$$
\int_{y=c}^{y=d}f(x,y)\,dy=F(x,y)\Big|_{y=c}^{y=d}=F(x,c)-F(x,d),
$$

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx = \int_{a}^{b} \left[F(x, c) - F(x, d) \right] dx,
$$

which is an integral of a one-variable function in x .

$$
\int_{x=a}^{x=b} f(x,y) \, dx = G(x,y) \Big|_{x=a}^{x=b} = G(a,y) - G(b,y),
$$

where $\frac{\partial G}{\partial x} = f(x, y)$, and: \geq ∂G $\overline{\partial x}$

$$
\int_c^d \int_a^b f(x, y) dx dy = \int_c^d \left[G(a, y) - G(b, y) \right] dy,
$$

which is an integral of a one-variable function in y .

$$
\iint_R f(x, y) \, dA = \int_a^b \int_c^d f(x, y) \, dy \, dx = \int_c^d \int_a^b f(x, y) \, dx \, dy
$$

$$
\int_{-1}^{1} \int_{2}^{3} x y e^{x} dx dy
$$

•

$$
\iint_{[0,1] \times [0,2]} \frac{xy^{2}}{(x^{2}+y)^{2}} dA
$$