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Limits of sequences

Definition (Infinite sequence of real numbers)

An infinite sequence of real numbers is defined by a function
from the set of positive integers Z+ = {1, 2, 3, . . . } to the set of
real numbers R.

Example (Sequences)

Arithmetic sequence: an = 3n+ 4; 7, 10, 13, 16 . . .

Geometric sequence: an = 3 · 2n; 6, 12, 24, 48 . . .

Fibonacci’s sequence:

Fn =
1√
5

((
1 +
√

5

2

)n
−

(
1−
√

5

2

)n)
;

1, 1, 2, 3, 5, 8, 13, . . .
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Definition (Limit of sequence)

1 Suppose there exists real number L such that for any ε > 0, there
exists N ∈ N such that for any n > N , we have |an − L| < ε. Then
we say that an is convergent, or an converges to L, and write

lim
n→∞

an = L.

Otherwise we say that an is divergent.

2 Suppose for any M > 0, there exists N ∈ N such that for any
n > N , we have an > M . Then we say that an tends to +∞ as n
tends to infinity, and write

lim
n→∞

an = +∞.

We define an tends to −∞ in a similar way. Note that an is
divergent if it tends to ±∞.

5 / 327



Limits
Differentiation

Integration

Sequences
Limits and Continuity

Example (Intuitive meaning of limits of infinite sequences)

an First few terms Limit

1

n2
1,

1

4
,
1

9
,

1

16
, . . . 0

n

n+ 1

1

2
,
2

3
,
3

4
,
4

5
, . . . 1

(−1)n+1 1,−1, 1,−1, . . . does not exist

2n 2, 4, 6, 8, . . . does not exist/+∞(
1 +

1

n

)n
2,

9

4
,
64

27
,
625

256
, . . . e ≈ 2.71828

Fn+1

Fn
1, 2,

3

2
,
5

3
, . . .

1 +
√

5

2
≈ 1.61803
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Definition (Monotonic sequence)

1 We say that an is monotonic increasing (decreasing) if for
any m < n, we have am ≤ an (am ≥ an). We say that an is
monotonic if an is either monotonic increasing or monotonic
decreasing.

2 We say that an is strictly increasing (decreasing) if for any
m < n, we have am < an (am > an).

Definition (Bounded sequence)

We say that an is bounded if there exists real number M such
that |an| < M for any n ∈ N.
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Example (Bounded and monotonic sequence)

an Terms Bounded Monotonic
Convergent

(Limit)

1

n2
1,

1

4
,

1

9
,

1

16
, . . . X X X (0)

1− (−1)n

n
2,

1

2
,

4

3
,

3

4
, . . . X × X (1)

n2 1, 4, 9, 16, . . . × X ×
1− (−1)n 2, 0, 2, 0, . . . X × ×

(−1)nn −1, 2,−3, 4, . . . × × ×
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Theorem

If an is convergent, then an is bounded.

Convergent⇒ Bounded

Note that the converse of the above statement is not correct.

Bounded 6⇒ Convergent

The following theorem is very important and we will discuss it in
details later.

Theorem (Monotone convergence theorem)

If an is bounded and monotonic, then an is convergent.

Bounded and Monotonic⇒ Convergent
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Exercise (True or False)

Suppose lim
n→∞

an = a and lim
n→∞

bn = b. Then

lim
n→∞

(an ± bn) = a± b.

Answer: T
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Exercise (True or False)

Suppose lim
n→∞

an = a and c is a real number. Then

lim
n→∞

can = ca.

Answer: T
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Exercise (True or False)

If lim
n→∞

an = a and lim
n→∞

bn = b, then

lim
n→∞

anbn = ab.

Answer: T

12 / 327



Limits
Differentiation

Integration

Sequences
Limits and Continuity

Exercise (True or False)

If lim
n→∞

an = a and lim
n→∞

bn = b, then

lim
n→∞

an
bn

=
a

b
.

Answer: F
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Exercise (True or False)

If lim
n→∞

an = a and lim
n→∞

bn = b 6= 0, then

lim
n→∞

an
bn

=
a

b
.

Answer: T
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Exercise (True or False)

If lim
n→∞

an = 0, then

lim
n→∞

anbn = 0.

Answer: F

Example

For an =
1

n
and bn = n, we have lim

n→∞
an = 0 but

lim
n→∞

anbn = lim
n→∞

1

n
· n = lim

n→∞
1 = 1 6= 0.
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Exercise (True or False)

If lim
n→∞

an = 0 and bn is convergent, then

lim
n→∞

anbn = 0.

Answer: T

Proof.

lim
n→∞

anbn = lim
n→∞

an lim
n→∞

bn

= 0
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Exercise (True or False)

If lim
n→∞

an = 0 and bn is bounded, then

lim
n→∞

anbn = 0.

Answer: T
Caution! The previous proof does not work.
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Exercise (True or False)

If a2n is convergent, then an is convergent.

Answer: F

Example

For an = (−1)n, a2n converges to 1 but an is divergent.
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Exercise (True or False)

If an is convergent, then |an| is convergent.

Answer: T
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Exercise (True or False)

If |an| is convergent, then an is convergent.

Answer: F
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Exercise (True or False)

If an and bn are divergent, then an + bn is divergent.

Answer: F

Example

The sequences an = n and bn = −n are divergent but an + bn = 0
converges to 0.
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Exercise (True or False)

If lim
n→∞

bn = +∞, then

lim
n→∞

an
bn

= 0.

Answer: F

Example

For an = n2 and bn = n, we have lim
n→∞

bn = +∞ but

an
bn

=
n2

n
= n is divergent.
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Exercise (True or False)

If an is convergent and lim
n→∞

bn = ±∞, then

lim
n→∞

an
bn

= 0.

Answer: T
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Exercise (True or False)

If an is bounded and lim
n→∞

bn = ±∞, then

lim
n→∞

an
bn

= 0.

Answer: T
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Exercise (True or False)

Suppose an is bounded. Suppose bn is a sequence and there exists
N such that bn = an for any n > N . Then bn is bounded.

Answer: T
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Exercise (True or False)

Suppose lim
n→∞

an = a. Suppose bn is a sequence and there exists

N such that bn = an for any n > N . Then

lim
n→∞

bn = a.

Answer: T
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Exercise (True or False)

Suppose an and bn are convergent sequences such that an < bn for
any n. Then

lim
n→∞

an < lim
n→∞

bn.

Answer: F

Example

The sequences an = 0 and bn =
1

n
satisfy an < bn for any n.

However
lim
n→∞

an 6< lim
n→∞

bn

because both of them are 0.
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Exercise (True or False)

Suppose an and bn are convergent sequences such that an ≤ bn for
any n. Then

lim
n→∞

an ≤ lim
n→∞

bn.

Answer: T
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Exercise (True or False)

If lim
n→∞

an = a, then

lim
n→∞

a2n = lim
n→∞

a2n+1 = a.

Answer: T
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Exercise (True or False)

If lim
n→∞

a2n = lim
n→∞

a2n+1 = a, then

lim
n→∞

an = a.

Answer: T
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Exercise (True or False)

If an is convergent, then

lim
n→∞

(an+1 − an) = 0.

Answer: T
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Exercise (True or False)

If lim
n→∞

(an+1 − an) = 0, then an is convergent.

Answer: F

Example

Let an =
√
n. Then lim

n→∞
(an+1 − an) = 0 and an is divergent.
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Exercise (True or False)

If lim
n→∞

(an+1 − an) = 0 and an is bounded, then an is convergent.

Answer: F

Example

0,
1

2
, 1,

2

3
,
1

3
, 0,

1

4
,
2

4
,
3

4
, 1,

4

5
,
3

5
,
2

5
,
1

5
, 0,

1

6
,
2

6
, . . .
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Example

Let a > 0 be a positive real number.

lim
n→∞

an =


+∞, if a > 1

1, if a = 1

0, if 0 < a < 1

.
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Example

lim
n→∞

2n− 5

3n+ 1
= lim

n→∞

2− 5
n

3 + 1
n

=
2− 0

3 + 0

=
2

3
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Example

lim
n→∞

n3 − 2n+ 7

4n3 + 5n2 − 3
= lim

n→∞

1− 2
n2 + 7

n3

4 + 5
n −

3
n3

=
1

4
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Example

lim
n→∞

3n−
√

4n2 + 1

3n+
√

9n2 + 1
= lim

n→∞

3−
√
4n2+1
n

3 +
√
9n2+1
n

= lim
n→∞

3−
√

4 + 1
n2

3 +
√

9 + 1
n2

=
1

6
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Example

lim
n→∞

(n−
√
n2 − 4n+ 1)

= lim
n→∞

(n−
√
n2 − 4n+ 1)(n+

√
n2 − 4n+ 1)

n+
√
n2 − 4n+ 1

= lim
n→∞

n2 − (n2 − 4n+ 1)

n+
√
n2 − 4n+ 1

= lim
n→∞

4n− 1

n+
√
n2 − 4n+ 1

= lim
n→∞

4− 1
n

1 +
√

1− 4
n + 1

n2

= 2
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Example

lim
n→∞

ln(n4 + 1)

ln(n3 + 1)
= lim

n→∞

ln(n4(1 + 1
n4 ))

ln(n3(1 + 1
n3 ))

= lim
n→∞

lnn4 + ln(1 + 1
n4 )

lnn3 + ln(1 + 1
n3 )

= lim
n→∞

4 lnn+ ln(1 + 1
n4 )

3 lnn+ ln(1 + 1
n3 )

= lim
n→∞

4 +
ln(1+ 1

n4
)

lnn

3 +
ln(1+ 1

n3
)

lnn

=
4

3
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Squeeze theorem

Theorem (Squeeze theorem)

Suppose an, bn, cn are sequences such that an ≤ bn ≤ cn for any n
and lim

n→∞
an = lim

n→∞
cn = L. Then bn is convergent and

lim
n→∞

bn = L.
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Theorem

If an is bounded and lim
n→∞

bn = 0, then lim
n→∞

anbn = 0.

Proof.

Since an is bounded, there exists M such that −M < an < M for any n.
Thus

−M |bn| < anbn < M |bn|

for any n. Now

lim
n→∞

(−M |bn|) = lim
n→∞

M |bn| = 0.

Therefore by squeeze theorem, we have

lim
n→∞

anbn = 0.
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Example

Find lim
n→∞

√
n+ (−1)n√
n− (−1)n

.

Solution

Since (−1)n is bounded and lim
n→∞

1√
n

= 0, we have

lim
n→∞

(−1)n√
n

= 0 and therefore

lim
n→∞

√
n+ (−1)n√
n− (−1)n

= lim
n→∞

1 + (−1)n√
n

1− (−1)n√
n

= 1
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Example

Show that lim
n→∞

2n

n!
= 0.

Proof.

Observe that for any n ≥ 3,

0 <
2n

n!
= 2

(
2

2
· 2

3
· 2

4
· · · 2

n− 1

)
2

n
≤ 2 · 2

n
=

4

n

and lim
n→∞

4

n
= 0. By squeeze theorem, we have

lim
n→∞

2n

n!
= 0.
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Monotone convergence theorem

Theorem (Monotone convergence theorem)

If an is bounded and monotonic, then an is convergent.

Bounded and Monotonic⇒ Convergent
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Example

Let an be the sequence defined by the recursive relation{
an+1 =

√
an + 1 for n ≥ 1

a1 = 1
.

Find lim
n→∞

an.

n an
1 1

2 1.414213562

3 1.553773974

4 1.598053182

5 1.611847754

10 1.618016542

15 1.618033940
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Solution

Suppose lim
n→∞

an = a. Then lim
n→∞

an+1 = a and thus

a =
√
a+ 1

a2 = a+ 1

a2 − a− 1 = 0

By solving the quadratic equation, we have

a =
1 +
√

5

2
or

1−
√

5

2
.

It is obvious that a > 0. Therefore

a =
1 +
√

5

2
≈ 1.6180339887
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Solution

The above solution is not complete. The solution is valid only after
we have proved that lim

n→∞
an exists and is positive. This can be

done by using monotone convergent theorem. We are going to
show that an is bounded and monotonic.
Boundedness
We prove that 1 ≤ an < 2 for all n ≥ 1 by induction.
(Base case) When n = 1, we have a1 = 1 and 1 ≤ a1 < 2.
(Induction step) Assume that 1 ≤ ak < 2. Then

ak+1 =
√
ak + 1 ≥

√
1 + 1 > 1

ak+1 =
√
ak + 1 <

√
2 + 1 < 2

Thus 1 ≤ an < 2 for any n ≥ 1 which implies that an is bounded.
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Solution

Monotonicity
We prove that an+1 > an for any n ≥ 1 by induction.
(Base case) When n = 1, a1 = 1, a2 =

√
2 and thus a2 > a1.

(Induction step) Assume that

ak+1 > ak (Induction hypothesis).

Then

ak+2 =
√
ak+1 + 1 >

√
ak + 1 (by induction hypothesis)

= ak+1

This completes the induction step and thus an is strictly increasing.
We have proved that an is bounded and strictly increasing. Therefore an
is convergent by monotone convergence theorem. Since an ≥ 1 for any
n, we have lim

n→∞
an ≥ 1 is positive.
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Example

Let an =
Fn+1

Fn
where Fn is the Fibonacci’s sequence defined by{

Fn+2 = Fn+1 + Fn

F1 = F2 = 1
.

Find lim
n→∞

an.

n an
1 1
2 2
3 1.5
4 1.666666666
5 1.6
10 1.618181818
15 1.618032787
20 1.618033999
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Theorem

For any n ≥ 1,

1 Fn+2Fn − F 2
n+1 = (−1)n+1

2 Fn+3Fn − Fn+2Fn+1 = (−1)n+1

Proof

1 When n = 1, we have F3F1 − F 2
2 = 2 · 1− 12 = 1 = (−1)2. Assume

Fk+2Fk − F 2
k+1 = (−1)k+1.

Then

Fk+3Fk+1 − F 2
k+2 = (Fk+2 + Fk+1)Fk+1 − F 2

k+2

= Fk+2(Fk+1 − Fk+2) + F 2
k+1

= −Fk+2Fk + F 2
k+1

= (−1)k+2 (by induction hypothesis)

Therefore Fn+2Fn − F 2
n+1 = (−1)n+1 for any n ≥ 1.
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Proof.

The proof for the second statement is basically the same. When
n = 1, we have F4F1 − F3F2 = 3 · 1− 2 · 1 = 1 = (−1)2. Assume

Fk+3Fk − Fk+2Fk+1 = (−1)k+1.

Then

Fk+4Fk+1 − Fk+3Fk+2 = (Fk+3 + Fk+2)Fk+1 − Fk+3Fk+2

= Fk+3(Fk+1 − Fk+2) + Fk+2Fk+1

= −Fk+3Fk + Fk+2Fk+1

= −(−1)k+1 (by induction hypothesis)

= (−1)k+2

Therefore Fn+3Fn − Fn+2Fn+1 = (−1)n+1 for any n ≥ 1.
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Theorem

Let an =
Fn+1

Fn
.

1 The sequence a1, a3, a5, a7, · · · , is strictly increasing.

2 The sequence a2, a4, a6, a8, · · · , is strictly decreasing.

Proof.

For any k ≥ 1, we have

a2k+1 − a2k−1 =
F2k+2

F2k+1
− F2k

F2k−1
=
F2k+2F2k−1 − F2k+1F2k

F2k+1F2k−1

=
(−1)2k

F2k+1F2k−1
=

1

F2k+1F2k−1
> 0

Therefore a1, a3, a5, a7, · · · , is strictly increasing. The second statement
can be proved in a similar way.
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lim
k→∞

(a2k+1 − a2k) = 0

Proof.

For any k ≥ 1,

a2k+1 − a2k =
F2k+2

F2k+1
− F2k+1

F2k

=
F2k+2F2k − F 2

2k+1

F2k+1F2k
=

1

F2k+1F2k

Therefore

lim
k→∞

(a2k+1 − a2k) = lim
k→∞

1

F2k+1F2k
= 0.
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Theorem

lim
n→∞

Fn+1

Fn
=

1 +
√

5

2

Proof

First we prove that an = Fn+1

Fn
is convergent.

an is bounded. (1 ≤ an ≤ 2 for any n.)
a2k+1 and a2k are convergent. (They are bounded and monotonic.)

lim
k→∞

(a2k+1 − a2k) = 0⇒ lim
k→∞

a2k+1 = lim
k→∞

a2k

It follows that an is convergent and

lim
n→∞

an = lim
k→∞

a2k+1 = lim
k→∞

a2k.
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Proof.

To evaluate the limit, suppose lim
n→∞

Fn+1

Fn
= L. Then

L = lim
n→∞

Fn+2

Fn+1
= lim

n→∞

Fn+1 + Fn

Fn+1
= lim

n→∞

(
1 +

Fn

Fn+1

)
= 1 +

1

L

L2 − L− 1 = 0

By solving the quadratic equation, we have

L =
1 +
√

5

2
or

1−
√

5

2
.

We must have L ≥ 1 since an ≥ 1 for any n. Therefore

L =
1 +
√

5

2
.
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Remarks

The limit can be calculate directly using the formula

Fn =
αn − βn

α− β

=
1√
5

((
1 +
√

5

2

)n
−

(
1−
√

5

2

)n)

where

α =
1 +
√

5

2
, β =

1−
√

5

2

are the roots of the quadratic equation

x2 − x− 1 = 0.
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Theorem

Let

an =

(
1 +

1

n

)n
bn =

n∑
k=0

1

k!
= 1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

n!

Then

1 an < bn for any n > 1.

2 an and bn are convergent and

lim
n→∞

an = lim
n→∞

bn
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an =

(
1 +

1

n

)n

bn =

n∑
k=0

1

k!
= 1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

n!

n an bn
1 2 2
5 2.48832 2.716666666666
10 2.593742 2.718281801146
100 2.704813 2.718281828459

100000 2.718268 2.718281828459

The limit of the two sequences is the important Euler’s number

e ≈ 2.71828 18284 59045 23536 . . . .

which is also known as the Napier’s constant.
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Definition (Convergence of infinite series)

We say that an infinite series

∞∑
k=1

ak = a1 + a2 + a3 + · · ·

is convergent if the sequence of partial sums

sn =
n∑
k=1

ak = a1 + a2 + a3 + · · ·+ an is convergent. If the infinite series is

convergent, then we define

∞∑
k=1

ak = lim
n→∞

sn = lim
n→∞

n∑
k=1

ak.
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Limits of functions

Definition (Function)

A real valued function on a subset D ⊂ R is a real value f(x)
assigned to each of the values x ∈ D. The set D is called the
domain of the function.

Given an expression f(x) in x, the domain D is understood to be
taken as the set of all real numbers x such that f(x) is defined.
This is called the maximum domain of definition of f(x).

Definition (Graph of function)

Let f(x) is a real valued function. The graph of f(x) is the set

{(x, y) ∈ R2 : y = f(x)}.
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Definition

Let f(x) be a real valued function and D be its domain. We say
that f(x) is

1 injective if for any x1, x2 ∈ D with x1 6= x2, we have
f(x1) 6= f(x2).

2 surjective if for any real number y ∈ R, there exists x ∈ D
such that f(x) = y.

3 bijective if f(x) is both injective and surjective.

Definition

Let f(x) be a real valued function. We say that f(x) is

1 even if f(−x) = f(x) for any x.

2 odd if f(−x) = −f(x) for any x.
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Example

f(x) Domain Injective Surjective Bijective Even Odd

2x− 3 R X X X × ×
x3 − 2x2 R × X × × ×

1

x
x 6= 0 X × × × X

4x

x2 + 1
R × × × × X

x

x2 − 1
x 6= ±1 × X × × X

x2 − 1

x2
x 6= 0 × X × X ×

√
4− x2 −2 ≤ x ≤ 2 × × × X ×

1√
x+ 4

x > −4 X × × × ×
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Definition (Limit of function)

Let f(x) be a real valued function.

1 We say that a real number l is a limit of f(x) at x = a if for any ε > 0,
there exists δ > 0 such that

if 0 < |x− a| < δ, then |f(x)− l| < ε

and write
lim
x→a

f(x) = l.

2 We say that a real number l is a limit of f(x) at +∞ if for any ε > 0,
there exists R > 0 such that

if x > R, then |f(x)− l| < ε

and write
lim

x→+∞
f(x) = l.

The limit of f(x) at −∞ is defined similarly.
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1 Note that for the limit of f(x) at x = a to exist, f(x) may
not be defined at x = a and even if f(a) is defined, the value
of f(a) does not affect the value of lim

x→a
f(x).

2 The limit of f(x) at x = a may not exist. However the limit is
unique if it exists.
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lim
x→a

f(x) = l
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lim
x→a

f(x)

does not exist
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Theorem (Sequential criterion for limits of functions)

Let f(x) be a real valued function. Then

lim
x→a

f(x) = l

if and only if for any sequence xn of real numbers with lim
n→∞

xn = a, we

have
lim
n→∞

f(xn) = l.
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Theorem

Let f(x), g(x) be functions such that lim
x→a

f(x), lim
x→a

g(x) exist and

c be a real number. Then

1 lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x)

2 lim
x→a

cf(x) = c lim
x→a

f(x)

3 lim
x→a

f(x)g(x) = lim
x→a

f(x) lim
x→a

g(x)

4 lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)
if lim
x→a

g(x) 6= 0.
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Theorem

Let g(u) be a function of u and u = f(x) be a function of x.
Suppose

1 lim
x→a

f(x) = b ∈ [−∞,+∞]

2 lim
u→b

g(u) = l

3 f(x) 6= b when x 6= a or g(b) = l.

Then
lim
x→a

(g ◦ f)(x) = l.

x
f−−→ u = f(x)

g−−→ (g ◦ f)(x) = g(u) = g(f(x))
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Example

1. lim
x→+∞

6x3 + 2x2 − 5

2x3 − 3x+ 1
= lim

x→+∞

6 + 2
x −

5
x3

2− 3
x2

+ 1
x3

= lim
y→0

6 + 2y − 5y3

2− 3y + y3

= 3

2. lim
n→∞

(
1 +

1

n2

)n2

= lim
m→∞

(
1 +

1

m

)m
= e
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Theorem (Squeeze theorem)

Let f(x), g(x), h(x) be real valued functions. Suppose

1 f(x) ≤ g(x) ≤ h(x) for any x 6= a on a neighborhood of a, and

2 lim
x→a

f(x) = lim
x→a

h(x) = l.

Then the limit of g(x) at x = a exists and lim
x→a

g(x) = l.

Theorem

Suppose

1 f(x) is bounded, and

2 lim
x→a

g(x) = 0

Then lim
x→a

f(x)g(x) = 0.
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Exponential, logarithmic and trigonometric functions

Definition (Exponential function)

The exponential function is defined for real number x ∈ R by

ex = lim
n→∞

(
1 +

x

n

)n
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · ·

1 It can be proved that the two limits in the definition exist and
converge to the same value for any real number x.

2 ex is just a notation for the exponential function. One should
not interpret it as ‘e to the power x’.
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Theorem

For any x, y ∈ R, we have

ex+y = exey.

Caution! One cannot use law of indices to prove the above identity.
It is because ex is just a notation for the exponential function and
it does not mean ‘e to the power x’. In fact we have not defined
what ax means when x is a real number which is not rational.
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Theorem

1 ex > 0 for any real number x.

2 ex is strictly increasing.

Proof.

1 For any x > 0, we have ex > 1 + x > 1. If x < 0, then

exe−x = ex+(−x) = e0 = 1

ex =
1

e−x
> 0

since e−x > 1. Therefore ex > 0 for any x ∈ R.

2 Let x, y be real numbers with x < y. Then y − x > 0 which implies
ey−x > 1. Therefore

ey = ex+(y−x) = exey−x > ex.
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Definition (Logarithmic function)

The logarithmic function is the function ln : R+ → R defined for
x > 0 by

y = lnx if ey = x.

In other words, lnx is the inverse function of ex.

It can be proved that for any x > 0, there exists unique real
number y such that ey = x.
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Theorem

1 lnxy = lnx+ ln y

2 ln
x

y
= lnx− ln y

3 lnxn = n lnx for any integer n ∈ Z.

Proof.

1 Let u = lnx and v = ln y. Then x = eu, y = ev and we have

xy = euev = eu+v = elnx+ln y

which means lnxy = lnx+ ln y.

Other parts can be proved similarly.
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Definition (Cosine and sine functions)

The cosine and sine functions are defined for real number x ∈ R
by the infinite series

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

1 When the sine and cosine are interpreted as trigonometric
ratios, the angles are measured in radian. (1800 = π)

2 The series for cosine and sine are convergent for any real
number x ∈ R.
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There are four more trigonometric functions namely tangent, cotangent,
secant and cosecant functions. All of them are defined in terms of sine
and cosine.

Definition (Trigonometric functions)

tanx =
sinx

cosx
, for x 6= 2k + 1

2
π, k ∈ Z

cotx =
cosx

sinx
, for x 6= kπ, k ∈ Z

secx =
1

cosx
, for x 6= 2k + 1

2
π, k ∈ Z

cscx =
1

sinx
, for x 6= kπ, k ∈ Z
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Theorem (Trigonometric identities)

1 cos2 x+ sin2 x = 1; sec2 x− tan2 x = 1; csc2 x− cot2 x = 1

2 cos(x± y) = cosx cos y ∓ sinx sin y;

sin(x± y) = sinx cos y ± cosx sin y;

tan(x± y) =
tanx± tan y

1∓ tanx tan y

3 cos 2x = cos2 x− sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x;

sin 2x = 2 sinx cosx;

tan 2x =
2 tanx

1− tan2 x

4 2 cosx cos y = cos(x+ y) + cos(x− y)
2 cosx sin y = sin(x+ y)− sin(x− y)
2 sinx sin y = cos(x− y)− cos(x+ y)

5 cosx+ cos y = 2 cos
(
x+y
2

)
cos
(
x−y
2

)
cosx− cos y = −2 sin

(
x+y
2

)
sin
(
x−y
2

)
sinx+ sin y = 2 sin

(
x+y
2

)
cos
(
x−y
2

)
sinx− sin y = 2 cos

(
x+y
2

)
sin
(
x−y
2

)
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Definition (Hyperbolic function)

The hyperbolic functions are defined for x ∈ R by

coshx =
ex + e−x

2
= 1 +

x2

2!
+
x4

4!
+
x6

6!
+ · · ·

sinhx =
ex − e−x

2
= x+

x3

3!
+
x5

5!
+
x7

7!
+ · · ·
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Theorem (Hyperbolic identities)

1 cosh2 x− sinh2 x = 1

2 cosh(x+ y) = coshx cosh y + sinhx sinh y
sinh(x+ y) = sinhx cosh y + coshx sinh y

3 cosh 2x = cosh2 x+ sinh2 x = 2 cosh2 x− 1 = 1 + 2 sinh2 x;

sinh 2x = 2 sinhx coshx
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Theorem

1 lim
x→0

ex − 1

x
= 1

2 lim
x→0

ln(1 + x)

x
= 1

3 lim
x→0

sinx

x
= 1
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Proof. lim
x→0

ex − 1

x
= 1.

For any −1 < x < 1 with x 6= 0, we have

ex − 1

x
= 1 +

x

2!
+
x2

3!
+
x3

4!
+
x4

5!
+ · · ·

≤ 1 +
x

2
+

(
x2

4
+
x2

8
+
x2

16
+ · · ·

)
= 1 +

x

2
+
x2

2

ex − 1

x
= 1 +

x

2!
+
x2

3!
+
x3

4!
+ · · ·

≥ 1 +
x

2
−
(
x2

4
+
x2

8
+
x2

16
+ · · ·

)
= 1 +

x

2
− x2

2

and lim
x→0

(1+
x

2
+
x2

2
) = lim

x→0
(1+

x

2
− x2

2
) = 1. Therefore lim

x→0

ex − 1

x
= 1.

89 / 327



Limits
Differentiation

Integration

Sequences
Limits and Continuity

Figure: lim
x→0

ex − 1

x
= 1
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Proof. lim
x→0

ln(1 + x)

x
= 1.

Let y = ln(1 + x). Then

ey = 1 + x

x = ey − 1

and x→ 0 as y → 0. We have

lim
x→0

ln(1 + x)

x
= lim

y→0

y

ey − 1

= 1

Note that the first part implies lim
y→0

(ey − 1) = 0.
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Proof. lim
x→0

sinx

x
= 1.

Note that
sinx

x
= 1− x2

3!
+
x4

5!
− x6

7!
+
x8

9!
− x10

11!
+ · · · .

For any −1 < x < 1 with x 6= 0, we have

sinx

x
= 1−

(
x2

3!
− x4

5!

)
−
(
x6

7!
− x8

9!

)
− · · · ≤ 1

sinx

x
= 1− x2

6
+

(
x4

5!
− x6

7!

)
+

(
x8

9!
− x10

11!

)
+ · · · ≥ 1− x2

6

and lim
x→0

1 = lim
x→0

(1− x2

6
) = 1. Therefore

lim
x→0

sinx

x
= 1.
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Figure: lim
x→0

sinx

x
= 1
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Theorem

Let k be a positive integer.

1 lim
x→+∞

xk

ex
= 0

2 lim
x→+∞

(lnx)k

x
= 0
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Proof.

1 For any x > 0,

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · >

xk+1

(k + 1)!

and thus

0 <
xk

ex
<

(k + 1)!

x
.

Moreover lim
x→+∞

(k + 1)!

x
= 0. Therefore

lim
x→+∞

xk

ex
= 0.

2 Let x = ey . Then x→ +∞ as y → +∞ and lnx = y. We have

lim
x→+∞

(lnx)k

x
= lim
y→+∞

yk

ey
= 0.
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Example

1. lim
x→4

x2 − 16
√
x− 2

= lim
x→4

(x− 4)(x+ 4)(
√
x+ 2)

(
√
x− 2)(

√
x+ 2)

= lim
x→4

(x− 4)(x+ 4)(
√
x+ 2)

x− 4

= lim
x→4

(x+ 4)(
√
x+ 2) = 32

2. lim
x→+∞

3e2x + ex − x4

4e2x − 5ex + 2x4
= lim

x→+∞

3 + e−x − x4e−2x

4− 5e−x + 2x4e−2x
=

3

4

3. lim
x→+∞

ln(2e4x + x3)

ln(3e2x + 4x5)
= lim

x→+∞

4x+ ln(2 + x3e−4x)

2x+ ln(3 + 4x5e−2x)

= lim
x→+∞

4 +
ln(2+x3e−4x)

x

2 +
ln(3+4x5e−2x)

x

= 2

4. lim
x→−∞

(x+
√
x2 − 2x) = lim

x→−∞

(x+
√
x2 − 2x)(x−

√
x2 − 2x)

x−
√
x2 − 2x

= lim
x→−∞

2x

x−
√
x2 − 2x

= lim
x→−∞

2

1 +
√

1− 2
x

= 1
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Example

5. lim
x→0

sin 6x− sinx

sin 4x− sin 3x
= lim

x→0

6 sin 6x
6x

− sin x
x

4 sin 4x
4x

− 3 sin 3x
3x

=
6− 1

4− 3
= 5

6. lim
x→0

1− cosx

x tanx
= lim

x→0

(1− cosx)(1 + cosx)

x sin x
cos x

(1 + cosx)

= lim
x→0

(1− cos2 x) cosx

x sinx(1 + cosx)

= lim
x→0

(
sinx

x

)
cosx

1 + cosx
=

1

2

7. lim
x→0

e2x − 1

ln(1 + 3x)
= lim

x→0

2

3
·
e2x − 1

2x
·

3x

ln(1 + 3x)
=

2

3

8. lim
x→0

x ln(1 + sinx)

1−
√
cosx

= lim
x→0

x(1 +
√
cosx)(1 + cosx) ln(1 + sinx)

1− cos2 x

= lim
x→0

x

sinx
·
ln(1 + sinx)

sinx
(1 +

√
cosx)(1 + cosx)

= 4
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Continuity of functions

Definition (Continuity)

Let f(x) be a real valued function. We say that f(x) is continuous at
x = a if

lim
x→a

f(x) = f(a).

In other words, f(x) is continuous at x = a if for any ε > 0, there exists
δ > 0 such that

if |x− a| < δ, then |f(x)− f(a)| < ε.

We say that f(x) is continuous on an interval in R if f(x) is continuous
at every point on the interval.
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Theorem

Let g(u) be a function in u and u = f(x) be a function in x.
Suppose g(u) is continuous and the limit of f(x) at x = a exists.
Then

lim
x→a

(g ◦ f)(x) = lim
x→a

g(f(x)) = g
(

lim
x→a

f(x)
)
.

x
f−−→ u = f(x)

g−−→ (g ◦ f)(x) = g(u) = g(f(x))
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Theorem

1 For any non-negative integer n, f(x) = xn is continuous on R.

2 The functions ex, cosx, sinx are continuous on R.

3 The logarithmic function lnx is continuous on R+.
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Theorem

Suppose f(x), g(x) are continuous functions and c is a real
number. Then the following functions are continuous.

1 f(x) + g(x)

2 cf(x)

3 f(x)g(x)

4
f(x)

g(x)
at the points where g(x) 6= 0.

5 (f ◦ g)(x)
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Definition

The absolute value of x ∈ R is defined by

|x| =

{
−x, if x < 0

x, if x ≥ 0
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Example (Piecewise defined function)

a 1 5

lim
x→a−

f(x) 3 2

lim
x→a+

f(x) 0 2

lim
x→a

f(x) does not exist 2
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Theorem

A function f(x) is continuous at x = a if

lim
x→a+

f(x) = lim
x→a−

f(x) = f(a).

The theorem is usually used to check whether a piecewise defined
function is continuous.

105 / 327



Limits
Differentiation

Integration

Sequences
Limits and Continuity

The following functions are not continuous at x = a.

lim
x→a−

f(x) does not exist lim
x→a

f(x) does not exist

lim
x→a−

f(x) 6= lim
x→a+

f(x) lim
x→a

f(x) 6= f(a)
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Example

Given that the function

f(x) =


2x− 1 if x < 2

a if x = 2

x2 + b if x > 2

is continuous at x = 2. Find the value of a and b.

Solution

Note that

lim
x→2−

f(x) = lim
x→2−

(2x− 1) = 3

lim
x→2+

f(x) = lim
x→2+

(x2 + b) = 4 + b

f(2) = a

Since f(x) is continuous at x = 2, we have 3 = 4 + b = a which implies a = 3
and b = −1.
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Example

Prove that the function

f(x) =

sin

(
1

x

)
, if x 6= 0

0, if x = 0

is not continuous at x = 0.

Proof.

Let xn =
2

(2n+ 1)π
for n = 1, 2, 3, . . . . Then lim

n→∞
xn = 0 and

f(xn) = sin

(
(2n+ 1)π

2

)
= (−1)n.

Thus lim
n→∞

f(xn) does not exist. Therefore f(x) is not continuous at

x = 0.
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f(x) is not continuous at x = 0.
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Theorem (Intermediate value theorem)

Suppose f(x) is a function which is continuous on [a, b]. Then for
any real number η between f(a) and f(b), there exists ξ ∈ (a, b)
such that f(ξ) = η.
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Theorem (Extreme value theorem)

Suppose f(x) is a function which is continuous on a closed and
bounded interval [a, b]. Then there exists α, β ∈ [a, b] such that

f(α) ≤ f(x) ≤ f(β) for any x ∈ [a, b].
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Differentiable functions

Definition (Differentiable function)

Let f(x) be a function. Denote

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

and we say that f(x) is differentiable at x = a if the above limit
exists. We say that f(x) is differentiable on (a, b) if f(x) is
differentiable at every point in (a, b).

The above limit can also be written as

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.
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Figure: Definition of derivative
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Theorem

If f(x) differentiable at x = a, then f(x) is continuous at x = a.

Differentiable at x = a⇒ Continuous at x = a

Proof.

Suppose f(x) is differentiable at x = a. Then

lim
x→a

(f(x)− f(a)) = lim
x→a

(
f(x)− f(a)

x− a

)
(x− a)

= lim
x→a

(
f(x)− f(a)

x− a

)
lim
x→a

(x− a)

= f ′(a) · 0 = 0

Therefore f(x) is continuous at x = a.

Note that the converse of the above theorem does not hold. The function

f(x) = |x| is continuous but not differentiable at 0.
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The following functions are not differentiable at x = a.
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Example

1 f(x) = ex: f ′(0) = lim
h→0

eh − e0

h
= lim

h→0

eh − 1

h
= 1.

2 f(x) = lnx: f ′(1) = lim
h→0

ln(1 + h)− ln 1

h
= lim

h→0

ln(1 + h)

h
= 1.

3 f(x) = sinx: f ′(0) = lim
h→0

sinh− sin 0

h
= lim

h→0

sinh

h
= 1.
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Example

Find the values of a, b if f(x) =

{
4x− 1, if x ≤ 1

ax2 + bx, if x > 1
is differentiable at x = 1.

Solution: Since f(x) is differentiable at x = 1, f(x) is continuous at x = 1 and we
have

lim
x→1+

f(x) = f(1)⇒ lim
x→1+

(ax2 + bx) = a+ b = 3.

Moreover, f(x) is differentiable at x = 1 and we have

lim
h→0−

f(1 + h)− f(1)
h

= lim
h→0−

(4(1 + h)− 1)− 3

h
= 4

lim
h→0+

f(1 + h)− f(1)
h

= lim
h→0+

a(1 + h)2 − b(1 + h)− 3

h
= 2a+ b

Therefore

{
a+ b = 3

2a+ b = 4
⇒
{
a = 1

b = 2
.
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Definition (First derivative)

Let y = f(x) be a differentiable function on (a, b). The first
derivative of f(x) is the function on (a, b) defined by

dy

dx
= f ′(x) = lim

h→0

f(x+ h)− f(x)

h
.

Theorem

Let f(x) and g(x) be differentiable functions and c be a real
number. Then

1 (f + g)′(x) = f ′(x) + g′(x)

2 (cf)′(x) = cf ′(x)
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Theorem

1
d

dx
xn = nxn−1, n ∈ Z+, for x ∈ R

2
d

dx
ex = ex for x ∈ R

3
d

dx
lnx =

1

x
for x > 0

4
d

dx
cosx = − sinx for x ∈ R

5
d

dx
sinx = cosx for x ∈ R
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Proof (
d

dx
xn = nxn−1)

Let y = xn. For any x ∈ R, we have

dy

dx
= lim

h→0

(x+ h)n − xn

h

= lim
h→0

(x+ h− x)((x+ h)n−1 + (x+ h)n−2x+ · · ·+ xn−1)

h

= lim
h→0

((x+ h)n−1 + (x+ h)n−2x+ · · ·+ xn−1)

= nxn−1

Note that the above proof is valid only when n ∈ Z+ is a positive
integer.
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Proof (
d

dx
ex = ex)

Let y = ex. For any x ∈ R, we have

dy

dx
= lim
h→0

ex+h − ex

h
= lim
h→0

ex(eh − 1)

h
= ex.

(Alternative proof)

dy

dx
=

d

dx

(
1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · ·

)
= 0 + 1 +

2x

2!
+

3x2

3!
+

4x3

4!
+ · · ·

= 1 + x+
x2

2!
+
x3

3!
+ · · ·

= ex

In general, differentiation cannot be applied term by term to infinite series. The

second proof is valid only after we prove that this can be done to power series.
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Proof(
d

dx
lnx =

1

x

)
Let f(x) = lnx. For any x > 0, we have

dy

dx
= lim
h→0

ln(x+ h)− lnx

h
= lim
h→0

ln
(
1 + h

x

)
h

=
1

x
.

(
d

dx
cosx = − sinx

)
Let f(x) = cosx. For any x ∈ R, we have

dy

dx
= lim
h→0

cos(x+ h)− cosx

h
= lim
h→0

−2 sin
(
x+ h

2

)
sin
(
h
2

)
h

= − sinx.

(
d

dx
sinx = cosx

)
Let f(x) = sinx. For any x ∈ R, we have

dy

dx
= lim
h→0

sin(x+ h)− sinx

h
= lim
h→0

2 cos
(
x+ h

2

)
sin
(
h
2

)
h

= cosx.
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Definition

Let a > 0 be a positive real number. For x ∈ R, we define

ax = ex ln a.

Theorem

Let a > 0 be a positive real number. We have

1 ax+y = axay for any x, y ∈ R

2
d

dx
ax = ax ln a.

Proof.

1 ax+y = e(x+y) ln a = ex ln aey ln a = axay

2
d

dx
ax =

d

dx
ex ln a = ex ln a ln a = ax ln a
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Example

Let f(x) = |x| for x ∈ R. Show that f(x) is not differentiable at x = 0.

Proof.

Observe that

lim
h→0−

f(h)− f(0)

h
= lim

h→0−

−h
h

= −1

lim
h→0+

f(h)− f(0)

h
= lim

h→0+

h

h
= 1

Thus the limit

lim
h→0

f(h)− f(0)

h

does not exist. Therefore f(x) is not differentiable at x = 0.
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Figure: f(x) = |x| is not differentiable at x = 0
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Exercise (True or False)

Suppose f(x) is bounded and is differentiable on (a, b). Then

1 f ′(x) is differentiable on (a, b).
Answer: F

2 f ′(x) is continuous on (a, b).
Answer: F

3 f ′(x) is bounded on (a, b).
Answer: F
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Example

Let f(x) = |x|x for x ∈ R. Find f ′(x).

Solution: When x < 0, f(x) = −x2 and f ′(x) = −2x. When x > 0,
f(x) = x2 and f ′(x) = 2x. When x = 0, we have

lim
h→0−

f(h)− f(0)
h

= lim
h→0−

−h2 − 0

h
= 0

lim
h→0+

f(h)− f(0)
h

= lim
h→0+

h2 − 0

h
= 0

Thus f ′(0) = 0. Therefore

f ′(x) =


−2x, if x < 0

0, if x = 0

2x, if x > 0

= 2|x|.

Note that f ′(x) = 2|x| is continuous at x = 0.
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f(x) is differentiable at x = 0. (f(x) is differentiable on R.)

f ′(x) is continuous on R.

f ′(x) is not differentiable at x = 0.
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Example

Let

f(x) =

x sin
1

x
, if x 6= 0

0, if x = 0
.

1 Find f ′(x) for x 6= 0.

2 Determine whether f(x) is differentiable at x = 0.

Solution

1. When x 6= 0,

f ′(x) = sin
1

x
− 1

x
cos

1

x
.

2. We have

lim
h→0

f(h)− f(0)
h

= lim
h→0

h sin 1
h

h
= lim
h→0

sin
1

h

does not exist. Therefore f(x) is not differentiable at x = 0.
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f(x) is not differentiable at x = 0.
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Example

Let

f(x) =

x2 sin
1

x
, if x 6= 0

0, if x = 0
.

1 Find f ′(x).

2 Determine whether f ′(x) is continuous at x = 0.

Solution

1. When x 6= 0, we have

f ′(x) = 2x sin
1

x
+ x2

(
− 1

x2
cos

1

x

)
= 2x sin

1

x
− cos

1

x
.
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Solution

2. When x = 0, we have

f ′(0) = lim
h→0

f(h)− f(0)
h

= lim
h→0

h2 sin 1
h

h
= lim
h→0

h sin
1

h
.

Since lim
h→0

h = 0 and | sin 1
h
| ≤ 1 is bounded, we have f ′(0) = 0. Therefore

f ′(x) =

2x sin
1

x
− cos

1

x
, if x 6= 0

0, if x = 0
.

Observe that

lim
x→0

f ′(x) = lim
x→0

(
2x sin

1

x
− cos

1

x

)
does not exist. We conclude that f ′(x) is not continuous at x = 0.
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f ′(0) = 0 (f(x) is differentiable on R)

f ′(x) is not continuous at x = 0
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f ′(0) = 0 (f(x) is differentiable on R)

f ′(x) is not continuous at x = 0

f ′(x) is not bounded near x = 0
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Example

f(x)
f(x) is

continuous
at x = 0

f(x) is
differentiable

at x = 0

f ′(x) is
continuous
at x = 0

|x| Yes No Not applicable

|x|x Yes Yes Yes

x sin

(
1

x

)
; f(0) = 0 Yes No Not applicable

x2 sin

(
1

x

)
; f(0) = 0 Yes Yes No
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Example

The following diagram shows the relations between the existence of limit,
continuity and differentiability of a function at a point a. (Examples in the
bracket is for a = 0.)

Second differentiable (f(x) =
sinx

x
; f(0) = 1)

⇓
Continuously differentiable (f(x) = |x|x)

⇓
Differentiable (f(x) = x2 sin(x−1); f(0) = 0)

⇓
Continuous (f(x) = |x|)
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Rules of differentiation

Theorem (Basic formulas for differentiation)

d

dx
xn = nxn−1

d

dx
ex = ex

d

dx
lnx =

1

x
d

dx
sinx = cosx

d

dx
cosx = − sinx

d

dx
tanx = sec2 x

d

dx
cotx = − csc2 x

d

dx
secx = secx tanx

d

dx
cscx = − cscx cotx

d

dx
coshx = sinhx

d

dx
sinhx = coshx

138 / 327



Limits
Differentiation

Integration

Derivatives
Mean value theorem
Application of Differentiation

Theorem (Product rule and quotient rule)

Let u and v be differentiable functions of x. Then

d

dx
uv = u

dv

dx
+ v

du

dx

d

dx

u

v
=

v du
dx
− u dv

dx

v2

Proof

Let u = f(x) and v = g(x).

d

dx
uv = lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

= lim
h→0

(
f(x+ h)g(x+ h)−f(x+ h)g(x)

h
+
f(x+ h)g(x)− f(x)g(x)

h

)
= lim

h→0

(
f(x+ h) ·

g(x+ h)− g(x)
h

+ g(x) ·
f(x+ h)− f(x)

h

)
= u

dv

dx
+ v

du

dx
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Proof.

d

dx

u

v
= lim

h→0

f(x+h)
g(x+h)

− f(x)
g(x)

h

= lim
h→0

f(x+ h)g(x)− f(x)g(x+ h)

hg(x)g(x+ h)

= lim
h→0

(
f(x+ h)g(x)−f(x)g(x)

hg(x)g(x+ h)
− f(x)g(x+ h)−f(x)g(x)

hg(x)g(x+ h)

)
= lim

h→0

(
g(x) · f(x+ h)− f(x)

hg(x)g(x+ h)
− f(x) · g(x+ h)− g(x)

hg(x)g(x+ h)

)
=

v du
dx
− u dv

dx

v2
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Theorem (Chain rule)

Let y = f(u) be a function of u and u = g(x) be a function of x.
Suppose g(x) is differentiable at x = a and f(u) is differentiation at
u = g(a). Then f ◦ g(x) = f(g(x)) is differentiable at x = a and

(f ◦ g)′(a) = f ′(g(a))g′(a).

In other words,
dy

dx
=
dy

du
· du
dx
.
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Proof

(f ◦ g)′(a)

= lim
h→0

f(g(a+ h))− f(g(a))
h

= lim
h→0

f(g(a+ h))− f(g(a))
g(a+ h)− g(a)

lim
h→0

g(a+ h)− g(a)
h

= lim
k→0

f(g(a) + k)− f(g(a))
k

lim
h→0

g(a+ h)− g(a)
h

(Note that g(a+ h)− g(a) = k → 0 as h→ 0 because g(x) is continuous.)

= f ′(g(a))g′(a)

The above proof is valid only if g(a+ h)− g(a) 6= 0 whenever h is sufficiently close to
0. This is true when g′(a) 6= 0 because of the following proposition.

Proposition

Suppose g(x) is a function such that g′(a) 6= 0. Then there exists δ > 0 such that if
0 < |h| < δ, then

g(a+ h)− g(a) 6= 0.
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When g′(a) = 0, we need another proposition.

Proposition

Suppose f(u) is a function which is differentiable at u = b. Then there exists
δ > 0 and M > 0 such that

|f(b+ h)− f(b)| < M |h| for any |h| < δ.

The proof of chain rule when g′(a) = 0 goes as follows. There exists δ > 0
such that

|f(g(a+ h))− f(g(a))| < M |g(a+ h)− g(a)| for any |h| < δ.

Therefore

lim
h→0

∣∣∣∣f(g(a+ h))− f(g(a))
h

∣∣∣∣ ≤ lim
h→0

M

∣∣∣∣g(a+ h)− g(a)
h

∣∣∣∣ = 0

which implies (f ◦ g)′(a) = 0.
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Example

The chain rule is used in the following way. Suppose u is a
differentiable function of x. Then

d

dx
un = nun−1

du

dx
d

dx
eu = eu

du

dx
d

dx
lnu =

1

u

du

dx
d

dx
cosu = − sinu

du

dx
d

dx
sinu = cosu

du

dx
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Example

1.
d

dx
sin3 x = 3 sin2 x

d

dx
sinx = 3 sin2 x cosx

2.
d

dx
e
√
x = e

√
x d

dx

√
x =

e
√
x

2
√
x

3.
d

dx

1

(lnx)2
= − 2

(lnx)3
d

dx
lnx = − 2

x(lnx)3

4.
d

dx
ln cos 2x =

1

cos 2x
(− sin 2x) · 2 = −2 sin 2x

cos 2x
= −2 tan 2x

5.
d

dx
tan
√
1 + x2 = sec2

√
1 + x2 · 1

2
√
1 + x2

· 2x =
x sec2

√
1 + x2√

1 + x2

6.
d

dx
sec3
√
sinx = 3 sec2

√
sinx(sec

√
sinx tan

√
sinx)

1

2
√
sinx

· cosx

=
3 sec3

√
sinx tan

√
sinx cosx

2
√
sinx
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Example

7.
d

dx
cos4 x sinx = cos4 x cosx+ 4 cos3 x(− sinx) sinx

= cos5 x− 4 cos3 x sin2 x

8.
d

dx

sec 2x

lnx
=

lnx(2 sec 2x tan 2x)− sec 2x( 1
x
)

(lnx)2

=
sec 2x(2x tan 2x lnx− 1)

x(lnx)2

9. e
tan x
x = e

tan x
x

(
x sec2 x− tanx

x2

)

10. sin

(
lnx√
1 + x2

)
= cos

(
lnx√
1 + x2

)√1 + x2( 1
x
)− lnx( 2x

2
√

1+x2
)

1 + x2


=

(
1 + x2 − x2 lnx
x(1 + x2)

3
2

)
cos

(
lnx√
1 + x2

)
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Definition (Implicit functions)

An implicit function is an equation of the form F (x, y) = 0. An implicit function may
not define a function. Sometimes it defines a function when the domain and range are
specified.

Theorem

Let F (x, y) = 0 be an implicit function. Then

∂F

∂x
+
∂F

∂y

dy

dx
= 0

and we have
dy

dx
= −

∂F
∂x
∂F
∂y

.

Here ∂F
∂x

is called the partial derivative of F with respect to x which is the derivative
of F with respect to x while considering y as constant. Similarly the partial derivative
∂F
∂y

is the derivative of F with respect to y while considering x as constant.
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Example

Find
dy

dx
for the following implicit functions.

1 x2 − xy − xy2 = 0

2 cos(xey) + x2 tan y = 1

Solution

1. 2x− (y + xy′)− (y2 + 2xyy′) = 0
xy′ + 2xyy′ = 2x− y − y2

y′ =
2x− y − y2

x+ 2xy
2. − sin(xey)(ey + xeyy′) + 2x tan y + x2 sec2 yy′ = 0

x2 sec2 yy′ − xey sin(xey)y′ = ey sin(xey)− 2x tan y

y′ =
ey sin(xey)− 2x tan y

x2 sec2 y − xey sin(xey)
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Theorem

Suppose f(y) is a differentiable function with f ′(y) 6= 0 for any y. Then the inverse
function y = f−1(x) of f(y) is differentiable and

(f−1)′(x) =
1

f ′(f−1(x))
.

In other words,
dy

dx
=

1
dx
dy

.

Proof.

f(f−1(x)) = x

f ′(f−1(x))(f−1)′(x) = 1

(f−1)′(x) =
1

f ′(f−1(x))
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Theorem

1 For sin−1 : [−1, 1]→ [−π
2
,
π

2
],

d

dx
sin−1 x =

1√
1− x2

.

2 For cos−1 : [−1, 1]→ [0, π],

d

dx
cos−1 x = − 1√

1− x2
.

3 For tan−1 : R→ [−π
2
,
π

2
],

d

dx
tan−1 x =

1

1 + x2
.
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Proof.

1

y = sin−1 x

sin y = x

cos y
dy

dx
= 1

dy

dx
=

1

cos y

=
1√

1− sin2 y
(Note: cos y ≥ 0 for −π

2
≤ y ≤ π

2
)

=
1√

1− x2

The other parts can be proved similarly.
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Example

Find
dy

dx
if y = xx.

Solution

There are 2 methods.
Method 1. Note that y = xx = ex ln x. Thus

dy

dx
= ex ln x(1 + lnx) = xx(1 + lnx).

Method 2. Taking logarithm on both sides, we have

ln y = x lnx

1

y

dy

dx
= 1 + lnx

dy

dx
= y(1 + lnx)

= xx(1 + lnx)
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Example

Let u and v be functions of x. Show that

d

dx
uv = uvv′ lnu+ uv−1vu′.

Proof.

We have

d

dx
uv =

d

dx
ev lnu

= ev lnu

(
(v′ lnu+ v · u

′

u

)
= uvv′

(
lnu+

vu′

u

)
= uvv′ lnu+ uv−1vu′
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Second and higher derivatives

Definition (Second and higher derivatives)

Let y = f(x) be a function. The second derivative of f(x) is the function

d2y

dx2
=

d

dx

(
dy

dx

)
.

The second derivative of y = f(x) is also denoted as f ′′(x) or y′′. Let n be a
non-negative integer. The n-th derivative of y = f(x) is defined inductively by

dny

dxn
=

d

dx

(
dn−1y

dxn−1

)
for n ≥ 1

d0y

dx0
= y

The n-th derivative is also denoted as f (n)(x) or y(n). Note that
f (0)(x) = f(x).
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Example

Find
d2y

dx2
for the following functions.

1 y = ln(secx+ tanx)

2 x2 − y2 = 1

Solution

1. y′ =
1

secx+ tanx
(secx tanx+ sec2 x)

= secx
y′′ = secx tanx

2. 2x− 2yy′ = 0

y′ =
x

y

y′′ =
y − xy′

y2

=
y − x(x

y
)

y2

=
y2 − x2

y3
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Theorem (Leinbiz’s rule)

Let u and v be differentiable function of x. Then

(uv)(n) =

n∑
k=0

(
n

k

)
u(n−k)v(k)

where
(
n
k

)
= n!

k!(n−k)! is the binormial coefficient.

Example

(uv)(0) = u(0)v(0)

(uv)(1) = u(1)v(0) + u(0)v(1)

(uv)(2) = u(2)v(0) + 2u(1)v(1) + u(0)v(2)

(uv)(3) = u(3)v(0) + 3u(2)v(1) + 3u(1)v(2) + u(0)v(3)

(uv)(4) = u(4)v(0) + 4u(3)v(1) + 6u(2)v(2) + 4u(1)v(3) + u(0)v(4)
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Proof

We prove the Leibniz’s rule by induction on n. When n = 0,
(uv)(0) = uv = u(0)v(0). Assume that for some nonnegative m,

(uv)(m) =

m∑
k=0

(
m

k

)
u(m−k)v(k).

Then

(uv)(m+1)

=
d

dx
(uv)(m)

=
d

dx

m∑
k=0

(
m

k

)
u(m−k)v(k)

=

m∑
k=0

(
m

k

)
(u(m−k+1)v(k) + u(m−k)v(k+1))
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Proof.

=
m∑
k=0

(
m

k

)
u(m−k+1)v(k) +

m∑
k=0

(
m

k

)
u(m−k)v(k+1)

=
m∑
k=0

(
m

k

)
u(m−k+1)v(k) +

m+1∑
k=1

(
m

k − 1

)
u(m−(k−1))v(k)

=
m∑
k=0

(
m

k

)
u(m−k+1)v(k) +

m+1∑
k=1

(
m

k − 1

)
u(m−k+1)v(k)

=

m+1∑
k=0

((
m

k

)
+

(
m

k − 1

))
u(m−k+1)v(k)

=

m+1∑
k=0

(
m+ 1

k

)
u(m+1−k)v(k)

Here we use the convention
(
m
−1

)
=
(
m
m+1

)
= 0 in the second last equality. This

completes the induction step and the proof of the Leibniz’s rule.
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Example

Let y = x2e3x. Find y(n) where n is a nonnegative integer.

Solution

Let u = x2 and v = e3x. Then u(0) = x2, u(1) = 2x, u(2) = 2 and u(k) = 0 for
k ≥ 3. On the other hand, v(k) = 3ke3x for any k ≥ 0. Therefore by Leibniz’s
rule, we have

y(n) =

(
n

0

)
u(0)v(n) +

(
n

1

)
u(1)v(n−1) +

(
n

2

)
u(2)v(n−2)

= x2(3ne3x) + n(2x)(3n−1e3x) +
n(n− 1)

2!
(2)(3n−2e3x)

= (3nx2 + 2 · 3n−1nx+ 3n−2(n2 − n))e3x

= 3n−2(9x2 + 6nx+ n2 − n)e3x
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Mean value theorem

Suppose f(x) is a function which is differentiable on (a, b).

1 If f(x) attains its maximum or minimum at x = c ∈ (a, b), then
f ′(c) = 0.
Answer: T

2 If f ′(c) = 0, then f(x) attains its maximum or minimum at
x = c ∈ (a, b).
Answer: F

3 If f ′(x) = 0 for any x ∈ (a, b), then f(x) is constant on (a, b).
Answer: T

4 If f(x) is strictly increasing on (a, b), then f ′(x) > 0 for any x ∈ (a, b).
Answer: F

5 If f ′(x) > 0 for any (a, b), then f(x) is strictly increasing on (a, b).
Answer: T

6 If f(x) is monotonic increasing on (a, b), then f ′(x) ≥ 0 for any
x ∈ (a, b).
Answer: T
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Theorem

Let f be a function on (a, b) and c ∈ (a, b) such that

1 f is differentiable at x = c, and

2 either f(x) ≤ f(c) for any x ∈ (a, b), or f(x) ≥ f(c) for any x ∈ (a, b).

Then f ′(c) = 0.

Proof.

Suppose f(x) ≤ f(c) for any x ∈ (a, b). The proof for the other case is essentially the
same. For any h < 0 with a < c+ h < c, we have f(c+ h)− f(c) ≤ 0 and h is
negative. Thus

f ′(c) = lim
h→0−

f(c+ h)− f(c)
h

≥ 0

On the other hand, for any h > 0 with c < +̧h < b, we have f(c+ h)− f(c) ≤ 0 and
h is positive. Thus we have

f ′(c) = lim
h→0+

f(c+ h)− f(c)
h

≤ 0

Therefore f ′(c) = 0.
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Example

f ′(x) > 0 for any x

⇓

Strictly increasing

⇓

Monotonic increasing ⇔ f ′(x) ≥ 0 for any x
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Theorem (Rolle’s theorem)

Suppose f(x) is a function which satisfies the following conditions.

1 f(x) is continuous on [a, b].

2 f(x) is differentiable on (a, b).

3 f(a) = f(b)

Then there exists ξ ∈ (a, b) such that f ′(ξ) = 0.
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Proof.

By extreme value theorem, there exist a ≤ α, β ≤ b such that

f(α) ≤ f(x) ≤ f(β) for any x ∈ [a, b].

Since f(a) = f(b), at least one of α, β can be chosen in (a, b) and
we let it be ξ. Then we have f ′(ξ) = 0 since f(x) attains its
maximum or minimum at ξ.
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Theorem (Lagrange’s mean value theorem)

Suppose f(x) is a function which satisfies the following conditions.

1 f(x) is continuous on [a, b].

2 f(x) is differentiable on (a, b).

Then there exists ξ ∈ (a, b) such that

f ′(ξ) =
f(b)− f(a)

b− a
.
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Proof.

Let g(x) = f(x)− f(b)− f(a)

b− a
(x− a). Since g(a) = g(b) = f(a),

by Rolle’s theorem, there exists ξ ∈ (a, b) such that
g′(ξ) = 0

f ′(ξ)− f(b)− f(a)

b− a
= 0

f ′(ξ) =
f(b)− f(a)

b− a

166 / 327



Limits
Differentiation

Integration

Derivatives
Mean value theorem
Application of Differentiation

Theorem

Let f(x) be a function which is differentiable on (a, b). Then f(x) is
monotonic increasing if and only if f ′(x) ≥ 0 for any x ∈ (a, b).

Proof. Suppose f(x) is monotonic increasing on (a, b). Then for any
x ∈ (a, b), we have f(x+ h)− f(x) ≥ 0 for any h > 0 and thus

f ′(x) = lim
h→0+

f(x+ h)− f(x)
h

≥ 0.

On the other hand, suppose f ′(x) ≥ 0 for any x ∈ (a, b). Then for any
α, β ∈ (a, b) with α < β, by Lagrange’s mean value theorem, there exists
ξ ∈ (α, β) such that

f(β)− f(α) = f ′(ξ)(β − α) ≥ 0.

Therefore f(x) is monotonic increasing on (a, b). �

Corollary

f(x) is constant on (a, b) if and only if f ′(x) = 0 for any x ∈ (a, b).
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Theorem

If f(x) is a differentiable function such that f ′(x) > 0 for any x ∈ (a, b),
then f(x) is strictly increasing.

Proof.

Suppose f ′(x) > 0 for any x ∈ (a, b). Then for any α, β ∈ (a, b) with
α < β, by Lagrange’s mean value theorem, there exists ξ ∈ (α, β) such
that

f(β)− f(α) = f ′(ξ)(β − α) > 0.

Therefore f(x) is strictly increasing on (a, b).

The converse of the above theorem is false.

Example

f(x) = x3 is strictly increasing on R but f ′(0) = 0 is not positive.
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Example

Prove that 1− 1

x
≤ lnx ≤ x− 1 for any x > 0.

Solution. Let f(x) = lnx−
(
1− 1

x

)
. Then f ′(x) =

1

x
− 1

x2
=
x− 1

x2
. Now

f ′(1) = 0 and
0 < x < 1 x > 1

f ′(x) − +

Therefore f(x) attains its minimum at x = 1 and we have

f(x) = lnx− x− 1

x
≥ f(1) = 0 for any x > 0. On the other hand, let

g(x) = x− 1− lnx. Then g′(x) = 1− 1

x
=
x− 1

x
. Now g′(1) = 0 and

0 < x < 1 x > 1

f ′(x) − +

Therefore g(x) attains its minimum at x = 1 and we have

g(x) = x− 1− lnx ≥ g(1) = 0 for any x > 0.
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Example

Let 0 < α < 1. Prove that

1 + αx− α(1− α)x2

2
< (1 + x)α < 1 + αx, for any x > 0.

Solution. Let f(x) = 1 + αx− (1 + x)α. Then f(0) = 0 and for any x > 0,

f ′(x) = α− α

(1 + x)1−α
> α− α = 0.

Therefore f(x) > 0 for any x > 0. On the other hand, let

g(x) = (1+x)α−
(
1 + αx− α(1− α)x2

2

)
. Then g(0) = 0 and for any x > 0,

g′(x) =
α

(1 + x)1−α
− α+ α(1− α)x

>
α

1 + (1− α)x − α(1− (1− α)x)

=
α(1− α)2x2

1 + (1− α)x > 0

Therefore g(x) > 0 for any x > 0.
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Theorem (Cauchy’s mean value theorem)

Suppose f(x) and g(x) are functions which satisfies the following conditions.

1 f(x), g(x) is continuous on [a, b].

2 f(x), g(x) is differentiable on (a, b).

3 g′(x) 6= 0 for any x ∈ (a, b).

Then there exists ξ ∈ (a, b) such that

f ′(ξ)

g′(ξ)
=
f(b)− f(a)
g(b)− g(a) .

Proof. Let h(x) = f(x)− f(b)− f(a)
g(b)− g(a) (g(x)− g(a)).

Since h(a) = h(b) = f(a), by Rolle’s theorem, there exists ξ ∈ (a, b) such that

f ′(ξ)− f(b)− f(a)
g(b)− g(a) g

′(ξ) = 0

f ′(ξ)

g′(ξ)
=

f(b)− f(a)
g(b)− g(a)
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L’Hopital’s rule

Theorem (L’Hopital’s rule)

Let a ∈ [−∞,+∞]. Suppose f and g are differentiable functions
such that

1 lim
x→a

f(x) = lim
x→a

g(x) = 0 (or ±∞).

2 g′(x) 6= 0 for any x 6= a (on a neighborhood of a).

3 lim
x→a

f ′(x)

g′(x)
= L.

Then the limit of
f(x)

g(x)
at x = a exists and lim

x→a

f(x)

g(x)
= L.
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Proof.

We give here the proof for a ∈ (−∞,+∞). For any x 6= a, by
applying Cauchy’s mean value theorem to f(x), g(x) on [a, x] or
[x, a], there exists ξ between a and x such that

f ′(ξ)

g′(ξ)
=
f(x)− f(a)

g(x)− g(a)
=
f(x)

g(x)
.

Here we redefine f(a) = g(a) = 0, if necessary, so that f and g are
continuous at a. Note that ξ → a as x→ a. We have

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(ξ)

g′(ξ)
= L.
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Example (Indeterminate form of types
0

0
and
∞
∞ )

1. lim
x→0

sinx− x cosx
x3

= lim
x→0

x sinx

3x2
=

1

3

2. lim
x→0

x2

ln secx
= lim

x→0

2x
sec x tan x

sec x

= lim
x→0

2x

tanx
= lim
x→0

2

sec2 x
= 2

3. lim
x→0

ln(1 + x3)

x− sinx
= lim

x→0

x2

1+x3

1− cosx
= lim
x→0

1

1 + x3
lim
x→0

x2

1− cosx

= lim
x→0

2x

sinx
= 2

4. lim
x→+∞

ln(1 + x4)

ln(1 + x2)
= lim

x→+∞

4x3

1+x4

2x
1+x2

= lim
x→+∞

4x3(1 + x2)

2x(1 + x4)
= 2
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Example (Indeterminate form of types ∞−∞ and 0 · ∞)

5. lim
x→1

(
1

lnx
−

1

x− 1

)
= lim

x→1

x− 1− lnx

(x− 1) lnx
= lim
x→1

1− 1
x

x−1
x

+ lnx

= lim
x→1

x− 1

x− 1 + x lnx
= lim
x→1

1

2 + lnx
=

1

2

6. lim
x→0

cot 3x tan−1 x = lim
x→0

tan−1 x

tan 3x
= lim
x→0

1
1+x2

3 sec2 3x

= lim
x→0

1

3(1 + x2) sec2 3x
=

1

3

7. lim
x→0+

x ln sinx = lim
x→0+

ln sinx
1
x

= lim
x→0+

cos x
sin x

− 1
x2

= lim
x→0+

−x2 cosx
sinx

= 0

8. lim
x→+∞

x ln

(
x+ 1

x− 1

)
= lim

x→+∞

ln(x+ 1)− ln(x− 1)
1
x

= lim
x→+∞

1
x+1
− 1
x−1

− 1
x2

= lim
x→+∞

2x2

(x+ 1)(x− 1)
= 2
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Example (Indeterminate form of types 00, 1∞ and ∞0)

Evaluate the following limits.

1 lim
x→0+

xsin x

2 lim
x→0

(cosx)
1
x2

3 lim
x→+∞

(1 + 2x)
1

3 ln x

176 / 327



Limits
Differentiation

Integration

Derivatives
Mean value theorem
Application of Differentiation

Solution

1 ln

(
lim
x→0+

xsin x
)

= lim
x→0+

ln(xsin x) = lim
x→0+

sinx lnx = lim
x→0+

lnx

cscx

= lim
x→0+

1
x

− cscx cotx
= lim
x→0+

− sin2 x

x cosx
= 0.

Thus lim
x→0+

xsin x = e0 = 1.

2 ln

(
lim
x→0

(cosx)
1
x2

)
= lim
x→0

ln(cosx)
1
x2 = lim

x→0

ln cosx

x2
= lim
x→0

− tanx

2x

= lim
x→0

− sec2 x

2
= −

1

2
.

Thus lim
x→0

(cosx)
1
x2 = e−

1
2 .

3 ln

(
lim

x→+∞
(1 + 2x)

3
ln x

)
= lim
x→+∞

3 ln(1 + 2x)

lnx
= lim
x→+∞

6
1+2x

1
x

= 3.

Thus lim
x→+∞

(1 + 2x)
1

3 ln x = e3.
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Example

The following shows some wrong use of L’Hopital rule.

1.

lim
x→0

secx− 1

e2x − 1
= lim

x→0

secx tanx

2e2x

= lim
x→0

sec2 x tanx+ sec3 x

4e2x

=
1

4

This is wrong because lim
x→0

e2x 6= 0,±∞. One cannot apply

L’Hopital rule to lim
x→0

secx tanx

2e2x
. The correct solution is

lim
x→0

secx− 1

e2x − 1
= lim

x→0

secx tanx

2e2x
= 0.
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Example

2.

lim
x→+∞

5x− 2 cos2 x

3x+ sin2 x
= lim

x→+∞

5 + 2 cosx sinx

3 + sinx cosx

= lim
x→+∞

2(cos2 x− sin2 x)

cos2 x− sin2 x
= 2

This is wrong because lim
x→+∞

(5 + 2 cosx sinx) and

lim
x→+∞

(3 + cosx sinx) do not exist. One cannot apply L’Hopital

rule to lim
x→+∞

5 + 2 cosx sinx

3 + sinx cosx
. The correct solution is

lim
x→+∞

5x− 2 cos2 x

3x+ sin2 x
= lim

x→+∞

5− 2 cos2 x
x

3 + sin2 x
x

=
5

3
.
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Taylor series

Definition (Taylor polynomial)

Let f(x) be a function such that the n-th derivative exists at x = a. The
Taylor polynomial of degree n of f(x) at x = a is the polynomial

f(a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+

f (3)(a)

3!
(x−a)3+· · ·+f (n)(a)

n!
(x−a)n.

Theorem

The Taylor polynomial pn(x) of degree n of f(x) at x = a is the unique
polynomial such that

p(k)n (a) = f (k)(a) for k = 0, 1, 2, . . . , n.
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Example

Find the Taylor polynomial p3(x) of degree 3 of f(x) =
√
1 + x = (1 + x)

1
2 at

x = 0.
Solution. The derivatives f (k)(x) up to order 3 are

k 0 1 2 3

f (k)(x) (1 + x)
1
2

1

2
(1 + x)−

1
2 −1

4
(1 + x)−

3
2

3

8
(1 + x)−

5
2

f (k)(0) 1
1

2
−1

4

3

8

Therefore the Taylor polynomial of f(x) of degree 3 at x = 0 is

p3(x) = f(0) + f ′(0)x+ f ′′(0)
x2

2!
+ f (3)(0)

x3

3!

= 1 +

(
1

2

)
x+

(
−1

4

)
x2

2!
+

(
3

8

)
x3

3!

= 1 +
x

2
− x2

8
+
x3

16
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Figure: Taylor polynomials for f(x) =
√

1 + x at x = 0
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Example

Let f(x) = cosx. The first few derivatives are

k 0 1 2 3 4

f (k)(x) cosx − sinx − cosx − sinx cosx

f (k)(0) 1 0 −1 0 1

We see that

f (n)(x) =

{
(−1)k cosx, if n = 2k

(−1)k sinx, if n = 2k − 1
and f (n)(0) =

{
(−1)k, if n = 2k

0, if n = 2k − 1

Therefore the Taylor polynomial of f(x) of degree n = 2k at x = 0 is

p2k(x) = f(0) + f ′(0)x+
f ′′(0)x2

2!
+
f ′′′(0)x3

3!
+ · · ·+ f (2k)x2k (0)

(2k)!

= 1 + (0)x+
(−1)x2

2!
+

(0)x3

3!
+

(1)x4

4!
+ · · ·+ (−1)kx2k

(2k)!

= 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·+ (−1)kx2k

(2k)!
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Figure: Taylor polynomials for f(x) = cosx at x = 0
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Example

Find the Taylor polynomial of degree n of f(x) =
1

x
at x = 1.

Solution. The derivatives f (k)(x) are

k 0 1 2 3 · · · n

f (k)(x) x−1 −x−2 2x−3 −6x−4 · · · (−1)nn!x−(n+1)

f (k)(1) 1 −1 2 −6 · · · (−1)nn!

Therefore the Taylor polynomial of f(x) of degree n at x = 1 is

pn(x) = f(1) + f ′(1)(x− 1) +
f ′′(1)(x− 1)2

2!
+ · · ·+ f (n)(1)(x− 1)n

(n)!

= 1− (x− 1) +
2(x− 1)2

2!
+

(−6)(x− 1)3

3!
+ · · ·+ (−1)nn!(x− 1)n

n!

= 1− (x− 1) + (x− 1)2 − (x− 1)3 + · · ·+ (−1)n(x− 1)n
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Figure: Taylor polynomials for f(x) =
1

x
at x = 1
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Example

Find the Taylor polynomial of f(x) = (1 + x)α at x = 0, where α ∈ R.
Solution. The derivatives are

f(x) = (1 + x)α

f ′(x) = α(1 + x)α−1

f ′′(x) = α(α− 1)(1 + x)α−2

f ′′′(x) = α(α− 1)(α− 2)(1 + x)α−3

...

f (k)(x) = α(α− 1)(α− 2) · · · (α− k + 1)(1 + x)α−k
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Thus we have
f(0) = 1
f ′(0) = α
f ′′(0) = α(α− 1)

...

f (k)(0) = α(α− 1)(α− 2) · · · (α− k + 1)

Therefore the Taylor polynomial of f(x) = (1 + x)α of degree n at x = 0 is

pn(x) = f(0) + f ′(0)x+
f ′′(0)x2

2!
+
f (3)(0)x3

3!
+ · · ·+ f (n)(0)xn

(n)!

= 1 + αx+
α(α− 1)x2

2!
+ · · ·+ α(α− 1)(α− 2) · · · (α− n+ 1)xn

n!

=

(
α

0

)
+

(
α

1

)
x+

(
α

2

)
x2 + · · ·+

(
α

n

)
xn

where (
α

n

)
=
α(α− 1)(α− 2) · · · (α− n+ 1)

n!
.
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The Taylor polynomials of degree n for f(x) at x = 0.

f(x) Taylor polynomial

ex 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!

cosx 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·+ (−1)kx2k

(2k)!
, n = 2k

sinx x− x3

3!
+
x5

5!
− x7

7!
+ · · ·+ (−1)kx2k+1

(2k + 1)!
, n = 2k + 1

ln(1 + x) x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)n+1xn

n

1

1− x 1 + x+ x2 + x3 + · · ·+ xn

√
1 + x 1 +

x

2
− x2

8
+
x3

16
− 5x4

128
+ · · ·+ (−1)n+1(2n− 3)!!xn

2nn!

(1 + x)α 1 + αx+
α(α− 1)x2

2!
+
α(α− 1)(α− 2)x3

3!
+ · · ·+

(
α

n

)
xn
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Example

The Taylor polynomials of degree n for f(x) at x = a.

f(x) Taylor polynomial

cosx; a = π −1 + (x− π)2

2!
− (x− π)4

4!
+ · · ·+ (−1)k+1(x− π)2k

(2k)!

ex; a = 2 e2 + e2(x− 2) +
e2(x− 2)2

2!
+ · · ·+ e2(x− 2)n

n!

1

x
; x = 1 1− (x− 1) + (x− 1)2 − (x− 1)3 + · · ·+ (−1)n(x− 1)n

1

2 + x
; a = 0

1

2
− x

4
+
x2

8
− x3

16
+ · · ·+ (−1)nxn

2n+1

1

3− 2x
; x = 1 1 + 2(x− 1) + 4(x− 1)2 + 8(x− 1)3 + · · ·+ 2n(x− 1)n

√
100− 2x; a = 0 10− x

10
− x2

2000
− x3

200000
− · · · − (2n− 3)!!xn

102n−1n!
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Definition (Taylor series)

Let f(x) be an infinitely differentiable function. The Taylor series
of f(x) at x = a is the infinite power series

T (x) = f(a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+

f (3)(a)

3!
(x−a)3+· · · .
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The following table shows the Taylor series for f(x) at x = a.

f(x) Taylor series

ex; a = 0 1 + x+
x2

2!
+
x3

3!
+ · · ·

cosx; a = 0 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

sinx; a = π −(x− π) + (x− π)3

3!
− (x− π)5

5!
+ · · ·

lnx; a = 1 (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ · · ·

√
1 + x; a = 0 1 +

x

2
− x2

8
+
x3

16
− 5x4

128
+ · · ·

1√
1 + x

; a = 0 1− x

2
+

3x2

8
− 5x3

16
+

35x4

128
− 63x5

256
+ · · ·

(1 + x)α; a = 0 1 + αx+
α(α− 1)x2

2!
+
α(α− 1)(α− 2)x3

3!
+ · · ·
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ex;
∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ · · ·

cosx;
∞∑
k=0

(−1)kx2k

(2k)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

sinx;
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

ln(1 + x);
∞∑
k=1

(−1)k+1xk

k
= x− x2

2
+
x3

3
− x4

4
+ · · ·

1

1− x ;
∞∑
k=0

xk = 1 + x+ x2 + x3 + · · ·

(1 + x)α;
∞∑
k=0

(
α
k

)
xk = 1 + αx+

α(α− 1)x2

2!
+
α(α− 1)(α− 2)x3

3!
+ · · ·

tan−1 x;
∞∑
k=0

(−1)kx2k+1

2k + 1
= x− x

3
+
x5

5
− x7

7
+ · · ·

sin−1 x;
∞∑
k=0

(2k)!x2k+1

4k(k!)2(2k + 1)
= x+

(
1

2

)
x3

3
+

(
1 · 3
2 · 4

)
x5

5
+

(
1 · 3 · 5
2 · 4 · 6

)
x7

7
+ · · ·
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Theorem

Suppose T (x) is the Taylor series of f(x) at x = 0. Then for any positive
integer k, the Taylor series for f(xk) at x = 0 is T (xk).

Example

f(x) Taylor series at x = 0

1

1 + x2
1− x2 + x4 − x6 + · · ·

1√
1− x2

1 +
x2

2
+

3x4

8
+

5x6

16
+

35x8

128
+ · · ·

sinx2

x2
1− x4

3!
+
x8

5!
− x12

7!
+ · · ·
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Theorem

Suppose the Taylor series for f(x) at x = 0 is

T (x) =

∞∑
k=0

akx
k = a0 + a1x+ a2x

2 + a3x
3 + · · · .

Then the Taylor series for f ′(x) is

T ′(x) =

∞∑
k=1

kakx
k−1 = a1 + 2a2x+ 3a3x

2 + 4a4x
3 + · · · .
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Example

Find the Taylor series of the following functions.

1
1

(1 + x)2

2 tan−1 x

Solution

1 Let F (x) = − 1

1 + x
so that F ′(x) =

1

(1 + x)2
. The Taylor series for

F (x) at x = 0 is

T (x) = −1 + x− x2 + x3 − x4 + · · · .

Therefore the Taylor series for F ′(x) =
1

(1 + x)2
is

T ′(x) = 1− 2x+ 3x2 − 4x3 + · · · .
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Solution

2. Suppose the Taylor series for f(x) = tan−1 x at x = 0 is

T (x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 · · · .

Now comparing T ′(x) with the Taylor series for f ′(x) =
1

1 + x2
which

takes the form
1− x2 + x4 − x6 + · · · ,

we obtain the values of a1, a2, a3, . . . and get

T (x) = a0 + x− x3

3
+
x5

5
− x7

7
+ · · · .

Since a0 = f(0) = 0, we have

T (x) = x− x3

3
+
x5

5
− x7

7
+ · · · .
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Theorem

Suppose the Taylor series for f(x) and g(x) at x = 0 are

S(x) =

∞∑
k=0

akx
k = a0 + a1x+ a2x

2 + a3x
3 + · · · ,

T (x) =

∞∑
k=0

bkx
k = b0 + b1x+ b2x

2 + b3x
3 + · · · ,

respectively. Then the Taylor series for f(x)g(x) at x = 0 is

∞∑
n=0

(
n∑
k=0

akbn−k

)
xn

= a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x
2 + · · ·
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Proof.

The coefficient of xn of the Taylor series of f(x)g(x) at x = 0 is

(fg)(n)(0)

n!
=

n∑
k=0

(
n

k

)
f (k)(0)g(n−k)(0)

n!
(Leibniz’s formula)

=
n∑
k=0

n!

k!(n− k)! ·
f (k)(0)g(n−k)(0)

n!

=
n∑
k=0

f (k)(0)

k!
· g

(n−k)(0)

(n− k)!

=
n∑
k=0

akbn−k
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Example

1 The Taylor series for e4x ln(1 + x) is

(
1 + 4x+

16x2

2!
+

64x3

3!
+ · · ·

)(
x−

x2

2
+
x3

3
−
x4

4
+ · · ·

)
= x+

(
−
1

2
+ 4

)
x2 +

(
1

3
+ 4 ·

(
−
1

2

)
+ 8

)
x3 + · · ·

= x+
7x2

2
+

19x3

3
+ · · ·

2 The Taylor series for
tan−1 x
√
1− x2

is

(
x−

x3

3
+
x5

5
+ · · ·

)(
1 +

x2

2
+

3x4

8
+ · · ·

)
= x+

(
1

2
−

1

3

)
x3 +

(
3

4
−

1

3
·
1

2
+

1

5

)
x5 + · · ·

= x+
x3

6
+

49x5

120
+ · · ·
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Theorem

Suppose f(x) and g(x) are infinitely differentiable functions and
the Taylor series of f(x) and g(x) at x = 0 are

akx
k + ak+1x

k+1 + ak+2x
k+2 + · · ·

and
bkx

k + bk+1x
k+1 + bk+2x

k+2 + · · ·

where bk 6= 0. Then

lim
x→0

f(x)

g(x)
= lim

x→0

ak + ak+1x+ ak+2x
2 + · · ·

bk + bk+1x+ bk+2x2 + · · ·

=
ak
bk
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Proof.

The assumptions on f(x) and g(x) imply that

f(0) = f ′(0) = f ′′(0) = · · · = f (k−1)(0) = 0; f (k)(0) = ak
g(0) = g′(0) = g′′(0) = · · · = g(k−1)(0) = 0; g(k)(0) = bk

Therefore, by L’Hopital’s rule, we have

lim
x→0

f(x)

g(x)
= lim
x→0

f ′(x)

g′(x)
= lim
x→0

f ′′(x)

g′′(x)
= · · · = lim

x→0

f (k)(x)

g(k)(x)
=
ak
bk
.
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Example

1. lim
x→0

ln(1 + x)− x
√
1− x

x− sinx

= lim
x→0

(x− x2

2
+ x3

3
+ · · · )− x(1− x

2
− x2

8
+ · · · )

x− (x− x3

6
+ · · · )

= lim
x→0

11x3

24
+ · · ·

x3

6
+ · · ·

=
11

4

2. lim
x→0

(
ex

x
− 1

tanx

)
= lim
x→0

ex sinx− x cosx
x sinx

= lim
x→0

(1 + x+ x2

2
+ · · · )(x− x3

6
+ · · · )− x(1− x2

2
+ · · · )

x(x− x3

6
+ · · · )

= lim
x→0

(x+ x2 + x3

3
+ · · · )− (x− x3

2
+ · · · )

x2 − x4

6
+ · · ·

= lim
x→0

x2 + 5x3

6
+ · · · )

x2 − x4

6
+ · · ·

= 1
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Curve sketching

To sketch the graph of y = f(x), one first finds

Domain: The values of x where f(x) is defined.

x-intercepts: The values of x such that f(x) = 0.

y-intercept: f(0)

Horizontal asymptotes:
If lim
x→−∞/+∞

f(x) = b, then y = b is a horizontal asymptote.

Vertical asymptotes:
If lim
x→a−/a+

f(x) = −∞/+∞, then x = a is a vertical

asymptote.
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Example 1: f(x) =
3x+ 5

x+ 2
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Example 2: f(x) =
x2 + 2

x2 + 1
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Example 3: f(x) =
x

|x|+ 1
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Example 4: f(x) = |ln |x||
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Definition (Oblique asymptote)

If
lim

x→−∞/+∞
(f(x)− (ax+ b)) = 0,

we say that y = ax+ b is an oblique asymptote of y = f(x).
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Example 5: f(x) =
x2 − 3x− 4

x− 2
.

Note that
x2 − 3x− 4

x− 2
=
x2 − 2x− (x− 2)− 6

x− 2
= x− 1− 6

x− 2
.

210 / 327



Limits
Differentiation

Integration

Derivatives
Mean value theorem
Application of Differentiation

Definition

Let f(x) be a continuous function. We say that f(x) has a

1 local maximum at x = a if there exists δ > 0 such that f(x) ≤ f(a) for
any x ∈ (a− δ, a+ δ).

2 local minimum at x = a if there exists δ > 0 such that f(x) ≥ f(a) for
any x ∈ (a− δ, a+ δ).
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Theorem

Let f(x) be a continuous function. Suppose f(x) has local maximum or
local minimum at x = a. Then either

1 f ′(a) = 0, or

2 f ′(x) does not exist at x = a.
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Theorem (First derivative test)

Let f(x) be a continuous function and f ′(a) = 0 or f ′(a) does not
exist. Suppose there is δ > 0 such that

1
a− δ < x < a a < x < a+ δ

f ′(x) + −

Then f(x) has a local maximum at x = a.

2
a− δ < x < a a < x < a+ δ

f ′(x) − +

Then f(x) has a local minimum at x = a.
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Theorem (Second derivative test)

Let f(x) be a differentiable function and f ′(a) = 0.

1 If f ′′(a) < 0, then f(x) has a local maximum at x = a.

2 If f ′′(a) > 0, then f(x) has a local minimum at x = a.
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Definition (Turning point)

We say that f(x) has a turning point at x = a if f ′(x) changes
sign at x = a.

If f(x) has a turning point at x = a, then either f ′(a) = 0 or
f ′(x) does not exist.

Turning point f ′(a) = 0 f ′(a) does not exist

Relative maximum

Relative minimum
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Example 6: f(x) =
x− 3

x2 + 4x− 5

f(x) =
x− 3

(x− 1)(x+ 5)
, x 6= −5, 1

f ′(x) =
(x2 + 4x− 5)(1)− (x− 3)(2x+ 4)

(x− 1)2(x+ 5)2
= − (x+ 1)(x− 7)

(x− 1)2(x+ 5)2

Thus f ′(x) = 0 when x = −1, 7.

x < −5 −5 < x < −1 −1 < x < 1 1 < x < 7 x > 7
f ′(x) − − + + −

(−1, 12 ) is a minimum point and (7, 1
18 ) is a maximum point.
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Example: f(x) =
x− 3

x2 + 4x− 5
.
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Definition (Concavity)

We say that f(x) is

1 Concave upward on (a, b) if f ′′(x) > 0 on (a, b).

2 Concave downward on (a, b) if f ′′(x) < 0 on (a, b).

f ′(x) > 0 f ′(x) < 0

Concave upward (f ′′(x) > 0)

Concave downward (f ′′(x) < 0)
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Definition (Inflection point)

We say that f(x) has an inflection point at x = a if f ′′(x)
changes sign at x = a.

If f(x) has an inflection point at x = a, then ether f ′′(a) = 0 or
f ′′(a) does not exist.
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Example 7: f(x) = |x+ 1|(3− x)

f(x) = |x+ 1|(3− x) =

{
(x+ 1)(x− 3) if x < −1

−(x+ 1)(x− 3) if x ≥ −1
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Example 8: f(x) = x+
1

|x|
Since lim

x→±∞
(f(x)− x) = lim

x→±∞

1

|x| = 0,

y = f(x) has an oblique asymptote y = x.

When x < 0, f(x) = x− 1

x
.

f ′(x) = 1 +
1

x2

f ′′(x) = − 2

x3

When x > 0, f(x) = x+
1

x
.

f ′(x) = 1− 1

x2

f ′′(x) =
2

x3

x < 0 0 < x < 1 x > 1

f ′(x) + − +

f ′′(x) + + +

f(x) has a minimum point at x = 1.

f(x) has no inflection point.
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Example 8: f(x) = x+
1

|x|
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Example 9: f(x) =
|2x+ 1|
x− 3
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Example 10: f(x) = 2− (x− 8)
1
3

f ′(x) = − 1

3(x− 8)
2
3

f ′′(x) =
2

9(x− 8)
5
3

f ′(x), f ′′(x) do not exist at x = 8.

x < 8 x > 8
f ′(x) − −
f ′′(x) − +

f(x) has no turning point.

f(x) has an inflection point at x = 8.
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Example 10: f(x) = 2− (x− 8)
1
3
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Example 11: f(x) =
∣∣∣1−√|x|∣∣∣
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Example 12: f(x) =
x2 + x− 2

x2
Domain: x 6= 0

f(x) =
x2 + x− 2

x2
= 1 +

x− 2

x2
f(x) has a horizontal asymptote y = 1.

f ′(x) =
x2 − 2x(x− 2)

x4
=
x− 2(x− 2)

x3
= −x− 4

x3
f ′(x) = 0 when x = 4

f ′′(x) = −x
3 − 3x2(x− 4)

x6
= −x− 3(x− 4)

x6
=

2(x− 6)

x4
f ′′(x) = 0 when x = 6.

(−∞, 0) (0, 4) (4, 6) (6,+∞)
f ′(x) − + − −
f ′′(x) − − − +

(4, 98 ) is maximum point.

(6, 109 ) is an inflection point.
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Example 12: f(x) =
x2 + x− 2
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Example 12: f(x) =
x2 + x− 2

x2
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Example 13: f(x) =
x3

(x− 2)2

f(x) = x+ 4 +
12x− 16

(x− 2)2
, x 6= 2

f(x) has an oblique asymptote y = x+ 4

f ′(x) =
3x2(x− 2)2 − 2(x− 2)x3

(x− 2)4
=

3x2(x− 2)− 2x3

(x− 2)3
=
x3 − 6x2

(x− 2)3

f ′(x) = 0 when x = 0, 6

f ′′(x) =
(3x2 − 12x)(x− 2)3 − 3(x− 2)2(x3 − 6x2)

(x− 2)6
=

24x

(x− 2)4

f ′′(x) = 0 when x = 0.

(−∞, 0) (0, 2) (2, 6) (6,+∞)
f ′(x) + + − +
f ′′(x) − + + +

(6, 272 ) is minimum point.

(0, 0) is an inflection point.
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Example 13: f(x) =
x3

(x− 2)2
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Example 14: f(x) = x
1
3 (x− 3)

2
3

First

lim
x→±∞

f(x)

x
= lim
x→±∞

x
1
3 (x− 3)

2
3

x
= lim
x→±∞

(
1− 3

x

) 2
3

= 1

and

lim
x→±∞

(f(x)− x) = lim
x→±∞

x

((
1− 3

x

) 2
3

− 1

)

= lim
h→0

(1− 3h)
2
3 − 1

h
= −2

Thus y = x− 2 is an oblique asymptote.
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Example 14: f(x) = x
1
3 (x− 3)

2
3

f ′(x) =
1

3
x−

2
3 (x− 3)

2
3 +

2

3
x

1
3 (x− 3)−

1
3

=
x− 1

x
2
3 (x− 3)

1
3

f ′(x) = 0 when x = 1 and f ′(x) does not exist when x = 0, 3.

f ′′(x) =
x

2
3 (x− 3)

1
3 − ( 2

3
x−

1
3 (x− 3)

1
3 + 1

3
x

2
3 (x− 3)−

2
3 )(x− 1)

x
4
3 (x− 3)

2
3

=
3x(x− 3)− (2(x− 3) + x)(x− 1)

3x
5
3 (x− 3)

4
3

= − 2

x
5
3 (x− 3)

4
3

f ′′(x) does not exist when x = 0, 3.

(−∞, 0) (0, 1) (1, 3) (3,+∞)

f ′(x) + + − +

f ′′(x) + − − −

(1, 2
2
3 ) is a maximum point.

(3, 0) is a minimum point.

(0, 0) is an inflection point.
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1
3 (x− 3)

2
3
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Example 14: f(x) = x
1
3 (x− 3)

2
3
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Indefinite integral and substitution

Definition

Let f(x) be a continuous function. A primitive function, or an
anti-derivative, of f(x) is a function F (x) such that

F ′(x) = f(x).

The collection of all anti-derivatives of f(x) is called the indefinite
integral of f(x) and is denoted by∫

f(x)dx.

The function f(x) is called the integrand of the integral.
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Note: Anti-derivative of a function is not unique. If F (x) is an
anti-derivative of f , then F (x) +C is an anti-derivative of f(x) for
any constant C. Moreover, any anti-derivative of f(x) is of the
form F (x) + C and we write∫

f(x)dx = F (x) + C

where C is arbitrary constant called the integration constant.
Note that

∫
f(x)dx is not a single function but a collection of

functions.
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Theorem

Let f(x) and g(x) be continuous functions and k be a constant.

1

∫
(f(x) + g(x))dx =

∫
f(x)dx+

∫
g(x)dx

2

∫
kf(x)dx = k

∫
f(x)dx

Theorem (formulas for indefinite integrals)∫
xndx =

xn+1

n+ 1
+ C, n 6= 1∫

exdx = ex + C;

∫
1

x
dx = ln |x|+ C∫

cosxdx = sinx+ C;

∫
sinxdx = − cosx+ C∫

sec2 xdx = tanx+ C;

∫
csc2 xdx = − cotx+ C∫

secx tanxdx = secx+ C;

∫
cscx cotxdx = − cscx+ C
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Example

1.

∫
(x3 − x+ 5)dx =

x4

4
− x2

2
+ 5x+ C

2.

∫
(x+ 1)2

x
dx =

∫
x2 + 2x+ 1

x
dx

=

∫ (
x+ 2 +

1

x

)
dx

=
x2

2
+ 2x+ ln |x|+ C

3.

∫
3x2 +

√
x− 1√
x

dx =

∫ (
3x3/2 + 1− x−1/2

)
dx

=
6

5
x

5
2 + x− 2x

1
2 + C

4.

∫ (
3 sinx

cos2 x
− 2ex

)
dx =

∫
(3 secx tanx− 2ex) dx

= 3 secx− 2ex + C
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Example

Suppose we want to compute ∫
x
√
x2 + 4 dx

First we let
u = x2 + 4.

We may formally write

du =
du

dx
dx =

[
d

dx
(x2 + 4)

]
dx = 2xdx

Here du is called the differential of u defined as
du

dx
dx. Thus the integral is∫

x
√
x2 + 4 dx =

1

2

∫ √
x2 + 4(2xdx) =

1

2

∫ √
u du

=
u

3
2

3
+ C =

(x2 + 4)
3
2

3
+ C
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Example

∫
x
√
x2 + 4 dx =

∫ √
x2 + 4 d

(
x2

2

)
=

1

2

∫ √
x2 + 4 dx2

=
1

2

∫ √
x2 + 4 d(x2 + 4)

=
(x2 + 4)

3
2

3
+ C
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Theorem

Let f(x) be a continuous function defined on [a, b]. Suppose there
exists a differentiable function u = ϕ(x) and continuous function
g(u) such that f(x) = g(ϕ(x))ϕ′(x) for any x ∈ (a, b). Then∫

f(x)dx =

∫
g(ϕ(x))ϕ′(x)dx

=

∫
g(u)du
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Example∫
x2ex

3+1dx

Let u = x3 + 1,

then du = 3x2dx

=
1

3

∫
eudu

=
eu

3
+ C

=
ex

3+1

3
+ C

∫
x2ex

3+1dx

=

∫
ex

3+1d

(
x3

3

)
=

1

3

∫
ex

3+1dx3

=
1

3

∫
ex

3+1d(x3 + 1)

=
ex

3+1

3
+ C
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Example∫
cos4 x sinxdx

Let u = cosx,

then du = − sinxdx

= −
∫
u4du

= −u
5

5
+ C

= −cos5 x

5
+ C

∫
cos4 x sinxdx

=

∫
cos4 xd(− cosx)

= −
∫

cos4 xd cosx

= −cos5 x

5
+ C
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Example∫
dx

x lnx

Let u = lnx,

then du =
dx

x

=

∫
du

u

= ln |u|+ C

= ln | lnx|+ C

∫
dx

x lnx

=

∫
d lnx

lnx

= ln | lnx|+ C
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Example∫
dx

ex + 1

Let u = 1 + e−x,

then du = −e−xdx

=

∫
e−xdx

1 + e−x

= −
∫
du

u

= − lnu+ C

= − ln(1 + e−x) + C

= x− ln(1 + ex) + C

∫
dx

ex + 1

=

∫ (
1− ex

1 + ex

)
dx

= x−
∫

dex

1 + ex

= x− ln(1 + ex) + C

247 / 327



Limits
Differentiation

Integration

Integration
Techniques of Integration
More Techniques of Integration

Example∫
dx

1 +
√
x

Let u = 1 +
√
x,

then du =
dx

2
√
x

= 2

∫
(u− 1)du

u

= 2

∫ (
1− 1

u

)
du

= 2u− 2 lnu+ C′

= 2
√
x− 2 ln(1 +

√
x) + C

∫
dx

1 +
√
x

=

∫ √
x dx√

x(1 +
√
x)

= 2

∫ √
x d
√
x

1 +
√
x

= 2

∫ (
1− 1

1 +
√
x

)
d
√
x

= 2
√
x− 2 ln(1 +

√
x) + C
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Definite integral

Definition

Let f(x) be a function on [a, b]. A Partition of [a, b] is a set of
finite points

P = {x0 = a < x1 < x2 < · · · < xn = b}

and we define

∆xk = xk − xk−1, for k = 1, 2, . . . , n

‖P‖ = max
1≤k≤n

{∆xk}
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Definition

Let f(x) be a function on [a, b]. The lower and upper Riemann sums
with respect to partition P are

L(f, P ) =

n∑
k=1

mk∆xk, and U(f, P ) =

n∑
k=1

Mk∆xk

where

mk = inf{f(x) : xk−1 ≤ x ≤ xk}, and Mk = sup{f(x) : xk−1 ≤ x ≤ xk}
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Figure: Upper and lower Riemann sum

251 / 327



Limits
Differentiation

Integration

Integration
Techniques of Integration
More Techniques of Integration

Figure: Upper and lower Riemann sum
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Definition (Riemann integral)

Let [a, b] be a closed and bounded interval and f : [a, b]→ R be a
real valued function defined on [a, b]. We say that f(x) is
Riemann integrable on [a, b] if the limits of L(f, P ) and U(f, P )
exist as ‖P‖ tends to 0 and are equal. In this case, we define the
Riemann integral of f(x) over [a, b] by∫ b

a
f(x)dx = lim

‖P‖→0
L(f, P ) = lim

‖P‖→0
U(f, P ).

Note: We say that lim
‖P‖→0

L(f, P ) = L if for any ε > 0, there exists

δ = δ(ε) > 0 such that if ‖P‖ < δ, then |L(f, P )− L| < ε.
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Theorem

Let f(x) and g(x) be integrable functions on [a, b], a < c < b and k be
constants.

1

∫ b

a

(f(x) + g(x))dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx

2

∫ b

a

kf(x)dx = k

∫ b

a

f(x)dx

3

∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx

4

∫ a

b

f(x)dx = −
∫ b

a

f(x)dx
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Theorem

Suppose f(x) is a continuous function on [a, b]. Then f(x) is
Riemann integrable on [a, b] and we have∫ b

a
f(x)dx = lim

n→∞

n∑
k=1

f(xk)∆xk

= lim
n→∞

n∑
k=1

f

(
a+

k

n
(b− a)

)(
b− a
n

)
.
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Figure: Formula for Riemann integral
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Example

Use the formula for definite integral of continuous function to evaluate∫ 1

0

x2dx

Solution

∫ 1

0

x2dx = lim
n→∞

n∑
k=1

(
0 +

k

n
(1− 0)

)2(
1− 0

n

)

= lim
n→∞

n∑
k=1

k2

n3

= lim
n→∞

n(n+ 1)(2n+ 1)

6n3

=
1

3
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Fundamental theorem of calculus

Theorem (Fundamental theorem of calculus)

First part: Let f(x) be a function which is continuous on [a, b].
Let F : [a, b]→ R be the function defined by

F (x) =

∫ x

a
f(t)dt

Then F (x) is continuous on [a, b], differentiable on (a, b) and

F ′(x) = f(x).

for any x ∈ (a, b). Put in another way, we have

d

dx

∫ x

a
f(t)dt = f(x) for x ∈ (a, b).
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Theorem (Fundamental theorem of calculus)

Second part: Let f(x) be a function which is continuous on [a, b].
Let F (x) be a primitive function of f(x), in other words, F (x) is a
continuous function on [a, b] and F ′(x) = f(x) for any x ∈ (a, b).
Then ∫ b

a
f(x)dx = F (b)− F (a).
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Example

Let f(x) =
√
1− x2. The graph of y = f(x) is a unit semicircle centered at

the origin. Using the formula for area of circular sectors, we calculate

F (x) =

∫ x

0

f(t)dt =

∫ x

0

√
1− t2dt = x

√
1− x2
2

+
sin−1 x

2
.

By fundamental theorem of calculus, we know that F (x) is an anti-derivative
of f(x). One may check this by differentiating F (x) and get

F ′(x) =
1

2

(√
1− x2 − x2√

1− x2
+

1√
1− x2

)
=

1

2

(
1− x2 − x2 + 1√

1− x2

)
=

√
1− x2

= f(x)
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Figure:

∫ x

0

√
1− t2dt =

x
√

1− x2
2

+
sin−1 x

2
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Example

1.

∫ 3

1

(x3 − 4x+ 5)dx =

[
x4

4
− 2x2 + 5x

]3
1

=

[(
34

4
− 2(32) + 5(3)

)
−
(
14

4
− 2(12) + 5(1)

)]
= 14

2.

∫ π2

0

sin
√
x√

x
dx = 2

∫ π2

0

sin
√
x d
√
x = 2

[
− cos

√
x
]π2

0

= 2
[
− cos

√
π2 − (− cos 0)

]
= 4

3.

∫ 5

3

x
√
x2 − 9 dx =

1

2

∫ 5

3

√
x2 − 9 d(x2 − 9)

=
1

3

[
(x2 − 9)

3
2

]5
3

=
64

3
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Example

We have the following formulas for derivatives of functions defined by integrals.

1
d

dx

∫ x

a

f(t)dt = f(x)

2
d

dx

∫ b

x

f(t)dt = −f(x)

3
d

dx

∫ v(x)

a

f(t)dt = f(v)
dv

dx

4
d

dx

∫ v(x)

u(x)

f(t)dt = f(v)
dv

dx
− f(u)du

dx
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Proof.

1. This is the first part of fundamental theorem of calculus.

2.
d

dx

∫ b

x

f(t)dt =
d

dx

(
−
∫ x

b

f(t)dt

)
= −f(x)

3.
d

dx

∫ v(x)

a

f(t)dt =

(
d

dv

∫ v(x)

a

f(t)dt

)
dv

dx

= f(v)
dv

dx

4.
d

dx

∫ v(x)

u(x)

f(t)dt =
d

dx

(∫ v(x)

c

f(t)dt+

∫ c

u(x)

f(t)dt

)

=
d

dx

(∫ v(x)

c

f(t)dt−
∫ u(x)

c

f(t)dt

)

= f(v)
dv

dx
− f(u)du

dx
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Example

Find F ′(x) for the the functions.

1 F (x) =

∫ x

1

√
tetdt

2 F (x) =

∫ π

x

sin t

t
dt

3 F (x) =

∫ sin x

0

√
1 + t4dt

4 F (x) =

∫ x2

−x
et

2

dt

265 / 327



Limits
Differentiation

Integration

Integration
Techniques of Integration
More Techniques of Integration

Solution

1.
d

dx

∫ x

1

√
tetdt =

√
xex

2.
d

dx

∫ π

x

sin t

t
dt = − sinx

x

3.
d

dx

∫ sin x

0

√
1 + t4dt =

√
1 + sin4 x

d

dx
sinx

= cosx
√

1 + sin4 x

4.
d

dx

∫ x2

−x
et

2

dt = e(x
2)2 d

dx
x2 − e(−x)

2 d

dx
(−x)

= 2xex
4

+ ex
2
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Trigonometric integrals

Techniques

Useful identities for trigonometric integrals.

1 cos2 x+ sin2 x = 1

sec2 x = 1 + tan2 x

csc2 x = 1 + cot2 x

2 cos2 x =
1 + cos 2x

2

sin2 x =
1− cos 2x

2

cosx sinx =
sin 2x

2
3 cosx cos y = 1

2 (cos(x+ y) + cos(x− y))

cosx sin y = 1
2 (sin(x+ y)− sin(x− y))

sinx sin y = 1
2 (cos(x− y)− cos(x+ y))
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Techniques

To evaluate ∫
cosm x sinn xdx

where m,n are non-negative integers,

Case 1. If m is odd, use cosxdx = d sinx. (Substitute u = sinx.)

Case 2. If n is odd, use sinxdx = −d cosx. (Substitute u = cosx.)

Case 3. If both m,n are even, then use double angle formulas to reduce
the power.

cos2 x =
1 + cos 2x

2

sin2 x =
1− cos 2x

2

cosx sinx =
sin 2x

2
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Techniques

1

∫
tanxdx = ln | secx|+ C

2

∫
cotxdx = ln | sinx|+ C

3

∫
secxdx = ln | secx+ tanx|+ C

4

∫
cscxdx = ln | cscx− cotx|+ C
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Proof

We prove (1), (3) and the rest are left as exercise.

1.

∫
tanxdx =

∫
sinxdx

cosx

= −
∫
d cosx

cosx

= − ln | cosx|+ C

= ln | secx|+ C

3.

∫
secxdx =

∫
secx(secx+ tanx)dx

(secx+ tanx)

=

∫
(sec2 x+ secx tanx)dx

(secx+ tanx)

=

∫
d(tanx+ secx)

(secx+ tanx)

= ln | secx+ tanx|+ C
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Techniques

To evaluate ∫
secm x tann xdx

where m,n are non-negative integers,

Case 1. If m is even, use sec2 xdx = d tanx. (Substitute u = tanx.)

Case 2. If n is odd, use secx tanxdx = d secx. (Substitute u = secx.)

Case 3. If both m is odd and n is even, use tan2 x = sec2 x− 1 to write
everything in terms of secx.
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Example

Evaluate the following integrals.

1

∫
sin2 xdx

2

∫
cos4 3xdx

3

∫
cos 2x cosxdx

4

∫
cos 3x sin 5xdx
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Solution

1.

∫
sin2 xdx =

∫ (
1− cos 2x

2

)
dx =

x

2
− sin 2x

4
+ C

2.

∫
cos4 xdx =

∫ (1 + cos 2x

2

)2

dx

=

∫ (
1 + 2 cos 2x+ cos2 2x

4

)
dx

=
x

4
+

sin 2x

4
+

∫ (
1 + cos 4x

8

)
dx

=
3x

8
+

sin 2x

4
+

sin 4x

32
+ C

3.

∫
cos 2x cosxdx =

1

2

∫
(cos 3x+ cosx) dx =

sin 3x

6
+

sinx

2
+ C

4.

∫
cos 3x sin 5xdx =

1

2

∫
(sin 8x+ sin 2x) dx = −cos 8x

16
− cos 2x

4
+ C

273 / 327



Limits
Differentiation

Integration

Integration
Techniques of Integration
More Techniques of Integration

Example

Evaluate the following integrals.

1

∫
cosx sin4 xdx

2

∫
cos2 x sin3 xdx

3

∫
cos4 x sin2 xdx
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Solution

1.

∫
cosx sin4 xdx =

∫
sin4 xd sinx =

sin5 x

5
+ C

2.

∫
cos2 x sin3 xdx = −

∫
cos2 x(1− cos2x)d cosx

= −
∫

(cos2 x− cos4x)d cosx

= −cos
3x

3
+
cos5x

5
C

3.

∫
cos4 x sin2 xdx =

∫ (
1 + cos 2x

2

)(
sin 2x

2

)2

dx

=
1

8

∫ (
sin2 2x+ cos 2x sin2 2x

)
dx

=
1

8

∫ (
1− cos 4x

2

)
dx+

1

16

∫
sin2 2xd sin 2x

=
x

16
− sin 4x

64
+

sin3 2x

48
+ C
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More Techniques of Integration

Example

Evaluate the following integrals.

1

∫
sec2 x tan2 xdx

2

∫
secx tan3 xdx

3

∫
tan3 xdx
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Solution

1.

∫
sec2 x tan2 xdx =

∫
tan2 xd tanx =

tan3 x

3
+ C

2.

∫
secx tan3 xdx =

∫
tan2 xd secx =

∫
(sec2 x− 1)d secx

=
sec3 x

3
− secx+ C

3.

∫
tan3 xdx =

∫
tanx(sec2 x− 1)dx

=

∫
tanx sec2 xdx−

∫
tanxdx

=

∫
tanxd tanx− ln | secx|

=
tan2 x

2
− ln | secx|+ C
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Integration by parts

Techniques

Suppose the integrand is of the form u(x)v′(x). Then we may
evaluate the integration using the formula∫

uv′dx = uv −
∫
u′vdx.

The above formula is called integration by parts. It is usually
written in the form ∫

udv = uv −
∫
vdu.
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Example

Evaluate the following integrals.

1

∫
xe3xdx

2

∫
x2 cosxdx

3

∫
x3 lnxdx

4

∫
lnxdx
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Solution

1.

∫
xe3xdx =

1

3

∫
xde3x =

xe3x

3
− 1

3

∫
e3xdx

=
xe3x

3
− e3x

9
+ C

2.

∫
x2 cosxdx =

∫
x2d sinx

= x2 sinx−
∫

sinxdx2

= x2 sinx− 2

∫
x sinxdx

= x2 sinx+ 2

∫
xd cosx

= x2 sinx+ 2x cosx− 2

∫
cosxdx

= x2 sinx+ 2x cosx− 2 sinx+ C
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Solution

3.

∫
x3 lnxdx =

1

4

∫
lnxdx4

=
x4 lnx

4
− 1

4

∫
x4d lnx

=
x4 lnx

4
− 1

4

∫
x4
(
1

x

)
dx

=
x4 lnx

4
− 1

4

∫
x3dx

=
x4 lnx

4
− x4

16
+ C

4.

∫
lnxdx = x lnx−

∫
xd lnx

= x lnx−
∫
dx

= x lnx− x+ C
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Example

Evaluate the following integrals.

1

∫
sin−1 xdx

2

∫
ln(1 + x2)dx

3

∫
sec3 xdx

4

∫
ex sinxdx
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Solution

1.

∫
sin−1 xdx = x sin−1 x−

∫
xd sin−1 x

= x sin−1 x−
∫

xdx√
1− x2

= x sin−1 x+
1

2

∫
d(1− x2)√

1− x2

= x sin−1 x+
√
1− x2 + C

2.

∫
ln(1 + x2)dx = x ln(1 + x2)−

∫
xd ln(1 + x2)

= x ln(1 + x2)− 2

∫
x2dx

1 + x2

= x ln(1 + x2)− 2

∫ (
1− 1

1 + x2

)
dx

= x ln(1 + x2)− 2x+ 2 tan−1 x+ C
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Solution

3.

∫
sec3 xdx =

∫
secxd tanx

= secx tanx−
∫

tanxd secx

= secx tanx−
∫

secx tan2 xdx

= secx tanx−
∫

secx(sec2 x− 1)dx

= secx tanx−
∫

sec3 xdx+

∫
secxdx

2

∫
sec3 xdx = secx tanx+

∫
secxdx∫

sec3 xdx =
secx tanx+ ln | secx+ tanx|

2
+ C
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Solution

4.

∫
ex sinxdx =

∫
sinxdex

= ex sinx−
∫
exd sinx

= ex sinx−
∫
ex cosxdx

= ex sinx−
∫

cosxdex

= ex sinx− ex cosx+

∫
exd cosx

= ex sinx− ex cosx−
∫
ex sinxdx

2

∫
ex sinxdx = ex sinx− ex cosx+ C′∫
ex sinxdx =

1

2
(ex sinx− ex cosx) + C
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Reduction formula

Techniques

For integral of the forms

In =

∫
cosn xdx,

∫
sinn xdx,

∫
xn cosxdx,

∫
xn sinxdx,∫

secn xdx,

∫
cscn xdx,

∫
xnexdx,

∫
(lnx)ndx,∫

ex cosn xdx,

∫
ex sinn xdx,

∫
dx

(x2 + a2)n
,

∫
dx

(a2 − x2)n ,

we may use integration by parts to find a formula to express In in terms of Ik
with k < n. Such a formula is called reduction formula.
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Example

Let

In =

∫
xn cosxdx

for positive integer n. Prove that

In = xn sinx+ nxn−1 cosx− n(n− 1)In−2, for n ≥ 2
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Proof.

In =

∫
xn cosxdx =

∫
xnd sinx

= xn sinx−
∫

sinxdxn

= xn sinx− n
∫
xn−1 sinxdx

= xn sinx+ n

∫
xn−1d cosx

= xn sinx+ nxn−1 cosx− n
∫

cosxdxn−1

= xn sinx+ nxn−1 cosx− n(n− 1)

∫
xn−2 cosxdx

= xn sinx+ nxn−1 cosx− n(n− 1)In−2
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Example

Let

In =

∫
dx

(x2 + a2)n

where a > 0 is a positive real number for positive integer n. Prove that

In =
x

2a2(n− 1)(x2 + a2)n−1
+

2n− 3

2a2(n− 1)
In−1, for n ≥ 2
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Proof

In =

∫
dx

(x2 + a2)n
=

x

(x2 + a2)n
−
∫
xd

(
1

(x2 + a2)n

)
=

x

(x2 + a2)n
+

∫
2nx2dx

(x2 + a2)n+1

=
x

(x2 + a2)n
+ 2n

∫
(x2 + a2 − a2)dx
(x2 + a2)n+1

=
x

(x2 + a2)n
+ 2n

∫
dx

(x2 + a2)n
− 2na2

∫
dx

(x2 + a2)n+1

=
x

(x2 + a2)n
+ 2nIn − 2na2In+1

In+1 =
x

2na2(x2 + a2)n
+

2n− 1

2na2
In

Replacing n by n− 1, we have

In =
x

2(n− 1)a2(x2 + a2)n−1
+

2n− 3

2(n− 1)a2
In−1.
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Alternative proof.

In =
1

a2

∫
x2 + a2 − x2

(x2 + a2)n
dx

=
1

a2

∫ (
1

(x2 + a2)n−1
− x2

(x2 + a2)n

)
dx

=
1

a2
In−1 −

1

2a2

∫
x

(x2 + a2)n
d(x2 + a2)

=
1

a2
In−1 +

1

2(n− 1)a2

∫
xd

(
1

(x2 + a2)n−1

)
=

1

a2
In−1 +

x

2(n− 1)a2(x2 + a2)n−1
− 1

2(n− 1)a2

∫
dx

(x2 + a2)n−1

=
x

2(n− 1)a2(x2 + a2)n−1
+

(
1

a2
− 1

2(n− 1)a2

)
In−1

=
x

2(n− 1)a2(x2 + a2)n−1
+

2n− 3

2(n− 1)a2
In−1
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Example

Prove the following reduction formula∫
sinn xdx = − 1

n
cosx sinn−1 x+

n− 1

n

∫
sinn−2 xdx

for n ≥ 2. Hence show that

∫ π
2

0

sinn xdx =


(n− 1) · (n− 3) · · · 6 · 4 · 2
n · (n− 2) · · · 7 · 5 · 3 when n is odd

(n− 1) · (n− 3) · · · 7 · 5 · 3
n · (n− 2) · · · 6 · 4 · 2 · π

2
when n is even
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Proof

∫
sinn xdx = −

∫
sinn−1 xd cosx

= − cosx sinn−1 x+

∫
cosxd sinn−1 x

= − cosx sinn−1 x+ (n− 1)

∫
cos2 x sinn−2 xdx

= − cosx sinn−1 x+ (n− 1)

∫
(1− sin2 x) sinn−2 xdx

n

∫
sinn xdx = − cosx sinn−1 x+ (n− 1)

∫
sinn−2 xdx∫

sinn xdx = − 1

n
cosx sinn−1 x+

n− 1

n

∫
sinn−2 xdx
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Proof

Hence when n is odd∫ π
2

0

sinn xdx = −
[
1

n
cosx sinn−1 x

]π
2

0

+
n− 1

n

∫ π
2

0

sinn−2 xdx

=
n− 1

n

∫ π
2

0

sinn−2 xdx

=

(
n− 1

n

)(
n− 3

n− 2

)∫ π
2

0

sinn−4 xdx

...

=
(n− 1) · (n− 3) · · · 6 · 4 · 2
n · (n− 2) · · · 7 · 5 · 3

∫ π
2

0

sinxdx

=
(n− 1) · (n− 3) · · · 6 · 4 · 2
n · (n− 2) · · · 7 · 5 · 3
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Proof.

when n is even∫ π
2

0

sinn xdx = −
[
1

n
cosx sinn−1 x

]π
2

0

+
n− 1

n

∫ π
2

0

sinn−2 xdx

=
n− 1

n

∫ π
2

0

sinn−2 xdx

=

(
n− 1

n

)(
n− 3

n− 2

)∫ π
2

0

sinn−4 xdx

...

=
(n− 1) · (n− 3) · · · 7 · 5 · 3
n · (n− 2) · · · 6 · 4 · 2

∫ π
2

0

dx

=
(n− 1) · (n− 3) · · · 7 · 5 · 3
n · (n− 2) · · · 6 · 4 · 2 · π

2
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Example

In =

∫
xnexdx; In = xnex − nIn−1, n ≥ 1

In =

∫
(lnx)ndx; In = x(lnx)n − nIn−1, n ≥ 1

In =

∫
xn sinxdx; In = −xn cosx+ nxn−1 sinx− n(n− 1)In−2, n ≥ 2

In =

∫
cosn xdx; In =

cosn−1 x sinx

n
+ (n− 1)In−2, n ≥ 2

In =

∫
secn xdx; In =

secn−2 x tanx

n− 1
+
n− 2

n− 1
In−2, n ≥ 2

In =

∫
ex cosn xdx; In =

ex cosn−1 x(cosx+ n sinx)

n2 + 1
+
n(n− 1)

n2 + 1
In−2, n ≥ 2

In =

∫
ex sinn xdx; In =

ex sinn−1 x(sinx− n cosx)
n2 + 1

+
n(n− 1)

n2 + 1
In−2, n ≥ 2

In =

∫
xn
√
x+ adx; In =

2xn(x+ a)
3
2

2n+ 3
− 2na

2n+ 3
In−1, n ≥ 1

In =

∫
xn√
x+ a

dx; In =
2xn
√
x+ a

2n+ 1
− 2na

2n+ 1
In−1, n ≥ 1
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Trigonometric substitution

Techniques (Trigonometric substitution)
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Theorem

1

∫
dx√
a2 − x2

= sin−1 x

a
+ C

2

∫
dx

a2 + x2
=

1

a
tan−1 x

a
+ C

3

∫
dx

x
√
x2 − a2

= cos−1 a

x
+ C
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Proof

1. Let x = a sin θ. Then√
a2 − x2 =

√
a2 − a2 sin2 θ = a cos θ

dx = a cos θdθ

Therefore ∫
1√

a2 − x2
dx =

∫
1

a cos θ
(a cos θdθ)

=

∫
dθ

= θ + C

= sin−1 x

a
+ C
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Proof

2. Let x = a tan θ. Then

a2 + x2 = a2 + a2 tan2 θ = a2 sec2 θ

dx = a sec2 θdθ.

Therefore ∫
1

a2 + x2
dx =

∫
1

a2 sec2 θ
(a sec2 θdθ)

=
1

a

∫
dθ

=
θ

a
+ C

=
1

a
tan−1 x

a
+ C
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Proof.

3. Let x = a sec θ. Then

x
√
x2 − a2 = a sec θ

√
a2 sec2 θ − a2 = a2 sec θ tan θ

dx = a sec θ tan θdθ.

Therefore∫
1

x
√
x2 − a2

dx =

∫
1

a2 sec θ tan θ
(a sec θ tan θdθ)

=
1

a

∫
dθ

=
θ

a
+ C

=
1

a
cos−1 a

x
+ C

Note that θ = cos−1 a

x
since cos θ =

1

sec θ
=
a

x
.
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Example

Use trigonometric substitution to evaluate the following integrals.

1

∫ √
1− x2 dx

2

∫
1√

1 + x2
dx

3

∫
x3√
4− x2

dx

4

∫
1

(9 + x2)2
dx
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Solution

1. Let x = sin θ. Then√
1− x2 =

√
1− sin2 θ = cos θ

dx = cos θdθ.

Therefore ∫ √
1− x2 dx =

∫
cos2 θdθ

=

∫
cos 2θ + 1

2
dθ

=
sin 2θ

4
+
θ

2
+ C

=
sin θ cos θ

2
+

sin−1 x

2
+ C

=
x
√
1− x2
2

+
sin−1 x

2
+ C
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Solution

2. Let x = tan θ. Then

1 + x2 = 1 + tan2 θ = sec2 θ

dx = sec2 θdθ.

Therefore ∫
1√

1 + x2
dx =

∫
1

secx
(sec2 θdθ)

=

∫
sec θdθ

= ln | tan θ + sec θ|+ C

= ln(x+
√

1 + x2) + C
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Solution

3. Let x = 2 sin θ. Then√
4− x2 =

√
4− 4 sin2 θ = 2 cos θ

dx = 2 cos θdθ.

Therefore ∫
x3√
4− x2

dx =

∫
8 sin3 θ

2 cos θ
(2 cos θdθ)

= 8

∫
sin3 θdθ

= −8
∫

(1− cos2 θ)d cos θ

= 8

(
cos3 θ

3
− cos θ

)
+ C

=
(4− x2)

3
2

3
− 4(4− x2)

1
2 + C
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Solution

4. Let x = 3 tan θ. Then

9 + x2 = 9 + 9 tan2 θ = 9 sec2 θ

dx = 3 sec2 θdθ.

Therefore∫
1

(9 + x2)2
dx =

∫
1

81 sec4 θ
(3 sec2 θdθ) =

1

27

∫
cos2 θdθ

=
1

54

∫
(cos 2θ + 1)dθ =

1

54

(
sin 2θ

2
+ θ

)
+ C

=
1

54
(cos θ sin θ + θ) + C

=
1

54

(
3√

9 + x2
· x√

9 + x2
+ tan−1 x

3

)
+ C

=
x

18(9 + x2)
+

1

54
tan−1 x

3
+ C
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Integration of rational functions

Definition (Rational functions)

A rational function is a function of the form

R(x) =
f(x)

g(x)

where f(x), g(x) are polynomials with real coefficients with g(x) 6= 0.

Techniques

We can integrate a rational function R(x) with the following two steps.

1 Find the partial fraction decomposition of R(x), that is, express

R(x) = q(x)+
∑ A

(x− α)k+
∑ B(x+ a)

((x+ a)2 + b2)k
+
∑ C

((x+ a)2 + b2)k

where q(x) is a polynomial, A,B,C, α, a, b represent real numbers and k
represents positive integer.

2 Integrate the partial fraction.
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Theorem

Let R(x) =
f(x)

g(x)
be a rational function. We may assume that the leading

coefficient of g(x) is 1.

1 (Division algorithm for polynomials) There exists polynomials q(x), r(x)
with deg(r(x)) < deg(g(x)) or r(x) = 0 such that

R(x) = q(x) +
r(x)

g(x)
.

q(x) and r(x) are the quotient and remainder of the division f(x) by
g(x).

2 (Fundamental theorem of algebra for real polynomials) g(x) can be
written as a product of linear or quadratic polynomials. More precisely,
there exists real numbers α1, . . . , αm, a1, . . . , an, b1, . . . , bn and positive
integers k1, . . . , km, l1, . . . , ln such that

g(x) = (x−α1)
k1 · · · (x−αk)km((x+a1)

2+ b21)
l1 · · · ((x+an)2+ b)2n)ln .
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Techniques

Partial fractions can be integrated using the formulas below.∫
dx

(x− α)k =

ln |x− α|+ C, if k = 1

− 1

(k − 1)(x− α)k−1
+ C, if k > 1

∫
xdx

(x2 + a2)k
=


1

2
ln(x2 + a2) + C, if k = 1

− 1

2(k − 1)(x2 + a2)k−1
+ C, if k > 1∫

dx

(x2 + a2)k

=


1

a
tan−1 x

a
+ C, if k = 1

x

2a2(k − 1)(x2 + a2)k−1
+

2k − 3

2a2(k − 1)

∫
dx

(x2 + a2)k−1
, if k > 1
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Theorem

Suppose
f(x)

g(x)
is a rational function such that the degree of f(x) is smaller

than the degree of g(x) and g(x) has only simple real roots, i.e.,

g(x) = a(x− α1)(x− α2) · · · (x− αk)

for distinct real numbers α1, α2, · · · , αk and a 6= 0. Then

f(x)

g(x)
=

f(α1)

g′(α1)(x− α1)
+

f(α2)

g′(α2)(x− α2)
+ · · ·+ f(αk)

g′(αk)(x− αk)
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Proof

First, observe that

g′(x) =

k∑
j=1

a(x− α1)(x− α2) · · · ̂(x− αj) · · · (x− αk)

where ̂(x− αi) means the factor x− αi is omitted. Thus we have

g′(αi) =

k∑
j=1

a(αi − α1)(αi − α2) · · · ̂(αi − αj) · · · (αi − αk)

= a(αi − α1)(αi − α2) · · · ̂(αi − αi) · · · (αi − αk)

Since g(x) has distinct real zeros, the partial fraction decomposition takes the
form

f(x)

g(x)
=

A1

x− α1
+

A2

x− α2
+ · · ·+ Ak

x− αk
.
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Proof.

Multiplying both sides by g(x) = a(x− α1)(x− α2) · · · (x− αk), we get

f(x) =
k∑
i=1

Aia(x− α1)(x− α2) · · · ̂(x− αi) · · · (x− αk)

For i = 1, 2, · · · , k, substituting x = αi, we obtain

f(αi) =

k∑
j=1

Aja(αj − α1)(αj − α2) · · · ̂(αj − αi) · · · (αj − αk)

= Aia(αi − α1)(αi − α2) · · · ̂(αi − αi) · · · (αi − αk)
= Aig

′(αi)

and the result follows.
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Example

Evaluate the following integrals.

1

∫
x5 + 2x− 1

x3 − x dx

2

∫
9x− 2

2x3 + 3x2 − 2x
dx

3

∫
x2 − 2

x(x− 1)2
dx

4

∫
x2

x4 − 1
dx

5

∫
8x2

x4 + 4
dx

6

∫
2x+ 1

x4 + 2x2 + 1
dx
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Solution

1. By division and factorization x3 − x = x(x− 1)(x+ 1), we obtain the
partial fraction decomposition

x5 + 4x− 3

x3 − x = x2 + 1 +
5x− 3

x3 − x = x2 + 1 +
A

x
+

B

x− 1
+

C

x+ 1
.

Multiply both sides by x(x− 1)(x+ 1) and obtain

5x− 3 = A(x− 1)(x+ 1) +Bx(x+ 1) + Cx(x− 1)

⇒ A = 3, B = 1, C = −4.

Therefore∫
x5 + 4x− 3

x3 − x dx =

∫ (
x2 + 1 +

3

x
+

1

x− 1
− 4

x+ 1

)
dx

=
x3

3
+ x+ 3 ln |x|+ ln |x− 1| − 4 ln |x+ 1|+ C.
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Solution

2. By factorization 2x3 + 3x2 − 2x = x(x+ 2)(2x− 1), we obtain the
partial fraction decomposition

9x− 2

2x3 + 3x2 − 2x
=
A

x
+

B

x+ 2
+

C

2x− 1
.

Multiply both sides by x(x+ 2)(2x− 1) and obtain

9x− 2 = A(x+ 2)(2x− 1) +Bx(2x− 1) + Cx(x+ 2)

⇒ A = 1, B = −2, C = 2.

Therefore ∫
9x− 2

2x3 + 3x2 − 2x
dx

=

∫ (
1

x
− 2

x+ 2
+

2

2x− 1

)
dx

= ln |x| − 2 ln |x+ 2|+ ln |2x− 1|+ C.
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Solution

3. The partial fraction decomposition is

x2 − 2

x(x− 1)2
=

A

(x− 1)2
+

B

x− 1
+
C

x
.

Multiply both sides by x(x− 1)2 and obtain

x2 − 2 = Ax+Bx(x− 1) + C(x− 1)2

⇒ A = −1, B = 3, C = −2.

Therefore∫
x2 − 2

x(x− 1)2
dx =

∫ (
− 1

(x− 1)2
+

3

x− 1
− 2

x

)
dx

=
1

x− 1
+ 3 ln |x− 1| − 2 ln |x|+ C.
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Solution

4. The partial fraction decomposition is

x2

x4 − 1
=

x2

(x2 − 1)(x2 + 1)

=
1

2

(
1

x2 − 1
+

1

x2 + 1

)
=

1

2(x− 1)(x+ 1)
+

1

2(x2 + 1)

=
1

4(x− 1)
− 1

4(x+ 1)
+

1

2(x2 + 1)

Therefore∫
x2dx

x4 − 1
=

∫ (
1

4(x− 1)
− 1

4(x+ 1)
+

1

2(x2 + 1)

)
dx

=
1

4
ln |x− 1| − 1

4
ln |x+ 1|+ 1

2
tan−1 x+ C
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Solution

5. By factorization x4 + 4 = (x2 + 2)2 − (2x)2 = (x2 − 2x+ 2)(x2 + 2x+ 2),∫
8x2

x4 + 4
dx

=

∫
8x2dx

(x2 − 2x+ 2)(x2 + 2x+ 2)
dx

=

∫
2x

(
4x

(x2 − 2x+ 2)(x2 + 2x+ 2)

)
dx

=

∫
2x

(
1

x2 − 2x+ 2
− 1

x2 + 2x+ 2

)
dx

=

∫ (
2x

(x− 1)2 + 1
− 2x

(x+ 1)2 + 1

)
dx

=

∫ (
2(x− 1)

(x− 1)2 + 1
+

2

(x− 1)2 + 1
− 2(x+ 1)

(x+ 1)2 + 1
+

2

(x+ 1)2 + 1

)
dx

= ln(x2 − 2x+ 2) + 2 tan−1(x− 1)− ln(x2 + 2x+ 2) + 2 tan−1(x+ 1) + C
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Solution

6.

∫
2x+ 1

x4 + 2x2 + 1
dx

=

∫
2xdx

(x2 + 1)2
+

∫
dx

(x2 + 1)2

=

∫
d(x2 + 1)

(x2 + 1)2
+

∫
x2 + 1

(x2 + 1)2
dx−

∫
x2dx

(x2 + 1)2

= − 1

x2 + 1
+

∫
dx

x2 + 1
− 1

2

∫
xd(x2 + 1)

(x2 + 1)2

= − 1

x2 + 1
+ tan−1 x+

1

2

∫
xd

(
1

x2 + 1

)
= − 1

x2 + 1
+ tan−1 x+

1

2

(
x

x2 + 1

)
− 1

2

∫
dx

x2 + 1

=
x− 2

2(x2 + 1)
+

1

2
tan−1 x+ C
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Example

Find the partial fraction decomposition of the following functions.

1
5x− 3

x3 − x

2
9x− 2

2x3 + 3x2 − 2x
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Solution

1 For g(x) = x3 − x = x(x− 1)(x+ 1), g′(x) = 3x2 − 1. Therefore

5x− 3

x3 − x =
−3

g′(0)x
+

5(1)− 3

g′(1)(x− 1)
+

5(−1)− 3

g′(−1)(x+ 1)

=
3

x
+

1

x− 1
− 4

x+ 1

2 For g(x) = 2x3 + 3x2 − 2x = x(x+ 2)(2x− 1), g′(x) = 6x2 + 6x− 2.
Therefore

9x− 2

2x3 + 3x2 − 2x

=
−2

g′(0)x
+

9(−2)− 2

g′(−2)(x+ 2)
+

9( 1
2
)− 2

g′( 1
2
)(2x− 1)

=
1

x
− 2

x+ 2
+

2

2x− 1

�
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t-substitution

Techniques

To evaluate ∫
R(cosx, sinx, tanx)dx

where R is a rational function, we may use t-substitution

t = tan
x

2
.

Then

tanx =
2t

1− t2 ; cosx =
1− t2

1 + t2
; sinx =

2t

1 + t2
;

dx = d(2 tan−1 t) =
2dt

1 + t2
.

We have∫
R(cosx, sinx, tanx)dx =

∫
R

(
1− t2

1 + t2
,

2t

1 + t2
,

2t

1− t2

)
2dt

1 + t2

which is an integral of rational function.
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Example

Use t-substitution to evaluate the following integrals.

1

∫
dx

1 + cosx

2

∫
sinxdx

cosx+ sinx

3

∫
dx

1 + cosx+ sinx
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Solution

1. Let t = tan
x

2
, cosx =

1− t2

1 + t2
, dx =

2dt

1 + t2
. We have

∫
dx

1 + cosx
=

∫ (
1

1 + 1−t2
1+t2

)
2dt

1 + t2
=

∫
dt = t+ C = tan

x

2
+ C

=
sin x

2

cos x
2

+ C =
2 cos x

2
sin x

2

2 cos2 x
2

+ C =
sinx

1 + cosx
+ C

Alternatively ∫
dx

1 + cosx
=

∫
dx

2 cos2 x
2

=
1

2

∫
sec2

x

2
dx

= tan
x

2
+ C =

sinx

1 + cosx
+ C
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Solution

2. Let t = tan
x

2
, cosx =

1− t2

1 + t2
, sinx =

2t

1 + t2
, dx =

2dt

1 + t2
. We have

∫
sinxdx

cosx+ sinx
=

∫ 2t
1+t2

1−t2
1+t2

+ 2t
1+t2

2dt

1 + t2

=

∫ (
1

1 + t2
+

t

1 + t2
+

t− 1

1 + 2t− t2

)
dt

= tan−1 t+
1

2
ln |1 + t2| − 1

2
ln |1 + 2t− t2|+ C

= tan−1 t− 1

2
ln

∣∣∣∣1 + 2t− t2

1 + t2

∣∣∣∣+ C

= tan−1 t− 1

2
ln

∣∣∣∣1− t21 + t2
+

2t

1 + t2

∣∣∣∣+ C

=
x

2
− 1

2
ln | cosx+ sinx|+ C
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Solution

Alternatively ∫
sinxdx

cosx+ sinx
=

1

2

∫ (
1− cosx− sinx

cosx+ sinx

)
dx

=
x

2
− 1

2

∫
d(sinx+ cosx)

cosx+ sinx

=
x

2
− 1

2
ln | cosx+ sinx|+ C
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Solution

3. Let t = tan
x

2
, cosx =

1− t2

1 + t2
, sinx =

2t

1 + t2
, dx =

2dt

1 + t2
. We have

∫
dx

1 + cosx+ sinx
=

∫ 2dt
1+t2

1 + 1−t2
1+t2

+ 2t
1+t2

=

∫
dt

1 + t

= ln |1 + t|+ C

= ln
∣∣∣1 + tan

x

2

∣∣∣+ C

= ln

∣∣∣∣1 + sinx

1 + cosx

∣∣∣∣+ C

= ln

∣∣∣∣1 + cosx+ sinx

1 + cosx

∣∣∣∣+ C
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