The Gradient Vector

Definition.

Let F be a function in n variables $x_1, x_2, \ldots, x_n.$ The gradient of F at $P=(a_1,a_2,\ldots,a_n)$ is the vector:

$$
\langle F_{x_1}(P), F_{x_2}(P), \ldots, F_{x_n}(P) \rangle \in \mathbb{R}^n.
$$

Here,

$$
F_{x_i}(P)=\left.\frac{\partial F}{\partial x_i}\right|_{(x_1,x_2,\ldots,x_n)=(a_1,a_2,\ldots,a_n)}
$$

Theorem. Let $F(x_1, x_2, \ldots, x_n)$ be a function in n variables, P a point on the level set:

$$
F(x_1,x_2,\ldots,x_n)=c
$$

If the gradient vector $\nabla F(P) = \langle F_{x_1}(P), F_{x_2}(P), \ldots, F_{x_n}(P) \rangle$ of F at P is nonzero, then $\nabla F(P)$ is perpendicular to the level set $F(x_1, x_2, \ldots, x_n) = c$, in the sense that it is perpendicular to the tangent vector at P to every smooth curve on $F(x_1, x_2, \ldots, x_n) = c$ which passes through P. In other words:

Claim.

If I is an open interval in $\mathbb R$, and a differentiable vector-valued function $\gamma:I\to\mathbb{R}^n$ satisfies:

 $F(\gamma(t)) = c$ (i.e. The curve lies on the level set.) $\gamma(t_0) = P$, $t_0 \in I$, (i.e. The curve passes through the point P when $t = t_0$)

then:

$$
\nabla F(P) \cdot \gamma'(t_0) = 0.
$$

Proof.

[>](#page-1-0)

Suppose $\gamma(t) = \langle \gamma_1(t), \gamma_2(t), \ldots, \gamma_n(t) \rangle$, where γ_i is a differentiable real– valued function in one variable. Applying $\frac{d}{dt}$ to both sides of $F(\gamma(t)) = c_t$ we have:

$$
\frac{d}{dt}F(\gamma(t)) = \frac{d}{dt}c
$$

$$
\underbrace{\nabla F(\gamma(t)) \cdot \gamma'(t)}_{\text{Chain Rule}} = 0.
$$

Chain Rule

Evaluating the above expression at $t = t_0$, we have:

$$
\nabla F(\underbrace{\gamma(t_0)}_P)\cdot \gamma'(t_0)=0
$$

(Note that $\nabla F(P)$ and $\gamma'(t_0)$ are both vectors in \mathbb{R}^n .)

Let F be a function in 3 variables. Let $P_0 = (x_0, y_{0,0})$ be a fixed point on the level surface $F(x, y, z) = c$ (Hence, $F(P_0) = c$). If $\nabla F(P_0)$ is defined and nonzero, the **tangent plane** to the surface $F(x, y, z) = c$ at P_0 is defined to be the plane corresponding to the equation:

$$
F_x(P_0)(x-x_0)+F_y(P_0)(y-y_0)+F_z(P_0)(z-z_0)=0,
$$

or more concisely:

$$
\nabla F(P_0) \cdot \overrightarrow{P_0P} = 0, \quad P = (x, y, z).
$$

In particular, $\vec{n} = \nabla F(P_0)$ is a normal vector to the tangent plane at P_0 . [>](#page-2-0)

Example.

For the level surface $F(x, y, z) = x^2 + 4y^2 + z^2 = 4$, the tangent plane to the surface at $P_0=(\sqrt{2}/2,\sqrt{2}/2,\sqrt{6}/2)$ corresponds to the equation: $F(x, y, z) = x^2 + 4y^2 + z^2 = 4$ $P_0 = (\sqrt{2}/2, \sqrt{2}/2, \sqrt{6}/2)$

$$
\sqrt{2}(x-\sqrt{2}/2)+4\sqrt{2}(y-\sqrt{2}/2)+\sqrt{6}(z-\sqrt{6}/2)=0.
$$

Example.

Let E be the curve which is the intersection of the surfaces:

$$
x2 + y2 - 2 = 0
$$

$$
x + z - 4 = 0
$$

Find a vector parameterization for the line which is tangent to the curve E at the point $P_0 = (1, 1, 3)$.

Taylor's Theorem for Functions in Two Variables

Let $f(x, y)$ be a function in two variables, $n \in \mathbb{N}$. Suppose the partial derivatives of f of all orders up to $n + 1$ exist and are continuous at all points in an open ball B of positive radius centred at (a, b) , then for $(x, y) \in B$, we have:

$$
f(x,y)=p_n(x,y)++R_n(x,y),\quad
$$

where:

$$
p_n(x,y) = \sum_{k=0}^n \frac{1}{k!} \sum_{j=0}^k {k \choose j} \frac{\partial^k f}{\partial x^{k-j} \partial y^j} \Big|_{(a,b)} (x-a)^{k-j} (y-b)^j
$$

= $f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$
+ $\frac{1}{2!} (f_{xx}(a,b)(x-a)^2 + 2f_{xy}(a,b)(x-a)(y-b) + f_{yy}(a,b)(y-b)^2)$
+ $\frac{1}{3!} (f_{xxx}(a,b)(x-a)^3 + 3f_{xxy}(a,b)(x-a)^2 (y-b)$
+ $3f_{xyy}(a,b)(x-a)(y-b)^2 + f_{yyy}(a,b)(y-b)^3) + \cdots,$

and:

[>](#page-4-0)

$$
R_n(x,y) = \frac{1}{(n+1)!} \sum_{j=0}^{n+1} \binom{n+1}{j} \frac{\partial^{n+1} f}{\partial x^{n+1-j} \partial y^j} \bigg|_{(a+c(x-a),b+c(x-b))} (x-a)^{n+1-j} (y-b)^j,
$$

for some $c \in (0,1)$.

The polynomial $p_n(x, y)$ is called the n-th Taylor Polynomial of $f(x, y)$ about (a, b) .

Example.

Let $f(x, y) = \sin x \sin y$. Approximate the value of $f(0.01, -0.2)$ using the second Taylor Polynomial of f about $(0,0)$. We have:

$$
f_x(x, y) = \cos x \sin y, \quad f_y(x, y) = \sin x \cos y,
$$

$$
f_{xx}(x, y) = -\sin x \sin y, \quad f_{xy}(x, y) = \cos x \cos y, \quad f_{yy}(x, y) = -\sin x \sin y.
$$

[>](#page-5-0)

Hence, the second Taylor Polynomial of f about $(0, 0)$ is:

$$
p(x,y) = f(0,0) + f_x(0,0)x + f_y(0,0)y
$$

+
$$
\frac{1}{2!} (f_{xx}(0,0)x^2 + 2f_{xy}(0,0)xy + f_{yy}(0,0)y^2)
$$

=
$$
0 + 0 + 0 + \frac{1}{2!} (0 + 2 \cdot 1 \cdot xy + 0) = xy.
$$

So, $f(0.01, -0.2)$ is approximately equal to $p(0.01, -0.2) = (0.01)(-0.2) = -0.002.$ [>](#page-5-1)

The error of the approximation is:

$$
|f(0.01, -0.2) - p(0.01, -0.2)| = |R_3(0.01, -0.2)|
$$

=
$$
\left| \frac{1}{3!} (f_{xxx}(0.01c, -0.2c)(0.01)^3 + 3f_{xxy}(0.01c, -0.2c)(0.01)^2(-0.2) +3f_{xyy}(0.01c, -0.2c)(0.01)(-0.2)^2 + f_{yyy}(0.01c, -0.2c)(-0.2)^3) \right|,
$$

for some $c \in (0,1)$. [>](#page-5-2)

Computing the 3-rd order partial derivatives of f , we have:

$$
\begin{aligned} &|R_3(0.01,-0.2)|\\&=\left|\frac{1}{3!}\left(-\cos(0.01c)\sin(-0.2c)(0.01)^3-3\sin(-0.01c)\cos(-0.2c)(0.01)^2(-0.2)\right.\right.\\&\left.-3\cos(0.01c)\sin(-0.2c)(0.01)(-0.2)^2-\sin(0.01c)\cos(-0.2c)(-0.2)^3)\right|\right|\\&\leq\frac{1}{6}\left(|0.01|^3+3|0.01|^2\left|-0.2\right|+3\left|0.01\right|\left|-0.2\right|^2+\left|-0.2\right|^3\right), \end{aligned}
$$

since the sine and cosine functions have absolute values less than or equal to 1 .