THE CHINESE UNIVERSITY OF HONG KONG MATH 1540 Homework Set 2

Due time 6:30 pm Oct 13, 2016

1. Find the determinants of the following matrices:

(a)
\n
$$
\begin{pmatrix}\n10 & -1 \\
1 & -2\n\end{pmatrix}
$$
\n(b)
\n
$$
\begin{pmatrix}\n6 & -3 & 3 \\
0 & 2 & 7 \\
-9 & 5 & 4\n\end{pmatrix}
$$
\n(c)
\n
$$
\begin{pmatrix}\n20 & 7 & 13 & 5 \\
0 & 6 & -8 & 5 \\
12 & 1 & 15 & 5 \\
0 & 0 & 6 & 11\n\end{pmatrix}
$$

2. (a) Let A be an $n \times n$ square matrix, λ a real number. Show that there exists a nonzero $\vec{v} \in \mathbb{R}^n$ such that:

$$
A\vec{v} = \lambda \vec{v}
$$

if and only if $\det(A - \lambda I) = 0$. (Here, I is the $n \times n$ identity matrix.)

(b) Find all $\lambda \in \mathbb{R}$ such that:

$$
\begin{pmatrix} 1 & 0 & -3 \\ 0 & -2 & 0 \\ -3 & 0 & 1 \end{pmatrix} \vec{x} = \lambda \vec{x}
$$

has a nonzero solution $\vec{x} \in \mathbb{R}^n$. (Such λ 's are called *eigenvalues* of the matrix A.)

3. Determine if each of the following matrices is singular (i.e. non-invertible), either via Gaussian elimination or by computing its determinant.

(a)
\n
$$
\begin{pmatrix}\n1 & 0 & -4 \\
7 & 4 & 6 \\
3 & -5 & -2\n\end{pmatrix}
$$
\n(b)
\n
$$
\begin{pmatrix}\n0 & 5 & 7 & 3 \\
6 & -3 & 0 & 0 \\
8 & 3 & -7 & -7 \\
-5 & -5 & 2 & -6\n\end{pmatrix}
$$

(c)

$$
\begin{pmatrix} 1 & -1 & -1 & 1 \\ 1 & -2 & -2 & 3 \\ -1 & 1 & 1 & -1 \\ 3 & -2 & 1 & 3 \end{pmatrix}
$$

4. Let:

$$
A = \begin{pmatrix} -1 & 3 & 0 \\ 0 & 2 & -1 \\ 4 & 3 & 2 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 16 \\ 8 \\ 15 \end{pmatrix}.
$$

 \setminus

Given that A is invertible, solve the following matrix equation:

 $A\vec{x} = \vec{b}$

using:

- (a) Cramer's Rule.
- (b) Gaussian elimination on the augmented matrix $\left(A | \vec{b}\right)$.
- (c) $\vec{x} = A^{-1}\vec{b}$, where A^{-1} is obtained by performing Gaussian elimination on $(A | I)$.
- 5. Show that in general $\det(A + B) \neq \det A + \det B$.

Linear Independence

Definition. We say that a set of vectors:

$$
\vec{v}_1, \vec{v}_2, \ldots \vec{v}_m
$$

in \mathbb{R}^n are **linearly independent** if the only solution to

$$
x_1v_1 + x_2v_2 + \cdots x_mv_m = \vec{0}
$$

is $x_1 = x_2 = \cdots = x_m = 0$.

This is equivalent to saying that the matrix equation:

$$
\underbrace{\begin{pmatrix} | & | & & | \\ \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_m \\ | & | & & | \end{pmatrix}}_{A} \vec{x} = \vec{0}
$$

has $\vec{x} = \vec{0}$ as its only solution.

Examining the augmented matrix $(A | \vec{0})$, we see that $A\vec{x} = \vec{0}$ has a unique solution $\vec{x} = 0$ if and only if A is row equivalent to a matrix of the form:

$$
\begin{pmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & \ddots & * \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & \ddots & * \\ 0 & 0 & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix}
$$

In particular, if $\vec{v}_1, \ldots, \vec{v}_m$ are linearly independent, then $m \leq n$.

Example. Determine if the following vectors are linearly independent:

$$
\left\{\vec{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 2 \\ 5 \\ 0 \\ -3 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 4 \end{pmatrix}, \vec{v}_4 = \begin{pmatrix} 3 \\ 6 \\ 2 \\ 5 \end{pmatrix} \right\}.
$$

Let

$$
A = \begin{pmatrix} 1 & 2 & 0 & 3 \\ -1 & 5 & 1 & 6 \\ 2 & 0 & 0 & 2 \\ 0 & -3 & 4 & 5 \end{pmatrix}
$$

be the matrix whose columns are the \vec{v}_i 's.

Applying Gaussian elimination, we see that A is row equivalent to:

$$
\begin{pmatrix}\n1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0\n\end{pmatrix}
$$

What this tells us is that the solutions to the equation:

$$
x_1\vec{v}_1 + \dots + x_4\vec{v}_4 = \vec{0}
$$

are precisely those to the equation:

$$
x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 1 \\ 2 \\ 0 \end{pmatrix} = \vec{0},
$$

which has a solution where not all x_i 's are zero. For example,

$$
x_1 = 1, x_2 = 1, x_3 = 2, x_4 = -1.
$$

Hence, the vectors $\vec{v}_1, \ldots, \vec{v}_4$ are not linearly independent.

Note also from the row reduced augmented matrix that the smaller matrix formed by $\vec{v}_1, \vec{v}_2, \vec{v}_3$ is row equivalent to:

$$
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},
$$

which implies that $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are linear independent.

6. Determine if each of the following sets of vectors in \mathbb{R}^3 are linearly independent:

(a)
\n
$$
\left\{ \begin{pmatrix} -1 \\ -4 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix} \right\}
$$
\n(b)
\n
$$
\left\{ \begin{pmatrix} -1 \\ -4 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ -7 \end{pmatrix} \right\}
$$
\n(c)
\n
$$
\left\{ \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ -7 \end{pmatrix} \right\}
$$

7. Show that if three vectos v_1, v_2, v_3 in \mathbb{R}^3 are linearly independent, then every vector $\vec{v} \in \mathbb{R}$ \mathbb{R}^3 may be expressed uniquely as a linear combination of v_1, v_2, v_3 . In other words, there are unique scalars $\lambda_1, \lambda_2, \lambda_3$ such that:

$$
\vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \lambda_3 \vec{v}_3.
$$