
MAT4250 Game Theory

A “game” is being played whenever people interact with each other.
Games like chess, poker, majong are called parlor games. Real life games
include auctions, choosing a platform in election, war games, economics (part
of microeconomic). This type of games typically offer opportunities for con-
flicts, cooperations and bargaining, and to take into account of rational and
irrational behavior.

Game theory was first considered by economists for strategics and deci-
sion making, and by mathematicians for poker, chess type of games. The
classic book by Von Neumann and Morgenstern (1944), The theory of games

and economic behavior, established the foundation of the theory. They gave
detail study of the zero-sum games, and started the non-zero-sum game and
formulated the concept of cooperative and non-cooperative strategies. The
theory was completed by the mathematician John Nash who proved the ex-
istence of the now call Nash-equilibrium for the non-zero sum game (1951).
He received the Nobel prize in economics in 1994 for this important contri-
bution. Nash’s discovery and his unusual life were detailed in the best seller
A beautiful mind.
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Chapter 1

The setup of the games

§1.1 Game trees

Example 1.1 (Matching coin) A and B each conceal a $1 or $2 coin in
their hand, and open at the same time. If the coins are the same, then A
wins; otherwise B wins.

Figure 1.1: A game tree of “matching coin”.

Example 1.2 (Two finger morra) A and B each hold up one or two fingers
and call for “1” or “2” simultaneously of the opponents finger. If one player
is right and the other is wrong, the one is right wins an amount equal the
sum of the fingers; otherwise, it is a draw and no one wins.
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Figure 1.2: A game tree of “two finger morra”.

Example 1.3 (Tic-Tac-Tot)

Figure 1.3: A game tree of “Tic-Tac-Tot”.

For a game tree for N players P1, · · · , PN (as in Figure 1.4), we call the
starting node a root and a node u a vertex. If u is labelled Pi, we call u
belongs to Pi. A line segment (u, v) joining two vertices is called an edge, v is
called a child of u. A path from u1 to un, denoted by (u1, · · · , un), is a string
of edges joining u1 and un; un is called a descendant of u1. At the terminal
vertex w, we use p(w) = (x1, · · · , xN) to denote the payoff; xi = pi(w) is the
payoff for Pi.
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Figure 1.4: An example of game tree.

The above tree expression does not completely specified the game yet. If
we compare Examples 1.1, 1.2 and Example 1.3, we see that in the first two
examples, the players do not know what the opponent is at (imperfect infor-

mation), whereas in the third example he knows exactly what has happened
after each play (perfect information). To resolve this we need the following
definition.

Definition 1.1 Let Vi be the set of vertices belong to Pi. Let {V j
i }j be a

partition of Vi. If each V j
i satisfies

(i) any two vertices has the same number of children and
(ii) for u, v ∈ V j

i neither one is the descendant of the other.
We call each V j

i an information set. The game is said to have perfect infor-

mation if each V j
i is a singleton.

In the definition, (i) means that player Pi knows which information set
he is in, but he does not know which vertex he is at (unless the set contains
only one point); (ii) implies that a path will pass each information set only
once. In practice, the vertices in an information set is in the same level of
the player. The following figure indicates two possible information sets.
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Figure 1.5: Two cases of information sets

In Example 1.1, the information set for B consists of the two vertices
belong to B. In Example 1.3, the information sets for B are each individual
vertex.

Let us consider Example 1.1 more carefully:

Figure 1.6: Information set of Example 1.1

VA = {r}: there are two choices: 1 or 2.
VB = {u1, u2}: u1, u2 belong to the same information set (as B does not
know what A has chosen). We regard u1, u2 the same, hence there are only
two choices, namely 1 or 2.

We can write down the payoff as

Note that in the bi-matrix, the second coordinates are the negative of the
first coordinates (zero sum game), we can simply express it as
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[

1 −1
−2 2

]

.

Example 1.4 Consider the following game tree,

Figure 1.7

VA = {r, u4}: The information sets are {r} and {u4}. r has three choices
L, M , R; u4 has two choices L, R. Hence there are 6 choices for A: LL, LR,
ML, MR, RL, RR.

VB = {u1, u2, u3} The three vertices belong to the same information
set, there are two choices for the three ui: l or r.
Hence we can write the payoffs in a matrix form

l r
LL
LR
ML
MR
RL
RR

















(1,−1) (−1,−1)
(1,−1) (−1,−1)
(1, 0) (2, 2)
(1, 0) (2, 0)

(−1, 1) (1, 1)
(−1, 1) (1, 1)

















Note that there are choices that will give the same paths and hence the same
payoffs

(

e.g. check the choices (LL, l) and (LR, l), etc.
)

. We can simplify
the matrix as

l r
LL ≃ LR

ML
MR

RL ≃ RR









(1,−1) (−1,−1)
(1, 0) (2, 2)
(1, 0) (2, 0)

(−1, 1) (1, 1)









.
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Definition 1.2 Let {V j
i }j be the information set of Pi. By a strategy σi for

player Pi. We mean a function which assigns to each information set V j
i , one

of the child of a representative u in V j
i . Let Σi denote the set of strategies

of Pi. A game in extensive form is a game tree T together with the strategic
sets Σ1, · · · , ΣN .

The strategies σ1, · · · , σN for P1, · · · , PN determine one terminal vertex
w, we use π(σ1, · · · , σN) to denote the payoff p(w). The i-th component is
πi(σ1, · · · , σN). This sets up an N -dimensional array of the game. It is called
the normal form.

In the case N = 2 (2-person game), the normal form can be represented
as a bi-matrix (or a matrix) as in the previous examples. As in Example
1.4, ΣA = {LL,LR, · · · , RR}, ΣB = {l, r}; for σA = LL, σB = l, then
πA(LL, l) = 1, πB(LL, l) = −1.

In many cases, a game has “chances” moves. For example, in Example
1.1, we change that B flip a coin to determine to use $1 or $2, then the game
tree can be expressed as

Figure 1.8

In this case there are two information sets for B: the 1-st and 3-rd vertices,
and 2-nd and 4-th vertices.

Example 1.5 ( A simplified Poker game) Both P1, P2 put $1 into the pot,
then each is dealt with a card A or K. P1 can choose to bet (add $2) or drop
(give up and P2 wins); P2 can call (to match) or fold (give up, then P1 wins).
Then they will compare the cards for win, lose or draw.
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C

fc

db

P2

P1

(–1, 1)(–1, 1)(–1, 1)(–1, 1)

(K, K)
(K, A)(A, K)

(A, A)

Information set? 

Strategies?

(0, 0) (1, –1) (3, –3) (1, –1) (–3, 3) (1, –1) (0, 0) (1, –1)

Figure 1.9

If u is a vertex belongs to chance, let E(u) denote all the edges from u.
For v ∈ E(u), the probability for v ∈ E(u) (u fixed) satisfies

Pr(u, v) ≥ 0 and
∑

v∈E(u)

Pr(u, v) = 1.

Let σ1, · · · , σN be the strategies of P1, · · · , PN . It determines certain paths
R from r to the terminal vertices w:

Pr(σ1, · · · , σN ; w) =
∏

{Pr(u, v) : u belongs to chance, (u, v) ∈ R}.

The expected payoff of σ1, · · · , σN for Pi is

πi(σ1, · · · , σN) =
∑

w

pi(w)Pr(σ1, · · ·σN ; w)

where p(w) =
(

p1(w), · · · , pN(w)
)

is the payoff for each w.
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Example 1.6 .

Figure 1.10

For the game tree in Figure 1.10, if we consider the information set for B to
be singletons (perfect information), then there are 2 choices for A (L or R)
and there are two choices for each vertex for B. We can trace the paths by
the strategies to get, for example,

πA(L,LRLR) = 0.6 × 1 + 0.4 × (−2) = −0.2
πA(R,RLRL) = 0.5 × 1 + 0.5 × 1 = 1.

We can also consider B to have two information sets; the first two vertices
and the remaining two vertices. The reader can work out the strategies, the
expected payoff and the corresponding matrix.

To conclude this introductory section, we give a proposition which is
conceptually simple. Let T be a game tree of N -players. For a vertex u we
let Tu consist of u and the descendants of u, then Tu is again a game tree
called a subtree with root u. For a strategy σi, let σi/Tu be the restriction of
σi on Tu. (The reader should try to formulate the meaning of this.)

Proposition 1.1 Let T be a game tree with N players P1, · · · , PN . Let

σ1, · · · , σN be strategies for P1, · · · , PN .

(i) If the root r belongs to Pi and (r, u) is in the path determined by

σ1, · · · , σN . Then for any 1 ≤ j ≤ N ,

πj(σ1, · · · , σN) = πj(σ1/Tu, · · · , σN/Tu).
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(ii) If r belongs to chance, then for any 1 ≤ j ≤ N ,

πj(σ1, · · · , σN) =
∑

u∈E(r)

πj(σ1/Tu, · · · , σN/Tu) Pr(r, u).
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§1.2 Equilibrium of strategies

Definition 2.1 A choice of strategies (σ∗

1, · · · , σ∗

N) for P1, · · · , PN is called
an equilibrium N -tuple if for any σi ∈ Σi,

πi(σ
∗

1, · · · , σi, · · · , σ∗

N) ≤ πi(σ
∗

1, · · · , σ∗

i , · · · , σ∗

N).

It means that any single player who is departing from the strategies
σ∗

1, · · · , σ∗

N will hurt himself. Hence they have good reason to stay with
the strategies in the equilibrium N -tuple.

Example 2.1 (Prisoners’ dilemma) Two criminals A,B commit a crime and
are arrested. The penalty is to be prisoned as indicated in the following table:

H
H

H
H

H
H

A
B

confess deny

confess (−5,−5) (−1,−10)

deny (−10,−1) (−2,−2)

They do not know what the other will do, hence both A and B have strategies
c, d. By direct observation the equilibrium strategy is (c, c) with payoff
(−5,−5), i.e., both confess and get five years in prison. Of course if they can
cooperate, it is better to deny. We will discuss later on the cooperative/non-
cooperative, non-zero sum games.

A

c d

B B

c dc d

(–5, –5) (–1, –10) (–10, –1) (–2, –2)

Figure 2.1: game tree of the “Prisoners’ dilemma”

A game may have more than one equilibrium strategies. For example in
Figure 2.2. A has strategies L and R; B has strategies l and r. Then the
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two equilibrium strategies are (L, l) and (R, r) which correspond to payoff
(−9, 5) and (10, 4) respectively.

B

A

(–9, 5)

(–10, –20) (10, 4)

Figure 2.2

We have another simple example from the bi-matrix representation where
(L, l) and (R, r) are equilibrium strategies

H
H

H
H

H
H

A
B

l r

L (2, 1) (0, 0)

R (0, 0) (1, 2)

Figure 2.3

In general the existence of an equilibrium N -tuple is not guaranteed. For
example, consider the game with bimatrix representation in Figure 2.4, it is
direct to check that it has no equilibrium pair.

H
H

H
H

H
H

A
B

l r

L (1, 0) (0, 1)

R (0, 1) (1, 0)

Figure 2.4

One of the main contribution of Nash is that he proved even though there
is no “pure” equilibrium strategy, any non-cooperative game has a “mixed”
equilibrium strategy (Chapter 4). Nevertheless, for the special case of perfect

information, we can prove the existence of such an equilibrium strategies.
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Theorem 2.2 For a N -person game with perfect information, there exists

an equilibrium N -tuple of strategies.

We will first consider a decomposition of a game tree T of perfect infor-
mation (information sets are singletons). Let Tu be the subtree with vertex
u and let T/u be the quotient tree consisted of the remaining vertices, plus
u as terminal vertices.

decompose uB BB

A
r

T/u

uB

Tu

uB BB

A
r

T

Figure 2.5

Let σ = (σ1, · · · , σN) be an N -tuple of strategies for P1, · · · , PN . Let

σ′ = σ/Tu and σ′′ = σ/(T/u)

be the restrictions of σ on Tu and T/u respectively. Since T is of perfect
information, the decomposition

σ → (σ′, σ′′)

is a bijection. Let p(w) be the payoff of T at a terminal vertex w. In terms
of σ we write it as π(σ). It induces a payoff on Tu denoted by π′(σ′). For
the payoff π′′(σ′′) for T/u, we define the payoff at u by π′(σ′) (if the path
determined by σ passed through u). Then it is clear that at u

p(u) = π′′(σ′′) = π′(σ′) = π(σ). (2.1)

Lemma 2.3 Let σ′ be an equilibrium N -tuple for Tu and let σ′′ be an equilib-

rium N -tuple for T/u. Then the corresponding σ is an equilibrium N -tuple

of T .
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Proof: Consider σ′′ in T/u and the terminal vertex is w. If w 6= u, we take σ
in T to be σ′′. Then it is directed to check that for another strategy σ̂i ∈ Σi,
by (2.1) and that σ′′ is an equilibrium tuple:

πi(σ1, · · · , σ̂i, · · · , σN) = π′′

i (σ
′′

1 , · · · , σ̂i
′′, · · · , σ′′

N)

≤ π′′

i (σ
′′

1 , · · · , σ′′

i , · · · , σ′′

N)

= πi(σ1, · · · , σi, · · · , σN).

Hence σ is an equilibrium N -tuple. If w = u, then put σ′ and σ′′ together to
form σ, a similar argument implies σ is an equilibrium N -tuple.

Proof of the theorem: We use induction on the length of the game, i.e.
the maximum length of the paths.

If T has length 1, there is only one move for one player. The theorem
is obviously true. As induction hypothesis, suppose the statement is true
for T with length less than or equal to m. For T has length m + 1, we
decompose it into several subtrees of length less than or equal to m. We
apply the induction hypothesis to obtain the equilibrium N -tuples for the
subtrees and the quotient tree, and use Lemma 2.3 to put them together to
form the equilibruim N -tuple on T .
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This is a simple algorithm called Zermelo algorithm to determine an equi-
librium strategy for the game tree of perfect information: starting from the
bottom, the players try to make move in the largest payoff to himself.

Consider the following example in Figure 2.6. Let us start from the
subtrees for B and pick up the best strategy for B in each case. The next
step is to consider the quotient tree. A picks up the left move. the equilibrium
pair strategies is (L, rm) with payoff (6, 10).

A

RL

B

rl mlr

A

(6, 10) (1, 5)

(–1, 3) (6, 10) (2, 4) (1, 5) (10, 3)

Figure 2.6

You should check this strategy is equilibrium directly from the definition.
Also you should compare this concrete example with the proof of the theorem,
it has the same idea.
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Exercises

1. Concerning the game pictured in the following, answer the following
question.

Figure 1

(a) What is the amount player P3 is guaranteed to win, assuming that
all players play rationally.

(b) What choice would you advice P1 to make on his first move?

(c) If the rules of the game allow P1 to offer a bribe to another player,
how much should he offer to whom for doing what?

2. There are two players, and, at the start, three piles on the table in front
of them, each containing two matches. In turns, the players take any
(positive) number of matches from one of the piles. The player taking
the last match loses. Sketch a game tree. Show that the first player
has a sure win.

3. Consider the game of perfect information shown in Figure 2. What
strategies would you advise A and B adopt?
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Figure 2

4. The game of Sevens is played between two players (called A and B) as
follows. Each player rolls a fair die in such a way that the other cannot
see which number came up. Player A must then bet $1 that either: (i)
The total on the two dice is less than seven, or (ii) the total is greater
then seven . Then, B can either (i) accept the bet, or (ii) reject it.
If the bet is rejected, the payoff to each is zero. Otherwise, both dice
are revealed. It the total is exactly seven, then both payoffs are zero.
Otherwise, one of the players wins the other’s dollar. Describe a tree
for Sevens, including information sets.

5. Write down the normal form for the game shown in Figure 3. Find the
equilibrium pairs (if any).

Figure 3
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Appendix.

The game Hex is a board game play by two person (see Figure 3.1). To
start the game each player has his own territory (black or white) on the
opposite side of the board. The players take term to put in black and white
pieces on the board. The first person connects his territory by the pieces of
his color will win the game.

White

Black White

Black

→

White Black

Black White

Figure 3.1

The game was invented by a Danish mathematician P. Hein in 1942 and
it became popular under the name of Hex. Nash (1948) proved that the game
cannot end in a draw and also the first player can always win theoretically,
though he may not know such strategy (the proof of existence of the winning
strategy is not constructive). We explain the idea of his proof in the following

Theorem 3.1 The game cannot end in a draw.

Proof: Assume the black and white are arranged as indicated and renamed
for convenience.

Land

Land

Sea

Sea

MMeesshhllaanndd

Figure 3.2
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The game is to stop if a dam is built to connect the lands or a channel
is built to connect the seas. Hence we only need to consider the case all
hexagons are filled (the only possible case for draw).

Assume someone starts to walk from the point of enter, walk with land
on his left side and sea on his right side.

Exit

Exit

Land

LandSea

SeaEnter

Figure 3.3

We claim that

(i) There is a uniquely determined path: Assume that walker walks in
between the two hexagons at the bottom, he has a unique choice to
go left or right according to the color of the top hexagon, and this
situation will continue in his next step.

Vertex v Vertex v

Figure 3.4

(ii) The path cannot be repeated (i.e. he will not walk in circle): Let
(v1, v2, v3, · · · ) be the vertices of the path and let k be the first vertex
that the path return at time n, i.e., vk = vn. We see that it is impossible
by inspecting the following diagram.
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verte

Case 1

v = v
k n

v
n - 1

ex v
n−1

Case 2

v
n - 1

v = v
k n

Figure 3.5
Figure 3.5

Since there is only finitely many vertices and the path cannot be repeated,
the walk cannot continue indefinitely, he must exit somewhere. By the rule
“land on the left and sea on the right”, the walker has only two places to
exit, the top and the bottom. If he exits in the bottom, the land is connected
(see Figure 3.3). Similarly if he exists at the top, then the sea is connected.
In other word, the game cannot end with a draw.

Theorem 3.2 The first person can always win.

Proof: Since this is a game of perfect information, there is equilibrium
strategy (may be more than one) which results with white wins or black
wins.

Assume that white move first. If black has a winning strategy and the
moves are v1v2v3 · · · vn as follows:

v1 v2 v3 v4 · · · vn.

Since white moves first, he can use black’s strategy to be his own

v2 v3 v4 · · · vn.

This implies that white always has a winning strategy.

The strategy stealing method is not constructive, as in the proof neither
side has a “concrete” strategy. You can find this game on
www.mazeworks.com/hex7/.

Question 1. What is the winning strategy for the Hex game if the size of the
board are 1 × 1, 2 × 2, 3 × 3 respectively?

Question 2. Which game can you apply the argument in Theorem 3.2?
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Chapter 2

Two person zero-sum games

A game is called zero-sum if the payoffs of the strategies satisfy

N∑
i=1

πi(σ1, · · · , σn) = 0 ∀ σi ∈ Σi, 1 ≤ i ≤ N.

This means that for each terminal vertex w, the sum of the components of
p(w) is 0, i.e., one player’s gain is another player’s lost. Many recreational
or parlor games are zero-sum. Economics and international competitions are
often not of this type; players can do better by playing appropriately and
jointly, or all do worse if someone play stupidly.

For a two person game, the normal form can be represented as a payoff
bi-matrix. Since it is zero-sum, only one matrix, M = [mij], needs to be
used. The two players are referred to row player and column player. The
entries mij are the payoff for the row player when he chooses strategy i and
the opponent uses strategy j; the column player’s payoff is −mij. Hence for
the row player, larger number is favored, and for the column player, smaller
number is favored.
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2.1 Saddle point

Definition 1.1 Let M = [mij] be an m × n real matrix, an entry mpq is
called a saddle point of M if

miq ≤ mpq ∀ 1 ≤ i ≤ m,

and
mpj ≥ mpq ∀ 1 ≤ j ≤ n.

In other word, mpq is the maximum in the q-th column, and is the minimum
in the p-th row.

Example 1.1 Consider the following matrices

[ −2 3
−1 1

]
,




2 1 1
−1 0 −1
3 1 1


 ,



−1 0 1
1 2 3
2 −1 1


 .

In the first matrix, m21 = −1 is the saddle point; in the second matrix, the
four entries of 1 are saddle points. In the third matrix, there is no saddle
point.

In connection with the equilibrium pair defined in the last section, we
have

Proposition 1.2 In a zero-sum game, mpq is a saddle point if and only if
(p, q) is an equilibrium pair.

Proof: Let (σ∗1, σ
∗
2) be the equilibrium pair corresponding to the coordinate

(p, q) in M , then
π(σ∗1, σ

∗
2) = (mpq,−mpq).

For any strategy σ1 for the row player, π1(σ1, σ
∗
2) corresponds to a row entry

miq. Hence
π1(σ1, σ

∗
2) ≤ π1(σ

∗
1, σ

∗
2)

is equivalent to mpq is the maximum in the q-th column.
Similarly for a strategy σ2 for the column player, π2(σ

∗
1, σ2) corresponding

to a column entry mpj,

π2(σ
∗
1, σ2) ≤ π2(σ

∗
1, σ

∗
2)
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is equivalent to (using zero-sum)

π1(σ
∗
1, σ2) ≥ π1(σ

∗
1, σ

∗
2),

which means mpq is the minimum in the p-th row. The proposition follows
from this observation.

Proposition 1.3 If mkl and mpq are saddle points of the matrix M . Then
mkq,mpl are also saddle points and these four values are equal.

Proof: By using the maximum and minimum properties of mkl and mpq, it
is easy to check the following inequalities.

mkl ≤ mkq

≤ ≥

mpk ≥ mpq

This implies the proposition.

Definition 1.4 Let M be as above. The value to the row player and the
value to the column player are defined by

ur(M) = max
i

(
min

j
mij

)
, uc(M) = min

j

(
max

i
mij

)
.

If they are equal, we call it the value of the game.

Intuitively if both players play “conservatively”, the row player cannot
do worst than ur(M) (i.e., he is guaranteed for a return from ur(M)), and
will not do better than uc(M).

For the matrices

M1 =

[−2 3
−1 1

]
, M2 =

[−2 −3
0 3

]
, M3 =




2 −3
0 2
−5 10


 .

It is direct to check that ur(M1) = uc(M1) = −1; ur(M2) = 0, uc(M2) = 2
and ur(M3) = 0, uc(M3) = 2.
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The basic relations of the two values are:

Theorem 1.5 Let ur(M) and uc(M) be defined as above, then

(i) ur(M) ≤ uc(M);

(ii) ur(M) = uc(M) if and only if M has a saddle point.

Proof: (i) Note that mij ≤ max
i

mij, hence taking minimum on j, we have

min
j

mij ≤ min
j

(max
i

mij) = uc(M) ∀ 1 ≤ i ≤ m.

Now taking maximum on the left side on i, the inequality ur(M) ≤ uc(M)
follows.

(ii) Sufficiency: Let mpq be a saddle point. Since mpq is the minimum on the
p-th row, mpq = minj mpj. This implies that

mpq ≤ max
i

(min
j

mij) ≤ ur(M).

Similarly, since mpq is the maximum of the q-th column, mpq = maxi miq.
This implies

mpq ≥ min
j

(max
i

mij) ≥ uc(M).

Hence ur(M) ≥ uc(M) and by (i), they are equal.

Necessity: Since ur(M) is maximum over 1 ≤ i ≤ m, we can choose p
such that ur(M) attains the maximum, i.e.,

ur(M) = min
j

mpj.

Then choose l such that

mpl = min
j

mpj = ur(M) = uc(M). (1.1)

By the definition of uc(M), there exists q such that

max
i

miq = uc(M) = mpl. (1.2)
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Thus
mpl ≥ mpq. (1.3)

By (1.1), mpl is the minimum of the row, (1.3) is actually an equality. i.e.,
mpq is the minimum of the p-th row. Hence (1.2) implies that mpq is also the
maximum of the q-th column so that mpq is a saddle point.

By using this theorem, it is easy to determine a saddle point of a matrix.
Consider the matrices in Example 1.1:

row min.


2 1 1
−1 0 −1
3 1 1




1
−1
1

col. max. 3 1 1

row min.

−1 0 1
1 2 3
2 −1 1




−1
1
−1

col. max. 2 2 3

For the first matrix, ur(M) = uc(M) = 1, and there are four saddle points.
In the second matrix, 1 = ur(M) < uc(M) = 2, hence there is no saddle
point.
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2.2 Mixed strategies

Consider M =

[
2 −1
−1 1

]
, there is no saddle point, and it is unwise to use

a “pure” strategy. It is conceivable that each player should choose at each
play of the game a strategy at random.

Definition 2.1 Let M be an m×n matrix game. A mixed strategy of the row
player is an m-tuple p = [p1, · · · , pm] of probability pi ≥ 0 and

∑m
i=1 pi = 1.

A mixed strategy q for the column player can be defined similarly.
For the expected payoffs, we let

E(p,q) = pMqt =
∑
i,j

piqjmij .

For a pure strategy j, we can regard it as q = [0, · · · , 0, 1, 0, · · · , 0] where
the 1 is at the j-th coordinate, hence the expected payoff is

E(p, j) =
m∑

i=1

pimij ;

The meaning for

E(i,q) =
n∑

j=1

qimij

can be defined by the same way.

Note that E(p, j) is the j-th coordinate of pM ; E(i,q) is the i-th coor-
dinate of Mqt.

Example 2.1 Let M =

[
2 −1
−1 1

]
. Consider p = [1

2
, 1

2
], q = [2

3
, 1

3
]. Then

E(p,q) =
[

1
2
, 1

2

] [
2 −1
−1 1

] [
2
3
1
3

]
= 1

3
.

Now suppose the column player use [2
3
, 1

3
], how should the row player play to

maximize the payoff?

27



We let p = [p, 1− p], then

E(p,q) =
[

p, 1− p
] [

2 −1
−1 1

] [
2
3
1
3

]
=

4p

3
− 1

3
.

The maximum is 1 at p = 1, i.e., he should play the first strategy.
We can also solve the problem more directly. Note that

Mqt =

[
2 −1
−1 1

] [
2
3
1
3

]
=

[
1
−1

3

]
.

i.e., E(1,q) = 1, E(2,q) = −1
3
. The row player should play the first strategy

to get the maximum payoff.

Definition 2.2 We define the row value and the column value as

vr(M) = max
p

min
q

E(p,q),

vc(M) = min
q

max
p

E(p,q).

By using the same explanation as for the pure strategy, the row player will
not do worst than vr(M) and will not do better then vc(M) if both players
play rationally. By elementary analysis of continuous functions applied to

ϕ(p) = min
q

E(p,q) and ψ(q) = max
p

E(p,q), there exists p̂ and q̂ such that

ur(M) = ϕ(p̂)

uc(M) = ψ(q̂).

Definition 2.3 We call p̂, q̂ optimal mixed strategies for the two players
respectively if

vr(M) = min
q

E(p̂,q),

vc(M) = max
p

E(p, q̂).

We compare the payoffs for the pure and mixed strategies:
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Proposition 2.4 With the above notations,

(i) ur(M) ≤ vr(M) ≤ E(p̂, q̂) ≤ vc(M) ≤ uc(M);

(ii) if M has a saddle point mpq, then the optimal mixed strategies are the
pure strategy: p̂ = [0, · · · , 0, 1, 0, · · · , 0], q̂ = [0, · · · , 0, 1, 0, · · · , 0] and
ur(M) = uc(M) = vr(M) = vc(M).

The fundamental theorem for the two person zero-sum game is the follow-
ing Minimax Theorem. The proof is due to Von Neumann and Morgenstern.
(see the reference by G. Owen).

Theorem 2.5 (Minimax Theorem) There exists optimal pair (p̂, q̂) of mixed
strategies such that

vr(M) = vc(M) = E(p̂, q̂).

The optimal mixed strategy may not be unique, indeed it is analogous to
the situation for the saddle points (Proposition 1.3):

Proposition 2.6 If (s, t) is another pair of optimal mixed strategy. Then

E(p̂, q̂) = E(s, q̂) = E(p̂, t) = E(s, t).

Proof: By repeatedly using the minimum and maximum properties of (s, t)
and (p̂, q̂), we have

E(p̂, q̂) ≥ E(s, q̂) ≥ E(s, t) ≥ E(p̂, t) ≥ E(p̂, q̂).

To prove Theorem 2.5, we need some preparations on the convex sets. A
subset C ⊆ Rm is called a convex set if,

λx + (1− λ)y ∈ C, ∀ x,y ∈ C and 0 ≤ λ ≤ 1.

The above expression is called a convex combination of x and y. More gen-
erally, for x1, · · · , xn ∈ Rm, the convex combination of x1, · · · , xn is

n∑
i=1

λixi where λi ≥ 0,
n∑

i=1

λi = 1.
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The set C of all convex combinations of x1, · · · , xn is a convex set and is called
the convex hull of x1, · · · , xn. (The reader may notice that (λ1, · · · , λn) is in
fact a probability vector.)

A well known theorem in convex analysis is:

If C is a closed convex set and x /∈ C. Then there exists a hyperplane
separating C and x on the two sides of the hyperplane.

Figure 2.1

More precisely, the assertion says that we can find a linear function f :
Rm −→ R and β such that

f(x) < β < f(y) ∀ y ∈ C.

(Note that the hyperplane in the above statement is {z : f(z) = β}). Recall
that a linear functional f can be represented as α = [α1, · · · , αm] and

f(x) = α · x =
m∑

i=1

αixi .

This implies

Lemma 2.7 Let C be a closed convex set in Rm and x /∈ C. Then there
exists [α1, · · · , αm] and γ such that (i)

∑m
i=1 αixi = γ; (ii)

∑m
i=1 αiyi > γ

for all y ∈ C.

Another elementary but longer proof can be found in Owen’s book.
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Let

M =




a11 . . . a1n
...

. . .
...

am1 · · · amn


 ,

consider the column vectors

a1 =




a11
...

am1


 , · · · , an =




a1n
...

amn


 , an+1 =




1
0
...


 , an+m =




...
0
1


 .

Lemma 2.8 Let C be the convex hull of {a1, · · · , an+m} ∈ Rm. Then either

(i) 0 ∈ C; or

(ii) there exists p = [p1, · · · , pm], pi ≥ 0,
∑m

i=1 pi = 1 such that pM > 0,
i.e.,

m∑
i=1

piaij > 0, ∀ j = 1, · · · ,m.

Proof: If (i) is not true, then 0 /∈ C. By the above lemma, there exists
[α1, · · · , αm] and γ such that

m∑
i=1

αi · 0 = γ (= 0)

and

α · y =
m∑

i=1

αiyi > 0 ∀ y =




y1
...

ym


 ∈ C.

In particular if y = aj, 1 ≤ j ≤ n, then

m∑
i=1

αiaij > 0,
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and if y = an+i (= ei), then αi > 0. Now let pi = αi/
m∑

i=1

αi. Then pi >

0,
∑m

i=1 pi = 1 and

m∑
i=1

piaij > 0, j = 1, · · · ,m.

Proof of the Theorem: From Lemma 2.8, either (i) or (ii) holds. We will
show that if (i) holds, then vc(M) ≤ 0; if (ii) holds, then vr(M) > 0.

If this is proved, then we can conclude either vc(M) ≤ 0 or vr(M) > 0.
In other word, we have the statement:

It is impossible that vr(M) ≤ 0 < vc(M). (2.1)

Now if we replace M by M ′ = [a′ij] with a′ij = aij + k. Then

vc(M
′) = vc(M) + k, and vr(M

′) = vr(M) + k.

By (2.1), it is impossible that

vr(M
′) ≤ 0 < vc(M

′),

i.e. it is impossible that

vr(M) ≤ −k < vc(M).

Since k is arbitrary, we cannot have vr(M) < vc(M). Hence vc(M) ≤ vr(M)
and by Proposition 2.4(i), equality follows.

It remain to prove the cases for (i) and (ii): If (i) holds, then there exists
s1, · · · , sm+n ≥ 0,

∑m+n
j=1 sj = 1 such that

n∑
j=1

sjaj +
m∑

j=1

sn+jej = 0 ,

i.e., 


a11 . . . a1n
...

. . .
...

am1 · · · amn







s1
...
sn


 = −




sn+1
...

sn+m


 . (2.2)
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It is easy to see that sj > 0 for some 1 ≤ j ≤ n. Let s =
∑n

j=1 sj > 0,
qi = si/s and q = [q1, · · · , qn]. Then

∑n
i=1 qi = 1, qi ≥ 0, and (2.1) reduces

to

Mqt = −




sn+1/s
...

sn+m/s


 ≤ 0.

This implies that E(p,q) = pMqt ≤ 0. Hence

vc(M) = min
q

(
max

p
E(p,q)

) ≤ 0.

Next if (ii) holds, then by Lemma 2.7, pM > 0. Hence E(p,q) =
pMqt > 0 for all qi > 0,

∑n
i=1 qi = 1, so that

vr(M) = max
p

(
min

q
E(p,q)

)
> 0.

33



2.3 Some simple calculations

We can simplify the expression of vc(M) and vr(M) by the following:

Proposition 3.1 Let M be an m× n matrix, then

vr(M) = max
p

min
j

E(p, j);

vc(M) = min
q

max
i

E(i,q).

Proof: It is clear that

vr(M) = max
p

(
min

q
E(p,q)

) ≤ max
p

(
min

j
E(p, j)

)
.

On the other hand, let l be such that

E(p, l) = min
j

E(p, j).

Then if q is a mixed strategy for the column player,

E(p,q) =
n∑

j=1

qjE(p, j) ≥ E(p, l).

It follows that
min

q
E(p,q) ≥ E(p, l) = min

j
E(p, j).

Now taking maxp on both side, the first identity for vr(M) follows. The case
for vc(M) can be proved by the same way.

Example 3.1 Let M =

[
2 −3
−1 1

]
, find the optimal mixed strategies for

the row player and the column player.

Let p = [p, 1− p], then

pM =
[

p, 1− p
] [

2 −3
−1 1

]
=

[
3p− 1, −4p + 1

]
.
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Hence

vr(M) = max
p

min
j

E(p, j) = max
p

min{3p− 1,−4p + 1}

Figure 3.1

From the graph, we see that the solution is at the intersection (2
7
,−1

7
). Hence

the optimal strategy for the row player is p = [2
7
, 5

7
], and vr(M) = −1

7
.

For the column player, we let q = [q, 1− q] and consider

[
2 −3
−1 1

] [
q

1− q

]
=

[
5q − 3
−2q + 1

]
.

Then
vc(M) = min

q
max

i
E(i,q) = min

q
max{5q − 3,−2q + 1},

By the same argument, the solution q = [4
7
, 3

7
] and vc(M) = −1

7
.

In a matrix M , we say that row i dominates row k if

mij ≥ mkj ∀ 1 ≤ j ≤ n,

and column j dominates column l if

mij ≤ mil ∀ 1 ≤ i ≤ m.

It is clear that row k will not be used by the row player, and column l will
not be used by the column player.
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Example 3.2 Let

M =




1 −1 −2
2 −1 0
−1 1 1


 .

Observe that the first row is dominated by the second row, we can omit the
first row and the matrix is reduced to

[
2 −1 0
−1 1 1

]
.

Now the third column can be ignored because it is dominated by the second
column. Consequently, we need only consider the matrix

[
2 −1
−1 1

]
.

The matrix has no saddle point. We consider the mixed strategies p,q. For
the row player

[p, 1− p]

[
2 −1
−1 1

]
= [3p− 1, −2p + 1] .

By equating the two coordinates p = 2
5
. For the column player, we consider

[
2 −1
−1 1

] [
q

1− q

]
=

[
3q − 1
−2q + 1

]
,

so that q = 2
5
. Putting these back to the matrix M , we see that the mixed

strategies are p = [0, 2
5
, 3

5
], q = [2

5
, 3

5
, 0] and the value of the game is 1

5
.

We can use a similar concept of dominance for the mixed strategies. Let
p be a mixed strategy for the row player, row i is called active if pi > 0, oth-
erwise it is called inactive. Similarly we can define this for the column player.

It is easy to see that a row (column) being dominated is inactive in an
optimal strategy for the row (column) player. The following proposition is
useful in determining the optimal p and q.

Proposition 3.2 Let (p,q) be a pair of mixed strategies. Then p,q are
optimal if only if the following holds
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(i) row k is inactive in p whenever

E(k,q) < max
i

E(i,q);

(ii) column l is inactive in q whenever

E(p, l) > min
j

E(p, j).

Proof: Necessity: Let p,q be optimal. Suppose pk > 0 and

E(k,q) < max
i

E(i,q) = vc(M),

then

E(p,q) =
m∑

i=1

piE(i,q) <

m∑
i=1

pivc(M) = vc(M).

This contradicts that p is optimal mixed strategy. (ii) can be proved similarly.

Sufficiency: By assumption (i), pi 6= 0 only on those i such that E(i,q)
attains the maximum. This together with Proposition 3.1 imply that

E(p,q) =
m∑

i=1

piE(i,q) = max
i

E(i,q) ≥ vc(M).

Similarly, we have

E(p,q) =
n∑

j=1

E(p, j)qj = min
j

E(p, j) ≤ vr(M).

Note that vc(M) = vr(M), it must equal to E(p,q) also.

It follows from (i) that Mqt =




u1
...

un


, if the uk is less than the maxi-

mum, then pk = 0, and a similar explanation holds for (ii). This can be used
to justify whether a probability vector is optimal.

37



Example 3.3 Let M =




2 −1 −1
−2 0 3

1 2 1


, let p = [0, 0, 1], q = [2

3
, 0, 2

3
].

Then 


2 −1 −1
−2 0 3
1 2 1







2
3

0
2
3


 =




1
−1

3

1


,

[
0, 0, 1

]



2 −1 −1
−2 0 3
1 2 1


 =

[
1, 2, 1

]
.

Note that p2 = 0, q2 = 0. Hence the strategies (p,q) are optimal.

The theorem can also be used to reduce the matrix to simplify calcula-
tions.

Example 3.4 Let

M =

[
4 −4 1
−4 4 −2

]
.

Consider row player first:

[p, 1− p]

[
4 −4 1
−4 4 2

]
= [8p− 4, −8p + 4, 3p− 2] .

Figure 3.2

Take the minimum of the three lines, then take the maximum value, it is the
point at ( 6

11
,− 4

11
). It follows that the optimal row strategy is [ 6

11
, 5

11
] with

v(M) = −4
11

.
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Now observe that

[
6
11

, 5
11

] [
4 −4 1
−4 4 −2

]
=

[
4
11

, − 4
11

, − 4
11

]

By Proposition 3.2 (ii), the first column is inactive. Hence we need only
consider

[ −4 1
4 −2

] [
q

1− q

]
=

[ −5q + 1
6q − 2

]
.

The solution is q = 3
11

. The column strategy is [0, 3
11

, 8
11

].

Example 3.5 Let

M =




1 −1
−1 1
0 1

2
1
2

0


 .

We start with column strategy first to obtain q = [1
2
, 1

2
] and vc(M) = 1

4
,

then apply the same method as the above to reduce to a 2× 2 matrix. The
solution is p = [0, 0, 1

2
, 1

2
]. The detail is left for the reader.

A game is symmetric if the two players are indistinguishable. In this case,
the representing matrix is a square matrix M = [mij] and is skew symmetric,
M = −M t, i.e.,

mij = −mji, 1 ≤ i, j ≤ n.

In particular the diagonal must be zero. For example

M =




0 1 −2
−1 0 3
2 −3 0




is a skew symmetric matrix.

Theorem 3.3 The value of a symmetric game is zero. Moreover, if p̂ is an
optimal strategy for the row player, then it is also optimal for the column
player.

39



Proof: For any strategy p, consider E(p,p) = pMpt. then

pMpt = −pM tpt = −(pMpt)t = −pMpt.

Hence E(p,p) = pMpt = 0. It follow that for any p,

min
q

E(p,q) ≤ 0

so that vr(M) = max
p

min
q

E(p,q) ≤ 0. Similarly we can show that vc(M) ≥
0. Recall the Minimax Theorem, vr(M) = vc(M), hence the value of the
game is 0.

For the second assertion, if (p̂, q̂) is optimal for M , then by symmetry
(q̂, p̂) is also optimal for M . By Proposition 2.6, (p̂, p̂) is also optimal for
M .

Example 3.6 Consider a zero-sum game with matrix

M =




0 1 −2
−1 0 3
2 −3 0


 .

Let q = [x, y, z] be an optimal mixed strategy, then

Mqt =




0 1 −2
−1 0 3
2 −3 0







x
y
z


 =




y − 2z
−x + 3y
2x− 3z


 :=




v1

v2

v3


 .

By Theorem 3.3, the game value is 0, hence vi ≤ 0 for all i and some of the
vi = 0. Those with vi < 0 are inactive (Proposition 3.2). We pick two of the
equations, together with x + y + z = 1 to set up





y − 2z = 0
−x + 3y = 0

x + y + z = 1
.

The solution is q = [1
2
, 1

3
, 1

6
].
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Example 3.7 Consider the zero-sum game with skew symmetric matrix

M =




0 −1 0 −1
1 0 −1 2
0 1 0 −2
1 −2 1 0


 .

Let q = [w, x, y, z] be an optimal solution, then

Mqt =




−x− z
w − y + 2z

x− 2z
w − 2x + y


 :=




v1

v2

v3

v4


 .

By the same reason as the previous example, we see that v1 < 0 and the first
row is inactive. We pick the other three values v2, v3, v4 = 0 (the active ones)
to set up 




w − y + 2z = 0
x− 2z = 0

w − 2x + y = 0
w + x + y + z = 1

.

The solution is q = [0, 2
5
, 2

5
, 1

5
].
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Exercises
1. For the following matrix, compute ur(M) and uc(M):

M =




0 1 1 2
1 −1 3 1
2 0 0 2
3 2 1 −1


 .

2. Let

M =




1 −1 1
−1 0 1
2 −1 0


 .

(a) Compute E
(
[1
5
, 2

5
, 2

5
], [1

3
, 1

3
, 1

3
]
)
.

(b) On the assumption that the row player continues to play [1
5
, 2

5
, 2

5
],

what is the best way for the column player to play?

3. Let

M =




3 2 −1 0
1 1 −1 −1
0 −1 1 2


 .

Eliminate dominated rows and columns so as to reduce M to the small-
est size possible.

4. Prove that if p and q are mixed strategies for the row player and column
player respectively, such that

min
j

E(p, j) = max
i

E(i,q),

then p and q are optimal.

5. Given the game matrix



2 −3 4 −5
−1 2 −3 4
0 1 −2 3
1 2 −3 4
−3 4 −5 6




,

verify that p = [1
2
, 0, 1

6
, 0, 1

3
] and q = [0, 1

4
, 1

2
, 1

4
] are optimal strategies.
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6. Suppose that both r and u are optimal strategies for the row player for
the matrix game M . Prove that if 0 ≤ t ≤ 1 then tr + (1− t)u is also
an optimal strategy for the row player.

7. Solve [ −1 1 −2 0
1 −1 2 −1

]
.

8. Solve 


−1 3
4 −1
−3 5
3 1


 .

9. Solve the game scissors-paper-stone.

10. Find at least two optimal mixed strategies for two-finger morra.
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Chapter 3

Linear programming and
solving matrix game

Let M be a game matrix, consider the game value

v = max
p

min
q

E(p,q) = max
p

min
j

E(p, j).

We need to find a probability vector p so that

v = min
j

E(p, j) = min
j

m∑
i=1

pimij

is maximum, i.e. v is largest so that

(i) pi ≥ 0 for 1 ≤ i ≤ m,

(ii)
∑m

i=1 pi = 1,

(iii) v ≤ ∑m
i=1 pimij, j = 1, · · · , n.

By adding c to each entry (i.e. mij +c) and to v, there is nothing changed
on p. Hence we can assume that all the entries are positive, so that v > 0.
Let yi = pi/v ≥ 0 for 1 ≤ i ≤ m, then

∑n
i=1 yi = 1/v. The problem becomes
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(ii)′ minimize y1 + · · ·+ ym,

subject to

(iii)′ 1 ≤
m∑

i=1

yimij, j = 1, · · · , n.

If we consider the column player, the corresponding problem for finding
q becomes

maximize x1 + · · ·+ xn

subject to
n∑

j=1

mijxj ≤ 1, 1 ≤ i ≤ m

(all the entries are assumed non-negative).
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3.1 Linear Programming

A linear programming (LP) is a problem of maximizing a linear function
subject to linear constraints:

maximize f(x) =
∑n

j=1 cixi + d

subject to
∑n

j=1 aijxj ≤ bi, i = 1, · · · ,m,

(we assume xi ≥ 0 without saying it). The function f(x) is called the
objective function and the inequalities are called the constraints. In matrix
form it is

maximize f(x) = c · x + d subject to Ax ≤ b.

(Here we consider x and b are column vectors.) We call the above LP problem
the primal problem. The dual problem is

minimize g(y) =
∑m

i=1 biyi + d

subject to
∑m

i=1 aijyi ≥ cj j = 1, · · · , n.

In matrix form, it is

minimize g(y) = b · y + d subject to yA ≥ c.

(Here y and c are row vectors.)

A (nonnegative) vector x is called feasible if it satisfies the constraints of
the LP problem, and the LP problem is called feasible. A feasible vector x is
called optimal if f(x) is maximum. We say that the primal (dual) problem
is bounded if the objective function is bounded above (below, respectively).

Proposition 1.1 Let x, y be feasible in the respective problems, then

f(x) ≤ g(y).

It follows that
max

x
f(x) ≤ min

y
g(y).
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Proof: Observe that

f(x) =
∑n

j=1 cjxj + d

≤ ∑n
j=1

( ∑m
i=1 aijyi

)
xj + d

=
∑m

i=1

( ∑n
j=1 aijxj

)
yi + d

≤ ∑m
i=1 biyi + d

= g(y).

It follows from Proposition 1.1 that

Corollary 1.2 The primal (dual) problem is bounded if and only if the dual
(primal) problem is feasible.

By using the theorem for symmetric game, we can show that the max-
imum and minimum are actually equal. It is the basic theorem of linear
programming

Theorem 1.3 If the two dual programs are feasible, then both of them will
have optimal solutions x∗ and y∗ and c · x∗ = b · y∗. It follows that

f(x∗) = max
x

f(x) = min
y

g(y) = g(y∗),

i.e., both programs have the same value.

Proof: Consider the new matrix

M =




0 A −bt

−At 0 ct

b −c 0


 .

Note that A is an m× n matrix, M is an (m + n + 1)× (m + n + 1) matrix
and is skew symmetric. By Theorem 3.3 in the last chapter, the game value
is 0. Let
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s = (s1, · · · , sm, sm+1, · · · , sm+n, sm+n+1)

be an optimal strategy (for both players) of M , then max
i

E(i, s) = 0. It

follows that Mst ≤ 0. If we let

y = (s1, · · · , sm), xt = (sm+1, · · · , sm+n),

then s = (y,xt, sn+m+1), and Mst ≤ 0 reduces to





Ax− wb ≤ 0
−yA + wc ≤ 0

b · y − c · x ≤ 0 .

Either one of the following case will occur.

Case (I): there exists optimal s such that w = sm+n+1 > 0. Let x∗ = x/w,
y∗ = y/w. Then 




Ax∗ ≤ b
y∗A ≥ c

b · y∗ ≤ c · x∗ .

Together with Proposition 1.1 that c · x∗ ≤ b · y∗, we see that c · x∗ = b · y∗
and x∗ and y∗ are the required solutions.

Case (II): for all optimal s, w = sn+m+1 = 0. We show that this case
cannot happen. By Proposition 3.2(ii) in Chapter II, the (m + n + 1)-th
column is inactive and hence

sMen+m+1 = E(s,m + n + 1) > min
j

E(s, j) = 0.

This implies





−Ax ≥ 0
yA ≥ 0

−b · y + c · x > 0 ,
i.e.,





Ax ≤ 0
yA ≥ 0

c · x > b · y .

Consider the last inequality, it implies

either c · x > 0 or 0 > b · y .
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For the first case, let x′ be in the constraint set (i.e., Ax′ ≤ b), then x′ + αx
is also in the constraint set for α > 0 (i.e., A(x′ + αx) ≤ b). This implies
that c · (x′ + αx) can be as large as desired. Hence the primal problem is
unbounded. By Corollary 1.2, the dual problem is infeasible. This contradicts
the assumption.

By considering 0 > b · y, we can show that the primal problem is infea-
sible. This again contradicts the assumption and completes the proof that
case (II) is impossible.

Exercise. Apply the above theorem to prove the Minimax theorem in the
last chapter.

Let us rewrite the primal problem as

maximize f(x) =
∑n

j=1 cjxj + d

subject to
∑n

j=1 aijxj − bi = −xn+i, 1 ≤ i ≤ m
(1.1)

with all xi, xi+n ≥ 0.

By pivoting an independent variable xj and a dependent variable xn+i, we
mean interchange the role of these two variables.

Example 1.1. Consider the problem

maximize x1 − x4

subject to

{
x1 +x2 +x3 −x4 ≤ 2
−x1 −3x2 −x3 +2x4 ≤ −1.

(We assume xi ≥ 0 as convention). We introduce two (non-negative) vari-
ables x5 and x6 and rewrite it as

maximize x1 − x4

subject to

{
x1 +x2 +x3 −x4 −2 = −x5

−x1 −3x2 −x3 +2x4 +1 = −x6.
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Pivot on x1 and x6, the problem becomes

maximize −3x2 − x3 + x4 + x6 + 1

subject to

{ −2x2 +x4 +x6 −1 = −x5

3x2 +x3 −2x4 −x6 −1 = −x1.

Again pivot on x4 and x5, the problem is further reduced to

maximize −x2 − x3 − x5 + 2

subject to

{ −2x2 +x5 +x6 −1 = −x4

−x2 +x3 +2x5 +x6 −3 = −x1.

(1.2)

The advantage of this form is that x2, x3, x5 ≥ 0, hence the objective
function has maximum 2 at

x2 = x3 = x5 = x6 = 0

(recall that xi ≥ 0) and in this case

x1 = 3 and x4 = 1.

It follows that the maximum is attained at x1 = 3, x2 = x3 = 0, x4 = 1.

We call the expression (1.1) the basic form. The basic solution is obtained
by letting the independent variables equal to 0, and solve for the other de-
pendent variables. A basic solution x is feasible if all coordinates xi are
nonnegative. A feasible basic solution is optimal if the objective function
attains maximum there.

In Example 1.1, the original problem has no feasible basic solution; but
(1.2) has optimal feasible basic solution.

To examine the pivoting operation more systematically, we use the prob-
lem in the form of a tableau. We use Example 1.1 to illustrate the idea. First
note that the constraints of (1.1) in matrix form is

Ax− b = −Ixs,
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Putting Example 1.1 in a tableau and perform the pivot operation, we have

x1 x2 x3 x4
p
p x5 x6 −1

1 1 1 −1 p
p 1 0 2 = −x5

−1∗ −3 −1 2 p
p 0 1 −1 = −x6

1 0 0 −1 p
p 0 0 0 = f

pivot−−−−→
on x1,x6

x1 x2 x3 x4 x5 x6 −1
0 −2 0 1∗ 1 1 1 = −x5

1 3 1 −2 0 −1 1 = −x1

0 −3 −1 1 0 1 −1 = f

pivot−−−−→
on x4,x5

x1 x2 x3 x4 x5 x6 −1
0 −2 0 1 1 1 1 = −x4

1 −1 1 0 2 1 3 = −x1

0 −1 −1 0 −1 0 −2 = f

(* means the two corresponding variables are to be pivoted). This is the
same as (1.2), the maximum value is 2.

In general in the pivot operation of xl and xk, we have

xj xl xk −1
a b∗ 1 bk = −xk

c d 0 bi = −xi

−→
xj xl xk −1
a/b 1 1/b bk/b = −xl

c− ad/b 0 −d/b bi − bkd/b = −xi

(1.3)

The pivoting algorithm (simplex algorithm): Given a feasible basic form,
the corresponding tableau is:

x1 · · · xn
p
p xn+1 · · · xn+m −1

a11 · · · a1n
p
p 1 · · · 0 b1 = −xn+1

...
. . .

... p
p

...
. . .

...
...

...
am1 · · · amn

p
p 0 · · · 1 bm = −xn+m

c1 · · · cn
p
p 0 · · · 0 −d = f

(Note that the existence of feasible basic solution implies b1, · · · , bm ≥ 0).
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Step 1. (i) if c1, · · · , cn ≤ 0, then d is the maximum attains at x1 = · · · =
xn = 0, xn+i = bi, 1 ≤ i ≤ m.

(ii) Otherwise, go to Step 2.

Step 2. Choose one of the cl > 0 and consider the rows i such that ail > 0 (if all
ail ≤ 0, then the problem is unbounded, there is no optimal solution).

Choose row k such that

bk

akl

= min
{ bi

ail

: 1 ≤ i ≤ m, ail > 0
}

. (1.4)

Step 3. Pivot on xl and xk, i.e., on the entry akl (Note that by the general
expression in the pivot operation and by (1.3), (1.4), the column on
the new bi’s are nonnegative. Moreover the new d′ ≥ d.)

Step 4. Back to Step 1.

Example 1.2. Maximize f(x) = 3x1 + x2 + 3x3

subject to





2x1 +x2 +x3 ≤ 2
−3x1 +x3 ≤ 5

2x1 +2x2 +x3 ≤ 6.

x1 x2 x3
p
p x4 x5 x6 −1

2 1 1∗ pp 1 0 0 2 = −x4

−3 0 1 p
p 0 1 0 5 = −x5

2 2 1 p
p 0 0 1 6 = −x6

3 1 3 p
p 0 0 0 0 = f

−→

x1 x2 x3 x4 x5 x6 −1
2 1 1 1 0 0 2 = −x3

−5 −1 0 −1 1 0 3 = −x5

0 1 0 −1 0 1 4 = −x6

−3 −2 0 −3 0 0 −6 = f

The solution of the problem is

x1 = x2 = 0, x3 = 2, maximum value is 6.

(Try start by pivoting x1 and x4 instead).
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Example 1.3. Solve the dual problem of Example 1.2

Recall the dual problem of

maximize f(x) = c · x subject to Axt ≤ b

is
minimize g(y) = b · y subject to yA ≥ c.

Hence, the dual problem of Example 1.2 is

minimize g(y) = 2y1 + 5y2 + 6y3

subject to





2y1 −3y2 +2y3 ≥ 3
y1 +2y3 ≥ 1
y1 +y2 +y3 ≥ 3.

The tableau can be considered dually:

x1 x2 x3 −1
y1 2 1 1 2 = −x4

y2 −3 0 1 5 = −x5

y3 2 2 1 6 = −x6

−1 3 1 3 0 = f
= y4 = y5 = y6 = g

From Example 1.2, it reduces to

x1 x2 x4 −1
y6 2 1 1 2 = −x3

y2 −5 −1 −1 3 = −x5

y3 0 1 −1 4 = −x6

−1 −3 −2 −3 −6 = f
= y4 = y5 = y1 = g

The solution is (3, 0, 0) with minimum 6.

Example 1.4. Maximize f(x1, x2, x3) = 5x1 + 2x2 + x3

subject to





x1 +3x2 −x3 ≤ 6
x2 +x3 ≤ 4

3x1 +x2 ≤ 7.
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We set up the tableau as

x1 x2 x3 x4 x5 x6 −1
1 3 −1 1 0 0 6 = −x4

0 1 1 0 1 0 4 = −x5

3∗ 1 0 0 0 1 7 = −x6

5 2 1 0 0 0 0 = f

After pivoting for two times, we have

x1 x2 x3 x4 x5 x6 −1
0 1/3 0 1 1 −1/3 23/3 = −x4

0 1 1 0 1 0 4 = −x3

1 0 0 0 0 1/3 7/3 = −x1

0 −2/3 0 0 −1 −5/3 −47/3 = f

The solution is (x1, x2, x3) = (7
3
, 0, 4) and the maximum value is 47

3
.

If we consider the dual problem, the corresponding tableau is

x2 x5 x6 −1
y1 1/3 1 −1/3 23/3 = −x4

y6 1 1 0 4 = −x3

y4 0 0 1/3 7/3 = −x1

−1 −2/3 −1 −5/3 −47/3 = f
= y5 = y2 = y3 = g

the solution is (y1, y2, y3) = (0, 1, 5
3
) and the minimum value is 47

3
.

In general it may happen that the problem is unbounded, hence there is
no optimal solution.

Example 1.5. Maximize f(x1, x2) = x1 + x2

subject to

{ −2x1 +x2 ≤ −3
x1 −2x2 ≤ 4

where x1, x2 ≥ 0.
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Consider

x1 x2 x3 x4 −1
−2 1 1 0 −3 = −x3

1 −2∗ 0 1 4 = −x4

1 1 0 0 0 = f

−→
x1 x2 x3 x4 −1
−1/4 0 1 1/2 5 = −x3

−1/2∗ 1 0 −1/2 −2 = −x2

3/2 0 0 1/2 2 = f

−→
x1 x2 x3 x4 −1
1 0 −4/7 −2/7 −20/7 = −x1

0 1 −2/7 −9/14 −24/7 = −x2

0 0 6/7 13/14 44/7 = f

.

The corresponding matrix has negative entries, x3, x4 can be chosen as large
as possible. This implies x1, x2 can be as large as possible. Hence f(x1, x2)
is unbounded, there is no optimal solution.
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3.2 Solving matrix game

Example 2.1. Find the optimal strategy for the game matrix

M =




−2 2 1
0 −1 3
2 1 −1
−1 3 0


 .

First we modify the matrix by adding 3 to each entry.

M ′ =




1 5 4
3 2 6
5 4 2
2 6 3


 .

By using the reduction in the beginning of the chapter, we will consider the
column player first

maximize f = x1 + x2 + x3

subject to





x1 +5x2 +4x3 ≤ 1
3x1 +2x2 +6x3 ≤ 1
5x1 +4x2 +2x3 ≤ 1
2x1 +6x2 +3x3 ≤ 1

.

By using the pivoting algorithm two times, we can reduce

x1 x2 x3 −1
y1 1 5 4 1 = −x4

y2 3 2 6 1 = −x5

y3 5∗ 4 2 1 = −x6

y4 2 6 3 1 = −x7

−1 1 1 1 0 = f
= y5 = y6 = y7 = g
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to
x6 x7 x5 −1

y1 18/55 −54/55 −3/10 1/11 = −x4

y7 −7/55 1/55 1/5 1/11 = −x3

y5 3/11 −2/11 0 1/11 = −x1

y6 −3/110 12/55 −1/10 1/11 = −x2

−1 −13/110 −3/55 −1/10 −3/11 = f
= y3 = y4 = y2 = g

The solution of the LP problem is

(x1, x2, x3) = (1/11, 1/11, 1/11) max f = 3/11.

(y1, y2, y3, y4) = (0, 1/10, 13/10, 3/55) min g = 3/11.

To put it back into the matrix M and p, q, we recall the relation of p, q
with the above solutions is

pj = 11/3yj, qi = 11/3xi.

Thus p = (0, 11/30, 13/30, 1/5), q = (1/3, 1/3, 1/3). The value of the
game is 11/3− 3 = 2/3.

Example 2.2. For the skew symmetric matrix

M =




0 −1 1 1 −1
1 0 1 −1 −1
−1 −1 0 −1 1
−1 1 1 0 −1
1 1 −1 1 0




.

It can be solved by the linear programming or by the method for skew sym-
metric from last chapter. The optimal strategy is then

p =
[
1/9, 1/9, 1/3, 1/9, 1/3

]
.

The most surprising part of the solution is the third strategy which is the
least favorable one, but it will be used often in the mixed optimal strategy.
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Example 2.3. (A war game) Suppose generals A and B are fighting for two
positions. A has 4 regiments and B has 3 regiments. They have to decide
how many regiments to deploy in each position. The payoff is computed as
follows: if r regiments defeats s(< r) regiments, the winner gains s+1 (equal
number of regiment will be a draw). The game matrix is

(3, 0) (0, 3) (2, 1) (1, 2)
(4, 0) 4 0 2 1
(0, 4) 0 4 1 2
(3, 1) 1 −1 3 0
(1, 3) −1 1 0 3
(2, 2) −2 −2 2 2

By using the linear programming, we can show that the optimal strategies
are

p =
[
4/9, 4/9, 0, 0, 1/9

]
, q =

[
1/30, 7/90, 8/15, 16/45

]
.

From this solution, we see that A should concentrate his force, B should
spread out his force. Moreover since the two positions for B are indistin-
guishable, then q′ = [7/90, 1/30, 16/45, 8/15] is also an optimal strategy of
B, hence the average q′′ = [1/18, 1/18, 4/9, 4/9] is also an optimal strategy
of B.
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Exercises

1. Consider the problem

maximize −x1 + 2x2 − 3x3 + 4x4

subject to





x3 −x4 ≤ 0
x1 −2x3 ≤ 1

2x2 +x4 ≤ 3
−x1 +3x2 ≤ 5

Is it feasible? Is it bounded?

2. Consider the problem

maximize x1 − 3x2

subject to





x1 +x2 ≥ 1
x1 −x2 ≤ 1
x1 −x2 ≥ −1

Is it feasible? Is it bounded?

3. Solve
maximize x1 + x2 + x3

subject to

{
x1 +x3 ≤ 3

x2 −x4 ≤ 0.

4. Solve
maximize x1 + x2 − x3 − 2x4

subject to





x1 +2x2 +2x3 +x4 ≤ 10
x1 −x3 ≤ 0

x2 ≤ 2.
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5. Solve
minimize y1 + y2 + y3

subject to

{ −y1 +2y2 ≥ 1
−y2 +3y3 ≥ 1.

6. Solve the following primal problem and its dual

maximize 5x1 + x2 + 5x3

subject to





x1 +2x2 +x3 ≤ 4
x1 ≤ 2

x3 ≤ 2.

7. Solve the game 


1 −1 1
−1 1 1
1 1 −1


 .

8. Solve the game 

−1 2 −1 1
1 0 2 −1
−1 1 −2 2


 .

9. In the war game in Example 2.3, suppose that general A does not
entirely trust game theory — instead of playing the strategy we com-
puted, he decides to flip a fair coin and send all his regiments to either
one of the places, depending on whether the coin comes up heads or
tails. In other words his mixed strategy is

p =
(
1/2, 1/2, 0, 0

)
.
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Assuming that general B knows this, how would you advise him to
respond, and what would be the result? Does general B do better than
the value of the game predicts?
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Chapter 4

Non-Zero-Sum Games

4.1 Non-cooperative Games

The normal form (payoffs) of a two person game is represented as a bimatrix
(A,B) = [(aij, bij)].

Example 1.1 (Prisoner’s dilemma) Two criminals commit a crime and are
arrested. The penalty is to be prisoned as indicated in the following table.
Should they confess or deny?

confess deny

confess (−5,−5) (−1,−10)
deny (−10,−1) (−2,−2)

Example 1.2 (Battles of the buddies). Two friends want to go together
for an event. They have a choice between a “ball game” and an “opera”.
However they make independent decisions, and the “happiness rating” is as
follows. How do they make the decision?

ball opera

ball (5, 1) (0, 0)
opera (0, 0) (1, 5)
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We use the same concept of pure strategy and mixed strategy.

Definition 1.1 Let

P1 = {x : xi ≥ 0,
m
∑

i=1

xi = 1}, P2 = {y : yi ≥ 0,
n
∑

j=1

yj = 1}

be the sets of mixed strategies of the two players. For p ∈ P1, q ∈ P2, the
payoff π(p,q) = (π1(p,q), π2(p,q)) is defined by

π1(p,q) =
m
∑

i=1

n
∑

j=1

piqjaij = pAqt

π2(p,q) =
m
∑

i=1

n
∑

j=1

piqjbij = pBqt

:

The values

v1 = max
p

min
q

π1(p,q), v2 = max
q

min
p

π2(p,q)

are called the maximin values for the two players respectively.

Example 1.3 Consider the bimatrix

(A,B) =





(1, 1) (0, 1) (2, 0)
(1, 2) (−1,−1) (1, 2)
(2,−1) (1, 0) (−1,−1)



 :

The payoff matrix for the row player is

A =





1 0 2
1 −1 1
2 1 −1



 :

By eliminating the dominated row and column, it reduces to

[

0 2
1 −1

]
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and by using the calculation in the previous chapter
(

v1 = maxp
(

minj E(p, j)
))

,

we have v1 = 1/2.
For the column payer, we consider the transpose

B
t =





1 2 −1
1 −1 0
0 2 −1





and again by eliminating the dominated row and column, Bt is reduced to
[

2 −1
−1 0

]

and v2 = −1/4.

We see that v1 6= v2 which is different from the zero-sum game. We use
another concept of “equilibrium” that has been defined in Chapter 1. For
the two-person game, it reduces to

Definition 1.2 (Nash) In the bimatrix, (p̂, q̂) is called an equilibrium pair
if for any p ∈ P1, q ∈ P2,

pAq̂t

≤ p̂Aq̂t

, p̂Bqt

≤ p̂Bq̂t

:

The following is the fundamental theorem of noncooperative games.

Theorem 1.3 (Nash) Every bimatrix has at least one equilibrium pair.

To prove the theorem, we need a well known theorem called the Brou wer
fixed point theorem.

Theorem 1.4 Let B = {x ∈ R
n :

∑

n

i=1
x

2

i
≤ 1} be the closed unit ball.

Then for any continuous function F : B −→ B, there is a fixed point in B,
i.e., F (x) = x for some x ∈ B.

For our purpose, we need the fixed point theorem in a more general form.

Corollary 1.5 Suppose E is homeomorphic to B (i.e. there exists h : E −→

B such that h
−1 exists and both h and h

−1 are continuous). Then for any
continuous G : E −→ E, there exists y ∈ E such that G(y) = y.
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Proof: Let h : E −→ B be a homeomorphism. Let F = hGh
−1 : B −→ B

(see the commutative diagram).

Then there exists x such that F (x) = x, i.e., (hGh
−1)(x) = x. Let y = h

−1x,
then G(y) = y.

Proof of Nash’s theorem: We use x, y instead of p, q. Define

ci = max{eiAy
t
− xAyt

, 0}, 1 ≤ i ≤ m,

dj = max{xBet

j
− xByt

, 0}, 1 ≤ j ≤ n,

and let

x
′

i
=

xi + ci

1 +
∑

k
ck

, y
′

j
=

yj + dj

1 +
∑

k
dk

:

Define
T : P1 × P2 −→ P1 × P2, T (x,y) = (x′

,y′):

Then T is continuous, P1 ×P2 is a bounded closed convex set and is homeo-
morphic to the closed unit ball of Rm+n. Hence T has a fixed point T (x,y) =
(x,y).

We claim that (x,y) is a fixed point if and only if it is an equilibrium pair:

(⇐) Assume that (x,y) is an equilibrium pair, then

eiAy
t

≤ xAyt

:

By the definition of cj, we have cj = 0. Similarly

xBet

j
≤ xByt

,
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implies dj = 0. Consequently x
′

i
= xi, y

′

j
= yj. i.e., T (x,y) = (x,y).

(⇒) Assume that (x,y) is not an equilibrium pair, it means that there exists
x̃ such that either

x̃Ayt

> xAyt

,

or there exists ỹ such that

xBỹt

> xByt

:

Without loss of generality, we consider the first case only (the second case
is the same). Since x̃Ayt is the probability average of eiAy

t, one of the
ekAy

t
> xAyt. It follows from the definition of ck that ck > 0, hence

∑

m

k=1
ck > 0.

On the other hand consider xAyt, being the probability average of eiAy
t,

i = 1, · · · ,m, there exists i such that xi > 0 and eiAy
t
≤ xAyt. For this i,

we have ci = 0. This implies that

x
′

i
=

xi

1 +
∑

k
ck

< xi

so that x′ 6= x. This implies that (x,y) is not a fixed point of T .

It is easy to see that in the Prisoner’s dilemma, the equilibrium pair is
(−5,−5), using the pure strategy “confess”. But in general it is difficult to
find the equilibrium pair. In the following we give a graphical method to
compute the equilibrium pairs.

Example 1.4 (Battle of the buddies cont.). For the bimatrix

[

(5, 1) (0, 0)
(0, 0) (1, 5)

]

Let p = [x, 1− x], q = [y, 1− y] be the two strategies.

π1(p,q) = [x, 1− x]

[

5 0
0 1

] [

y

1− y

]

= 6xy − x − y + 1 = f(x, y),

π2(p,q) = [x, 1− x]

[

1 0
0 5

] [

y

1− y

]

= 6xy − 5x − 5y + 5 = g(x, y):
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Let

R1 = {(x, y) : f(x, y) attains maximum at x for fixed y},

R2 = {(x, y) : g(x, y) attains maximum at y for fixed x}:

Then according to Definition 1.1, the intersection of R1 and R2 is an equi-
librium pair.

Consider f(x, y) = (6y − 1)x − y + 1, it is easy to see that

R1 =











x = 0 if y < 1/6

0 ≤ x ≤ 1 if y = 1/6

x = 1 if y > 1/6:

Figure 1.1

For g(x, y) = (6x − 5)y − 5x+ 5,

R2 =











y = 0 if x < 5/6

0 ≤ y ≤ 1 if x = 5/6

y = 1 if x > 5/6

Figure 1.2

Hence the intersections of R1 and R2 give three equilibrium pairs.

(i) p = (5/6, 1/6), q = (1/6, 5/6); payoffs are 5/6, 5/6
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(ii) p = (0, 1), q = (0, 1); payoffs are 1, 5

(iii) p = (1, 0), q = (1, 0); payoffs are 5, 1.

Note that (i) is also the solution of the maximin solution.

Example 1.5 Consider
[

(4,−4) (−1,−1)
(0, 1) (1, 0)

]

For this game

π1(x, y) = 4xy − x(1− y) + (1− x)(1− y) = (6y − 2)x − y + 1

π2(x, y) = −4xy − x(1− y) + (1− x)y = (−4x+ 1)y − x:

The only equilibrium pair is p = (1/4, 3/4), q = (1/3, 2/3). The expected
payoff is −2/3 and the column player has expected payoff −1/4.

Figure 1.3

We will introduce more notations.

Definition 1.6 For a two-person game,

(i) Let Π = {

(

π1(p,q), π2(p,q)
)

: p ∈ P1,q ∈ P2} where P1 and P2

are the sets of mixed strategies of the two players; Π is called the non-
cooperative payoff region.

(ii) For (u,v), (u′
,v′) ∈ Π, We say that (u,v) dominates (u′

,v′) if

u ≥ u′
and v ≥ v′

:
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(iii) If a payoff pair (u,v) is not dominated by another pair, it is called
Pareto optimal.

Definition 1.7 Let (p,q), (r, s) be equilibrium pairs of mixed strategy, then

(i) they are said to be interchangeable if (p, s) and (r,q) are also equilib-
rium pairs.

(ii) they are said to be equivalent if πi(p,q) = πi(r, s), i = 1, 2:

If the equilibrium pairs satisfy (i), (ii), then we say the game is solvable
in the Nash sense.

Example 1.6 (Prison’s dilemma, cont.) Let

[

(−5,−5) (−1,−10)
(−10,−1) (−2,−2)

]

:

Then for p = [x, 1− x], q = [y, 1− y] and

π1(x, y) = [x, 1− x]

[

−5 −1
−10 −2

] [

y

1− y

]

= 4xy + x − 8y − 2,

π2(x, y) = 4xy + y − 8x − 2:

Using the graphical method, we see that the intersection R1 and R2 is at
(1, 1)

Figure 1.4

From the above expression of π1 and π2, we see that the payoff region is
as follows.
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Figure 1.5

Since the game has only one equilibrium pair, it is solvable in the Nash
sense, but the corresponding payoff pair (−5,−5) is not Pareto optimal.

This example has the following features, which can be used in many
practical cases

(i) Both players do well if they cooperate;

(ii) If one player plays the cooperative strategy and the other does not,
then the defector will do well and the cooperator does badly;

(iii) Neither player trust the other.

Mathematically, we can set up the game matrix as

[

(a, a) (b, c)
(c, b) (d, d)

]

where c > a > d > b and a > (b+ c)/2.

Example 1.7 (Battle of the buddies cont. ) We recall that (Example 1.4)

π1(x, y) = (6y − 2)x − y + 1

π2(x, y) = (6x − 5)y − 5x+ 5:

The payoff region is as in Figure 1.6.
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Figure 1.6

There are three equilibrium pairs
(

(1, 0), (1, 0)
)

,
(

(0, 1), (0, 1)
)

,
(

(5/6, 1/6),
(1/6, 5/6)

)

, with payoffs (5, 1), (1, 5) and (5/6, 5/6). The game is not Nash
solvable.
By a direct calculation, the maximin value of the game is 3/2 when they

play with mixed probability 5/6, 1/6. The value is (3/2, 3/2) corresponding
to the probability 1/2, 1/2 for both players. The other two equilibrium pairs
have something to do with the “stubborness” of one player and the other
giving in.
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4.2 Cooperative Games

Definition 2.1 Let (A,B) be an m × n payoff bimatrix. Let

P = {P = [pij] : pij ≥ 0,
∑

i

∑

j

pij = 1}:

We call P ∈ P a joint strategy. The payoff for P ∈ P is

π1(P ) =
∑

i

∑

j

pijaij, π2(P ) =
∑

i

∑

j

pijbij:

The cooperative region is

R = {

(

π1(P ), π2(P )
)

: P is a joint strategy}:

Proposition 2.1 R is a bounded closed convex subset in R
m+n. Moreover

it is the convex hull of the points {(aij, bij)}i,j.

Proof: Note that P ⊆ R
m×n is a bounded closed convex set (hence com-

pct). The map π : P −→ R
2 defined by π(P ) =

(

π1(P ), π2(P )
)

is affine
(

i.e.
π(λP + (1 − λ)Q) = λπ(P ) + (1 − λ)π(Q), where 0 ≤ λ ≤ 1

)

, hence it is
continuous, the image π(P) = R is also bounded and closed (use continuous
image of a compact set is compact) and is convex.

For the last statement, we note that P is the convex hull of the pure
strategies {eij}i,j , the image π(eij) = (aij, bij). From this we conclude that
R is the convex hull of the set of points {(aij, bij)}i,j .

Consider Example 1.2, the battle of the buddies, the cooperative payoff
region is as in Figure 2.1, which is larger than the non-cooperative case.
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Figure 2.1

The players in a cooperative game have the chance to make agreement
about which joint strategy to be adopted. There are two basic criterions.

• The payoff pair resulting from the joint strategy they agree on should
be Pareto optimal.

• For each player, the game from the joint strategy should be as good as
the maximin value.

Generally speaking, the more one player gets, the less the other player will
be able to get. Now how much will one player be willing to give the other?
How little will he be able to accept as a price of cooperation? We will set
a minimum amount that a player will accept for himself, i.e., the amount
he can obtain by unilateral action, whatever the other player does. The
minimum value is the maximin values v1 and v2.

Definition 2.3 The bargaining set for a two-person cooperative game is the
set of Pareto optimal pairs (u, v) such that

u ≥ v1, v ≥ v2
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Figure 2.2

For the cooperative region in Figure 2.1, the bargaining set is the line
segment joining (1, 5) and (5, 1). We look at another example.

Example 2.1 Suppose the bimatrix is

[

(2, 0) (−1, 1) (0, 3)
(−2,−1) (3,−1) (0, 2)

]

:

Then the payoff region is the convex hull of the six payoff values. We can
show that

v1 = 0, v2 = 2:

The bargaining set is the bold face line segment as in Figure 2.3.

Figure 2.3
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Nash established a fair method of which payoff pair in the bargaining
should be agreed on. The idea is to show the existence of an “arbitration
procedure” Ψ on the payoff region with respect to a “status quo” point
(u1, v2) ∈ P which we take the maximin pair (v1, v2) usually.

Nash’s axiom for bargaining: An arbitration pair is the pair (u∗
, v

∗) =
Ψ
(

R, (u0, v0)
)

with respect to a bounded closed convex set R (payoff region)
and a status quo pair (u0, v0) ∈ R such that the following axioms are satisfied:

(i) u
∗
≥ u0, v

∗
≥ v0;

(ii) (u∗
, v

∗) is Pareto optimal;

(iii) (u∗
, v

∗) ∈ R;

(iv) If R′ is another payoff region contained in R and contains (u0, v0),
(u∗

, v
∗), then

Ψ
(

R

′
, (u0, v0)

)

= (u∗
, v

∗);

(v) Suppose R′ is obtained by the linear transformation

u
′ = au+ b, v

′ = cv + d where a, c > 0,

then
Ψ
(

R

′
, (au0 + b, cv0 + d)

)

= (au
∗ + b, cv

∗ + d);

(vi) If R is symmetric (i.e., (u, v) ∈ R implies (v, u) ∈ R) and u0 = v0,
then u

∗ = v
∗.

The main theorem for the cooperative game is

Theorem 2.4 (Nash) There exists a unique arbitration procedure Ψ satisfies
the above axioms.

We will need two lemmas.

Lemma 2.5 Let R̂ be the symmetric convex hull of R
(

i.e., R̂ = co

(

R ∪

{(v, u) : (u, v) ∈ R

)

)

: If u+ v ≤ k for all (u, v) ∈ R, then u+ v ≤ k for all

(u, v) ∈ R̂.
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The proof of the above lemma follows directly from the definition of con-
vex hull. (Please check as exercise.)

Lemma 2.6 Let (u0, v0) ∈ R and suppose there exists (u, v) ∈ R such that
u > u0, v > v0. Let

g(u, v) = (u − u0)(v − v0), u, v ∈ K

where K = {(u, v) ∈ R: u ≥ u0, v ≥ v0}. Then max
(u,v)∈K

g(u, v) is attained at

a unique (u∗
, v

∗).

Figure 2.4

Proof: It follows from elementary analysis that there is at least one such
(u∗

, v
∗). Suppose there exists (ũ, ṽ) 6= (u∗

, v
∗) and

g(u∗
, v

∗) = g(ũ, ṽ) = max
u,v∈K

g(u, v) :=M (2.1)

Since the two points cannot dominate each other
(

otherwise it will violate
the maximality of g in (2,1)

)

, either

u
∗

> ũ and v
∗

< ṽ

or

u
∗

< ũ and v
∗

> ṽ:
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Let (u1, v1) be the mid-point of (u
∗
, v

∗) and (ũ, ṽ), then it is in K. By (2.1),

g(u1, v1) =
(

u
∗
+ũ

2
− u0

)(

v
∗
+ṽ

2
− v0

)

= 1

4

(

(u∗
− u0) + (ũ − u0)

)(

(v∗ − v0) + (ṽ − v0)
)

= 1

2
(u∗

− u0)(v
∗
− v0) +

1

2
(ũ − u0)(ṽ − v0) +

1

4
(u∗

− ũ)(ṽ − v
∗)

> M:

This contradicts that M is the maximal value.

Proof the Theorem 2.4: We first consider the case

U = {(u, v) ∈ R : u > u0, v > v0} 6= φ

(see Figure 2.4). Let K = U .

Existence of Ψ: Let

g(u, v) = (u − u0)(v − v0), (u, v) ∈ K:

Then by Lemma 2.6, there exists a unique (u∗
, v

∗) such that g attains its
maximum. Define

Ψ
(

R, (u0, v0)
)

= (u∗
, v

∗): (2.2)

We show that (2.2) satisfies all the six axioms:

(i) and (iii) are obvious.

(ii) Suppose it is not true, then there exists (u, v) ∈ R different from
(u∗

, v
∗) and dominates (u∗

, v
∗). We hence have

(u − u0) ≥ (u
∗
− u0), (v − v0) ≥ (v

∗
− v0)

and one of them is a strict inequality. Hence

g(u, v) > g(u∗
, v

∗)

and contradicts that g attains maximum at (u∗
, v

∗).
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(iv) Let K
′ = K

⋂

R
′, it follows that the maximum of g on K

′ is not
greater than the maximum of g on K. Since (u∗

, v
∗) ∈ K

′ also, we have

Ψ
(

R

′
, (u0, v0)

)

= Ψ
(

R, (u0, v0)
)

:

(v) Note that for (u′
, v

′) ∈ R
′, u′ = au+ b, v′ = cv + d then

(

u
′
− (au0 + b)

)(

v
′
− (cv0 + d)

)

= ac(u − u0)(v − v0)

and the maximum is attained at (au
∗ + b, cu

∗ + d).

(iv) trivial.

Uniqueness: We show that for any Ψ̃ on R with respect to (u0, v0) and
satisfies the six axioms, it will give the same (u∗

, v
∗). By applying a linear

change of variables and by (v), we can assume without loss of generality
(u0, v0) = (0, 0), (u

∗
, v

∗) = (1, 1).

We claim that for (u, v) ∈ K, u + v ≤ 2. For otherwise, u + v > 2,
consider the line segment

t(u, v) + (1− t)(1, 1) ∈ K, 0 ≤ t ≤ 1:

Let

h(t) = g

(

t(u, v) + (1− t)(1, 1)
)

=
(

tu+ (1− t)
)(

tv + (1− t)
)

,

then
h
′(t) = 2tuv + (1− 2t)(u+ v)− 2(1− t)

so that h
′(0) = u + v − 2 > 0. Since h(0) = 1, there exists t near 0 so that

h(t) > 1. This contradicts the maximality that g(1, 1) = 1 and the claim
follows.

Now let R̂ be the symmetric convex hull of R, then s + t ≤ 2 for all
(s, t) ∈ R̂ (Lemma 2.5). Therefore for (a, a) ∈ R̂, a ≤ 1. By axiom
(vi) we have Ψ̃

(

R̂, (0, 0)
)

= (1, 1) and by (iv) Ψ̃
(

R, (0, 0)
)

= (1, 1). Hence

Ψ̃
(

R, (0, 0)
)

= Ψ
(

R, (0, 0)
)

.

The above completes the proof of existence and uniqueness of Ψ for the
case U 6= φ. It remains to consider the case U = φ: there are three subcases
(see Figure 2.5):

63



(i) there exists (u0, v) ∈ R with v > v0;

(ii) there exists (u, u0) ∈ R with u > u0;

(iii) Neither (i) nor (ii).

In case (i), we let u
∗ = u0 and v

∗ = the largest value of the (u0, v) ∈ R,
and let Ψ

(

R, (u0, v0)
)

= (u∗

0
, v

∗

0
). Similarly, we can define for (ii). For (iii) we

let (u∗
, v

∗) = (u0, v0). It is easy to show that all the conditions are satisfied.

Figure 2.5

Consider Example 1.2, the battle of the buddies, the cooperative payoff
region is given in Figure 2.1. The maximin pair is (5/6, 5/6). The payoff
region is symmetric (along the diagonal), hence the arbitration pair is (a, a)
and is Pareto optimal

(

axiom (ii)
)

, it follows that (a, a) = (1, 1).

Example 2.2 Consider the cooperative game given by the bimatrix

[

(2,−1) (−2, 1) (1, 1)
(−1, 2) (0, 2) (1,−2)

]

The maximin values are given by (v1, v2) = (−2/5, 1). The payoff region is
as in Figure 2.6.
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Figure 2.6

The arbitration pair is on the line (0, 2), (1, 1) which is v = −u + 2. Hence
we need to optimize

g(u, v) =
(

u − (−2/5)
)

(v − 1) subject to v = −u+ 2:

It follows that

g(u, v) = (u+ 2/5)(−u+ 1) = −u
2 + 3u/5 + 2/5

and by calculus, we find that the maximum is attained at (u, v) = (3/10, 7/10).
This is the arbitration pair.

Example 2.3 Consider the cooperative game given by the matrix

[

(5, 1) (7, 4) (1, 10)
(1, 1) (9,−2) (5, 1)

]

:

The maximin pair is (v1, v2) = (3, 1). The payoff region is as indicated.
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Figure 2.7

The Pareto optimal pairs are the two segments joining the three pair (3, 8),
(7, 4) and (8, 1). Consider

g(u, v) = (u − 3)(v − 1):

On the upper line segment v = −u+ 11,

g(u, v) = (u − 3)(−u+ 10) = −u
2 + 13u − 30:

By calculus, g attains maximum at u = 13/2, v = 9/2 and g(13/2, 9/2) =
49/7.

On the lower line segment, v = −3u+ 25,

g(u, v) = (u − 3)(−3u+ 24) = −3u2 + 33u − 72:

Then g attains maximum at u = 11/2, v = 17/2 which is outside the bar-
gaining set.

It follows that the arbitration point of the game is at (13/2, 9/2).
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Exercises

1. In Battle of the Buddies, suppose the row player plays the mixed strat-
egy (1

4
,

3

4
). What is the best way for the column player to play in

response?

2. For the game Battle of the Buddies, verify that 5

6
is the maximin value

for each player.

3. For the game given by the bi-matrix
[

(4,−4) (−1,−1)
(0, 1) (1, 0)

]

,

verify that the maximin value for the row player is 2/3, and for the
column player is −1.

4. For the bi-matrix
[

(2,−3) (−1, 3)
(0, 1) (1,−2)

]

,

compute the equilibrium pairs and the maximin values for both players.

5. For the bi-matrix
[

(2,−1) (−1, 1)
(0, 2) (1,−1)

]

find the maximin values and the equilibrium pairs of the mixed strate-
gies.

6. For the game with bi-matrix
[

(4,−4) (−1,−1)
(0, 1) (1, 0)

]

,

prove that (1, 0) is a Pareto optimal payoff pair.

7. Find the arbitration pair for the cooperative game described by the
bi-matrix in Exercise 4.

8. Find the arbitration pair for the bi-matrix game
[

(−1,−1) (4, 0)
(0, 4) (−1,−1)

]

:
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9. Find the arbitration pair for the bi-matrix game





(−1, 1) (0, 0)
(1,−1) (0, 1)
(−1,−1) (1, 1)



 :
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Chapter 5

N-person Cooperative Games

For the N -person non-cooperative game, there is little difference between
two-person and N -person game, and Nash’s theorem still hold. For the N -
person cooperative game, players not only make binding agreement of join
strategies but also agree to pool their individual payoffs and redistribute the
total in a specific way. Hence the emphasis is on the improvement of the
payoff by coalition instead of the mixed strategies.

5.1 Coalition

Definition 1.1 Let A = {A1, · · · , AN} be N-players, a subset S ⊆ A is
called a coalition; the complement of S, denoted by Sc, is called the counter
coalition.

The pure strategies available to a coalitions S are the cartisian product of
the Xi, the strategies of Ai ∈ S. The payoff of a strategy in S is the sum of
the payoffs of the strategies of each Ai ∈ S .

Definition 1.2 By the characteristic function ν of a N-person game, we
mean a real valued function ν on the coalition S ⊆ A such that ν(S) is the
maximin value (with respective to S and Sc as in the two-person game).
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Example 1.1 Consider a 3-player game, A1, A2, A3 are players with payoffs
as follows:

strategies payoffs
(1, 1, 1) (−2, 1, 2)
(1, 1, 2) (1, 1,−1)
(1, 2, 1) (0,−1, 2)
(1, 2, 2) (−1, 2, 0)
(2, 1, 1) (1,−1, 1)
(2, 1, 2) (0, 0, 1)
(2, 2, 1) (1, 0, 0)
(2, 2, 2) (1, 2,−2)

There are eight coalitions (including ∅). If we consider S = {A1, A3}, Sc =
{A2}. Then S has four strategies and Sc has two strategies. The payoff
bimatrix is

1 2

(1, 1) (0, 1) (2,−1)
(1, 2) (0, 1) (−1, 2)
(2, 1) (2,−1) (1, 0)
(2, 2) (1, 0) (−1, 2)

The maximin values can be computed from the matrix



0 2
0 −1
2 1
1 −1


 ,

[
1 1 −1 0
−1 2 0 2

]
.

They are
ν
({A1, A3}

)
= 4/3, ν

({A2}
)

= −1/3.

Similarly we have

ν
({A1, A2}

)
= 1, ν

({A3}
)

= 0,

ν
({A2, A3}

)
= 3/4, ν

({A1}
)

= 1/4,

ν
({A1, A2, A3}

)
= 1, ν

(∅) = 0.
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The coalition A = {A1, A2, A3} is the “grand” coalition; ν(A) is the largest
payoff the coalition that the grand coalition can achieve. Also from the above
values, we can speculate about which coalitions are likely to form: A2, A3

may ask A1 to form a coalition; A1 will certainly demand more than 1/4. If
he demands too much, then A2 and A3 will form a coalition themselves.

Example 1.2 (The Used Car Game). A1 wishes to sell an old car which is
worth nothing to him. A2 values the car at $500, A3 values the car at $700.
They bid for the car and A1 either accepts one of the bidding, or rejects both
of them if the bidding is too low.

In this game, since there are all the variations of bidding, it is difficult to
write down the “normal” form of the game. Instead, we represent it by the
“characteristic function” ν(S) of the different coalitions.

ν
({A1}

)
= ν

({A2}
)

= ν
({A3}

)
= 0;

ν
({A1, A2}

)
= 500, ν

({A1, A3}
)

= 700, ν
({A2, A3}

)
= 0;

ν
({A1, A2, A3}

)
= 700.

The reason behind these numbers are as follows: For A1, he either
(i) accepts the higher bid, or
(ii) rejects both if the biddings are too low.

There exists a joint strategy for the counter coalition {A2, A3} to bid 0.
Hence the maximin value for A1 is 0, i.e., ν

({A1}
)

= 0.

For A2, A3, the maximin values are ν
({A2}

)
, ν

({A3}
)

= 0 because the
counter coalition can reject the bidding.

For the coalition {A1, A2}, the payoff can be $500 independent of what
A3 does; similarly we can argue for {A1, A3}. The case ν({A2, A3}) = 0 is
by considering the payoff as the value of the sum minus the money paid.

The grand coalition is the largest sum of the payoffs of a 3-tuple strategy,
hence ν({A1,A2,A3}) = 700.
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Theorem 1.3 Let S1, S2 be disjoint coalitions, then

ν(S1 ∪ S2) ≥ ν(S1) + ν(S2), (superadditivity)

If S1, · · · Sk are pairwise disjoint coalitions, then

ν
( k⋃

i=1

Si

) ≥
k∑

i=1

ν(Si).

In particular,

ν(A) ≥
N∑

i=1

ν
({Ai}

)
.

Proof: Let p1, p2 be the mixed strategies for S1 and S2 to attain the maximin
values ν(S1), ν(S2). For the coalition S1 ∪S2, since they are disjoint, we can
use the same strategies on S1∪S2, and the payoff will be at least ν(S1)+ν(S2).
By taking maximum over all possible strategies on S1 ∪ S2, we see that

ν(S1 ∪ S2) ≥ ν(S1) ∪ ν(S2).

The second inequality is proved by induction, and the last inequality follows
by taking Si = {Ai}.

For an N -person cooperative game, it is more convenient to consider the
characteristic function ν(S) (as in Example 1.2) than the normal form (as in
Example 1.1).

Definition 1.4 A game in characteristic function form consists of a set A =
{A1, · · · , AN} of players together with a function ν defined on subsets S ⊆ A
such that ν(∅) = 0 and for any disjoint S1,S2 ⊆ A

ν(S1 ∪ S2) ≥ ν(S1) ∪ ν(S2).
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Definition 1.5 A game in characteristic function form is essential if

ν(A) >

N∑
i=1

ν({Ai});

otherwise
(
i.e., ν(A) =

∑N
i=1 ν({Ai})

)
, it is called inessential.

It is easy to see from the definition that in an inessential game,

ν(A) =
∑
Ai∈S

ν({Ai}).

Hence there is no reason for any other coalition, as cooperation does not
result in a greater total payoff.
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5.2 Imputations

In here we are concern with the distributions of the payoff. The amount
going to the various players form an N -vector x.

Definition 2.1 An N-vector is said to be an imputation if

(i) xi ≥ ν({Ai}) for each player Ai;

(ii)
∑N

i=1 xi = ν(A).

We denote the set of imputations by I(ν).

Theorem 2.2 If ν is inessential, then I(ν) is a singleton, namely

x =
(
ν(A1), · · · , ν(AN)

)
.

If ν is essential, then I(ν) is an infinite set.

Proof: If ν is inessential, then for any x ∈ I(ν),

ν(A) =
N∑

i=1

ν({Ai}) ≤
N∑

i=1

xi = ν(A).

This implies xi = ν({Ai}), hence I(ν) is a singleton.

If ν is essential, let

β = ν(A)−
N∑

i=1

ν({Ai}) > 0

and let

xi = ν({Ai}) + αi where
N∑

i=1

αi = β.

Then x is an imputation. Since there are infinitely many ways of choosing
{αi}N

i=1, there are infinitely many x ∈ I(ν) .
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Definition 2.3 Let x,y ∈ I(ν), we say that x dominates y through a coali-
tion S, denoted by x ÂS y, if

(i) xi > yi for all Ai ∈ S;

(ii)
∑

Ai∈S xi ≤ ν(S).

Example 2.1 (Example 1.1 cont.) We see that (1/3, 1/3, 1/3) dominates
(1, 0, 0) through the coaliation {A2, A3} and that (1/4, 3/8, 3/8) dominates
(1/3, 1/3, 1/3) through the same coalition. Also, (1/2, 1/2, 0) dominates
(1/3, 1/3, 1/3) through {A1, A2}

Definition 2.4 The core C(ν) of ν consists of all imputations that are not
dominated by any other imputations through any coalition.

Theorem 2.5 Let x ∈ I(ν), then x ∈ C(ν) if and only if

∑
Ai∈S

xi ≥ ν(S) ∀ S ⊆ A.

Proof: (⇐) Suppose there exists z ∈ I(ν) dominates x through a coalition
S, then ∑

Ai∈S
zi >

∑
Ai∈S

xi ≥ ν(S).

which contradicts Definition 2.3(ii). Thus x ∈ C(ν).

(⇒) Suppose x ∈ C(ν). We assume in contrary that there exists S such that

∑
Ai∈S

xi < ν(S).

Then S 6= A (by Definition 2.1). We also see that there exists Aj ∈ Sc such
that

xj > ν({Ai}).
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(For otherwise, using the superadditivity,

N∑
i=1

xi < ν(S) +
∑

Ai∈Sc

xi ≤ ν(A),

which is impossible by Definition 2.1.) Choose α so that

0 < α ≤ xj − ν({Ai}) and α ≤ ν(S)−
∑
Ai∈S

xi.

Now let k denote the number of players in S and consider a new imputation
z:

zi =





xi + α/k for Ai ∈ S;

xj − α for i = j;

xi for Ai ∈ Sc, i 6= j.

Then z ∈ I(ν) dominates x through S, and this contradicts the assumption
of x. Hence we conclude that

∑
Ai∈S

xi ≥ ν(S).

In view of the definition and the theorem, we see that for x ∈ C(ν), there
is no group of players has reason to form a coalition and replace x with a
different imputation. The ”solution” of the game is to use the grand coalition
and share the payoff in the way of x.

Corollary 2.6 Let x be an N-vector, then x ∈ C(ν) if and only if

N∑
i=1

xi = ν(A) and
∑
Ai∈S

xi ≥ ν(S) for every coalition S.

It follows that C(ν) is determined by the linear inequalities and is hence
a bounded closed convex set.
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Example 2.2 (Example 1.1 cont.) A vector x ∈ C(ν) if and only if

x1 + x2 + x3 = 1,

x1 ≥ 1/4, x2 ≥ −1/3, x3 ≥ 0,

x1 + x2 ≥ 1, x1 + x3 ≥ 4/3, x2 + x3 ≥ 3/4.

It is easy to check that there is no solution. Hence C(ν) = φ.

Example 2.3 Consider a 3-player game whose characteristic function is

ν({A1}) = −1/2, ν({A2}) = 0, ν({A3}) = −1/2,

ν({A1, A2}) = 1/4, ν({A1, A3}) = 0, ν({A2, A3}) = 1/2,

ν({A1, A2, A3}) = 1.

It can be checked that the superadditivity holds. Hence x ∈ C(ν) if and only
if

x1 ≥ −1/2, x2 ≥ 0, x3 ≥ −1/2,

x1 + x2 ≥ 1/4, x1 + x3 ≥ 0, x2 + x3 ≥ 1/2,

x1 + x2 + x3 = 1.

The system has infinitely many solutions, e.g., (1/3, 1/3, 1/3) ∈ C(ν).

Example 2.4 (The Used Car Game cont.) A vector x = (x1, x2, x3) ∈ C(ν)
if and only if

x1 + x2 + x3 = 700, xi ≥ 0,

x1 + x2 ≥ 500, x1 + x3 ≥ 700, x2 + x3 ≥ 0.

It follows that

500 ≤ x1 ≤ 700, x2 = 0, x3 = 700− x1.
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The interpretation is that A3 gets the car with a bid between $500 to $700;
A2 does not get the car, but his presence force the price up over $500.

Since the game is cooperative, it is possible for A2 and A3 to compromise
to bid low, say A3 bids $300 and A2 bids $0; if A1 accepts the bid, then A3

will pay A2 $200. The imputation in this arrangement is (300, 200, 200), it
is not in the core. If A1 reject the bid from A3, then the payoff is (0, 0, 0), it
is not an imputation.

Example 2.5 (Voting Game) In a small city, there is a Mayor and a city
council with seven members. A bill can be passed to a law if

(i) The majority of council member passes and the Major signs it;

(ii) The council passes it but the Mayor vetos it, then the council votes
again and at least six council members vote to override the veto.

The payoffs would be units of “power” gained by being on the winning side.
For a coalition ν(S) = 1 if it is a “winning” coalition, ν(S) = 0 if it is a
“losing” coalition.

It is clear that any one-person coalition is losing and the grand coalition
is winning. Moreover (xM , x1, · · · , x7) is an imputation if

xM , x1, · · · , x7 ≥ 0 and xM + x1 + · · ·+ x7 = 1.

We claim that C(ν) = ∅: For if otherwise, (xM , x1, · · · , x7) ∈ C(ν), then

xM + x1 + · · ·+ x7 = 1

and for each j, ∑

i6=j

xi ≥ 1.

(because any six council member is a winning coalition). Hence xM and all
xi = 0, it is a contradiction so that C(ν) = ∅.

Let ν be the characteristic function of a game, we say that ν is constant
sum if

ν(S) + ν(Sc) = ν(A)

for every coalition S; ν is called zero-sum if in addition ν(A) = 0.
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Proposition 2.7 Let π be the payoffs of an N-person game in normal form
and

N∑
i=1

πi(σ1, · · · , σN) = c

for all choice of strategies (σ1, · · · , σN) (call it constant-sum game). Then
its characteristic function ν is of constant sum.

Proof: We first consider the special case c = 0, it is easy to see that ν(A) =
0. For any coalition S and counter coalition Sc, they form a zero-sum game.
Hence ν(S) = −ν(Sc) according to the minimax theorem. It follows that

ν(S) + ν(Sc) = 0 = ν(A).

For c 6= 0, we define the new game with payoff

τi(σ1, · · · , σN) = πi(σ1, · · · , σN)− c/N.

Then it is a zero-sum game. The corresponding characteristic function µ is
given by

µ(S) = ν(S)− kc/N

where k is the number of players in S, hence µ is zero sum (by the case c = 0
just proved). It follows from

ν(S) + ν(Sc) =
(
µ(S) + kc/N

)
+

(
µ(Sc) + (N − k)c/N

)
= c

that ν is constant sum.

It follows from Theorem 2.2 and 2.5 that if ν is inessential, then C(ν)
contains a unique imputation x =

(
ν(A1), · · · , ν(AN)

)
. In general it is not

easy to determine C(ν). We have the following “negative” result.

Theorem 2.8 If ν is both essential and constant-sum, then C(ν) = ∅.

Proof: Suppose there exists x ∈ C(ν), then for such j,

xj ≥ ν({Aj}) and
∑

i6=j

xi ≥ ν({Aj}c).
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Hence

ν(A) =
N∑

i=1

xi ≥ ν({Ai}) + ν({Ai}c) = ν(A).

(the last equality is by the constant sum property). This implies ν(A) =∑N
i=1 ν({Ai}) and ν is hence inessential, a contradiction.

As is seen in the proof of Proposition 2.7, we can adjust constants to the
game and might simplify the game. For this we define

Definition 2.9 Two characteristic functions µ and ν are strategically equiv-
alent if there exists k > 0 and c1, · · · , cN such that

µ(S) = kν(S) +
∑
Ai∈S

ci for all coalition S (2.1)

It is an easy exercise to prove the following.

Theorem 2.10 Suppose µ, ν are strategically equivalent, then

(i) they are both essential or both inessential;

(ii) x ∈ I(ν) if and only if y = kx + c ∈ I(µ);

(iii) x ∈ C(ν) if and only if y = kx + c ∈ C(µ).

Note that if ν is an essential characteristic function, then it can be reduced
to a (0, 1)-form, i.e.,

µ({Ai}) = 0 and µ(A) = 1.

Indeed we can take

k = 1/
(
ν(A)−

N∑
i=1

ν({Ai})
)

> 0

and
ci = −kν({Ai}), i = 1, · · · , N,

then use the transform in Definition 2.6.
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Example 2.6 (Example 1.1 cont.) We can use that above to reduced the
characteristic function ν:

k = 1
/(

1− (− 1

12

))
= 12/13

and let ci = −kν({Ai}), then

c1 = −3/13, c2 = 1/13, c3 = 0.

It follows from (2.1) that

µ(A) = 1; µ({A1}) = µ({A2}) = µ({A3}) = 0;

µ({A1, A2}) = 1, µ({A1, A3}) = 1, µ({A2, A3}) = 1.
(2.2)

We conclude that one of the two players will form the coalition. The prevail-
ing imputation will be either (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2).

Note that for any three-player game, a constant sum, inessential charac-
teristic function can be reduced to the form in (2.1) (Check this). For brevity
we call the game in (2.2) the game THREE.

Example 2.7 (Example 2.2 cont.) By the same reduction, we obtain

µ(A) = 1; µ({Ai}) = 0, i = 1, 2, 3;

µ({A1, A2}) = 3/8, µ({A1, A3}) = 1/2, µ({A2, A3}) = 1/2.

In this case the two-player coalitions seem weak and the grand coalition is
likely to form. In fact we see that in the grand coalition, the imputation
(1/3, 1/3, 1/3) ∈ C(ν).
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5.3 Two solution concepts

The core C(ν) as a solution concept for the game is not very satisfactory.
From the examples in the last section, we see that it might have no imputation
in it ( C(ν) = ∅) or so many that we have no reasonable way to decide which
are actually likely to occur. In the following we will consider two more
concepts as solution for the coalitions.

Definition 3.1 Let X ⊆ I(ν), we say that X is stable if

(i) for x,y ∈ X, x and y do not dominate each other in any coalition S.

(ii) for y /∈ X, there exists a coalition S and x ∈ X such that x dominates
y through S.

Example 3.1 Consider the game THREE with characteristic function de-
fined by (2.1). Then the set

X = {(0, 1/2, 1/2), (1/2, 0, 1/2), (1/2, 1/2, 0)}

is a stable set for µ. Indeed condition (i) follows from checking Definition
2.2. To prove (ii), we observe that if y /∈ X, then there exists at least
two coordinates, say, y1, y2 ≤ 1/2. This implies that y is dominated by
(1/2, 1/2, 0) through S = {A1, A2}.

Note that there is x ∈ I(ν) dominates member of X, e.g., (2/3, 1/3, 0)
dominates (1/2, 0, 1/2) through S1 = {A1, A2}. On the other hand (2/3, 1/3, 0)
is dominated by (0, 1/2, 1/2) through S2 = {A2, A3}.

There are other stable sets. For example for 0 ≤ c < 1/2,

Xc = {(c, x2, x3) : x2, x3 ≥ 0, x2 + x3 = 1− c}

is such a set. It means give A1 a fixed amount c and A2, A3 negotiate among
themselves to divide the rest. The reader should try to show that Xc is a
stable set as an exercise.
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The second solution concept is that of the Shapley value.

Definition 3.2 Let ν be characteristic function and let S be a coalition. For
Ai ∈ S, we define

δ(Ai,S) = ν(S)− ν(S\{Ai}).
The Shapley value of Ai is defined as

φi =
∑

{S: Ai∈S}

(N − |S|)! (|S| − 1)!
N !

δ(Ai,S).

The vector φ = (φ1, · · ·φN) is called the Shapley vector of the game.

The term δ(Ai,S) measures the amount Ai contributed to the coalition
S. In the expression φi, the factorial expression is the “probability” of the S
that contains Ai. Note that

∑

Ai∈S

(N − |S|)! (|S| − 1)!
N !

= 1. (3.1)

The Shapley value can be interpreted as the bargaining power of the players.

Theorem 3.3 The Shapley vector is an imputation, i.e., φ ∈ I(ν).

Proof: (i) We show that φi ≥ ν({Ai}): By the superadditivity, if Ai ∈ S,

δ(Ai,S) = ν(S)− ν(S\{Ai}) ≥ ν({Ai}).
Hence by (3.1),

∑

Ai∈S

(N − |S|)! (|S| − 1)!
N !

δ(Ai,S) ≥ ν({Ai}).

(ii) We show that
∑N

i=1 φi = ν(A). Note that
∑N

i=1 φi

=
∑N

i=1

∑
{S: Ai∈S}

(N−|S|)! (|S|−1)!
N !

(
ν(S)− ν(S\{Ai})

)

=
∑
S |S| (N−|S|)! (|S|−1)!

N ! ν(S)−∑
T 6=A(N − |T |) (N−1−|T |)! |T |!

N ! ν(T )

=
∑
S

(N−|S|)! |S|!
N ! ν(S)−∑

T 6=A
(N−|T |)! |T |!

N ! ν(T )

= N 0! (N−1)!
N ! ν(A) = ν(A).
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Example 3.2 (Example 1.1 cont.) To compute φ1, we see that there are
four coalitions containing A1:

{A1}, {A1, A2}, {A1, A3}, {A1, A2, A3}.

Hence using the values of ν in Example 1.1, we have

δ(A1, {A1}) = 1/4− 0 = 1/4, δ(A1, {A1, A2}) = 1− (−1/3) = 4/3,

δ(A1, {A1, A3}) = 4/3− 0 = 4/3, δ(A1, {A1, A2, A3}) = 1− 3/4 = 1/4.

Then

φ1 =
2! 0!

3!
· 1

4
+

1! 1!

3!
· 4

3
+

1! 1!

3!
· 4

3
+

0! 2!

3!
· 1

4
=

11

18
.

By a similar calculation, we have

φ2 = 1/36, φ3 = 13/36.

Note that φ1 is largest, hence A1 has the strongest bargaining power, followed
by A3, then A2.

We also have a shorter way to calculate the Shapley vector, it is to
transform the game to THREE as in Example 2.6 first. By symmetry, the
Shapley vector is (1/3, 1/3, 1/3). Then transform this vector back to obtain
(11/18, 1/36, 13/36).

Example 3.3 (The Used Car Game cont.) We can use the same calculation
to show that

φ1 = 433.33, φ2 = 83.33, φ3 = 183.33.

Thus, A3 gets the car for $433.33, but he has to pay A2 $83.33 as a bribe for
not bidding against him. A1 is in the most powerful bargaining position.
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Example 3.4 (The Voting Game cont.) We first compute φM . The nonzero
terms in φM consists of coalitions that S\{M} is a losing but S is winning.
They are

(i) S contains the Mayor and four council members;
(ii) S contains the Mayor and five council members.

There are
(
7
4

)
= 35 ways in (i), hence the contribution to φM is

35 · (8− 5)! (5− 1)!

8!
= 7/56

There are
(
7
5

)
= 21 ways in (ii), hence the contribution to φM is

21 · (8− 6)! (6− 1)!

8!
= 7/56.

Adding these we have φM = 1/4.

For the council members, the non-zero terms in φi corresponds to the
coalitions are

(i) S contains the Mayor and four council members.
(ii) S contains six council members.

There are 20 sets in the first case and 6 in the second. Hence

φi = 20
(8− 5)! (5− 1)!

8!
+ 6

(8− 6)! (6− 1)!

8!
= 3/28.

The result says that the Mayor has more power than the council members.
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Exercise

1. Show that the following (non-zero-sum) bi-matrix game is inessential:

[
(0, 0) (1,−2)

(−1, 1) (1,−1)

]
.

2. The 3-person game of Couples is played as follows. Each player choose
one of the other two players; these choices are made simultaneously. If
a couple forms ( for example, if P2 chooses P3, P3 chooses P2), then
each member of that couple receives a payoff of 1/2, while the person
not in the couple receives −1. If no couple forms (for example, if P1

chooses P2, P2 chooses P3, and P3 chooses P1), then each receives a
payoff of zero.

Prove that the game Couples is zero-sum and essential.

3. Let P = {P1, P2, P3, P4} be a set of players. Let a, b, c, d, e, f be non-
negative numbers such that

a + d ≤ 1
b + e ≤ 1
c + f ≤ 1.

Define ν by

ν(∅) = 0, ν(P) = 1,

ν(any 3-person coalition) = 1,

ν(any 1 person coalition) = 0,

ν({P1, P2}) = a, ν({P1, P3}) = b, ν({P1, P4}) = c,

ν({P3, P4}) = d, ν({P2, P4}) = e, ν({P2, P3}) = f.

Prove that ν is a game in characteristic function form.

4. Let ν be a game in characteristic function form. (i) Prove that the set
of all imputation is convex. (ii) Prove that the core is convex.
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5. Prove that if λ is strategically equivalent to µ, and if µ is strategically
equivalent to ν, then λ is strategically equivalent to ν.

6. Compute the (0, 1)-reduced form for the Used Car Game.

7. Prove that the set

{(x, 0, 1− x) : 0 ≤ x ≤ 700}

is a stable set of imputation for the Used Car Game.

8. Find the Shapley values for the Used Car Game.
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