Chapter 9: Determinant

9.1 Definition

Suppose A is an m x n matrix. Then the submatrix A(i|j) is the (m — 1) x (n — 1) matrix obtained

from A by removing row ¢ and column j.

Example 9.1.1: Suppose

1 2 3 4
A=15 6 7 8
9 10 11 12
Then
1 2 4 2 3 4
A(2]3) = , AQ31) = .
9 10 12 6 7 8
[ |
Example 9.1.2: Suppose
a1l a2 a3 a4
A a1 G2 23 24
a3l as2 as3 a4
a41 Q42 Q43 Q44
Then
a1l a1z a4 a12 a3 aq
A(B|2) = (a1 a2z aga|, A1) = |azw a a
41 A42 a44 a32 a3z as4
[ |

The determinant is a function that take a square matrix as an input and produces a scalar as an
output.

Definition 9.1.1: Suppose A is a square matrix. Then its determinant, det(A) (or denoted by |A|), is
an element of R defined recursively by:

1. If Ais a1l x 1 matrix, then det(A4) = [A]1;.

2. If A is a matrix of order n with n > 2, then
det(A) = [A]Ll det(A (1’1)) — [Ahg det(A (1’2)) + [A]Lg det(A (1|3))+
4o (=1)" Ay, det(A (1n))

= (1) 1A det(A (1])).
i=1

So to compute the determinant of a 5 x 5 matrix we must build 5 submatrices, each of size 4. To
compute the determinants of each the 4 x 4 matrices we need to create 4 submatrices each, these now
of size 3 and so on. To compute the determinant of a 10 x 10 matrix would require computing the
determinant of 10! = 10 X 9 X 8 X 7T X6 x5 x4 x3x2=23,628,800 1 x 1 matrices. Fortunately there are

better ways.

Let us compute the determinant of a reasonably sized matrix by hand.
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Example 9.1.3: Suppose that we have the 3 x 3 matrix

3 2 —1
A= 4 1 6
-3 -1 2
Proposition 9.1.2: Suppose
A= " b] .
c d
Then
det(A) = ad — be.
Proof:
a b
= adet(d) — bdet(c) = ad — be.
c
Proposition 9.1.3: Suppose
ail a2 013
A= |az a2 a3

asyp as2 ass
Then

det(A) = ar1a22a33 + a12a23a31 + A13021a32 — A110423A32 — 12021033 — 113022031 -

Proof:

det(A) = ary det(A (1]1)) — ara det(A (12)) + ars det(A (1]3))

Q22 Aa23 a1 a3 a1 a2

— a12 + a3

azz a3s3 asr ass asy as2

= a11(ag2as3 — agzasz) — a12(ag1ass — agzaszy) + aiz(agiase — azzaz:)

= 11022033 + a12a23a31 + A13021032 — 11023032 — (12021033 — 413022031 .

The rule of Sarrus is useful for memorizing the determinant of order 3:
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a1 a12 a13 ail a12

a3l a32 az3 asi a32
- - -+ + o+

Remark: The rule of Sarrus is valid ONLY for determinants of order 3.

9.2 Computing Determinants

Theorem 9.2.1: Suppose that A is a square matriz of size n. For 1 <i<mn

n
det(A) =Y (=1)"[Al;,; det(A(i])),
j=1
which is known as expansion about row i.
Skip the proof. If you are interested, see Beezer, p.266.
Theorem 9.2.2: Suppose that A is a square matriz. Then det(A') = det(A).

Skip the proof. If you are interested, see Beezer, p.267.

Theorem 9.2.3: Suppose that A is a square matriz of sizen. Then for1 < j<n

n

det(A) = Z(—l)iﬂ [A],j det(A(i]4)),

which is known as expansion about column j.
Follows from Theorems 9.2.1 and 9.2.2.

Example 9.2.1: Let

Then expanding about the fourth row yields,

30 1 -2 0 1
Al = (-D*"@)| -2 0o 1]|+C=D*2W)] 9 o0 1
3 —2 -1 1 -2 -1

-2 3 1 -2 3 0

+ (=D 9 =2 1 |+(=DYHE)| 9 -2 0

1 3 -1 1 3 =2

= (=4)(10) + (1)(=22) + (=2)(61) + 6(46) = 92
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Example 9.2.2: Suppose that

2 3 -1 3 3
0o -1 5 2 -1
vt=10 0 3 9 2
o o o0 -1 3
o o0 0 0 5

We will compute the determinant of this 5 x 5 matrix by consistently expanding about the first column

for each submatrix that arises and does not have a zero entry multiplying it.

Theorem 9.2.4: Suppose A is an upper triangular matriz, i.e.,

a1 a2 a3 -+ Qip

0 az ax --- a

A= 0 0 asz -+ Aa3n
0 0 0 - apn

Then
det(A) = a11a92 " Apn-
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Proof:

az G23 - G2p
0 azz -+ asn
det(A) = aqp det | o ] expand along the column 1
0 0 - app
asz -+ asp
=anagedet [ 1 . ! expand along the column 1
0 - an,

= a11G22 - Gpn-

Similarly

Theorem 9.2.5: Suppose A is a lower triangular matriz, i.e.,

all 0 0 e 0

agl a9y 0 e 0
A= |az aszx azz --- 0

|@n1  OGn2  Qn3 -+ Onp |

Then

det(A) = Qa11a22 - anpn-

When you consult other texts in your study of determinants, you may run into the terms minor and
cofactor, especially in a discussion centered on expansion about rows and columns. We have chosen
not to make these definitions formally since we have been able to get along without them. However,
informally, a minor is a determinant of a submatrix, specifically det(A(i|7)) and is usually referenced as

the minor of [A];;. A cofactor is a signed minor, specifically the cofactor of [A];; is (—1)""7 det(A(i]5)).

9.3 Properties of Determinants of Matrices

Theorem 9.3.1: Suppose that A is a square matriz with a row where every entry is zero, or a column

where every entry is zero. Then det(A) = 0.

Proof: Suppose that A is a square matrix of size n and row ¢ has every entry equal to zero. We compute
det(A) via expansion about row i.

n n

det(A) = “(~1)"M[Ali; det(A(i[5)) = > _(—1)"7(0) det(A(il5)) Row i is zeros
j=1 j=1
= i 0=0
j=1

The proof for the case of a zero column is entirely similar, or could be derived by the fact that
det(A) = det(A?). O

By means of Theorem 9.2.2, the proofs of the following theorems are only focused on rows.
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Theorem 9.3.2: Suppose that A is a square matrixz. Let B be the matriz obtained from A by inter-

RioR;
changing the location of two rows, or interchanging the location of two columns, i.e., A T B oor

A 885, g for some i # j. Then det(A) = — det(B).

Skip the proof. If you are interested, see Beezer p.273.

Theorem 9.3.3:  Suppose that A is a square matriz with two equal rows, or two equal columns. Then
det(A) = 0.

Theorem 9.3.4: Suppose that A is a square matriz. Let B be the square matriz obtained from A by

multiplying a single row (say, row i) by the scalar ¢, or by multiplying a single column by the scalar c,

i.e., A Ris B or A5 B. Then det(B) = cdet(A), i.e., det(A) = ¢~ det(B).

Proof:

Theorem 9.3.5: Suppose that A € M,,. Let B be the matriz obtained from A by multiplying the row i
by a scalar ¢ and adding to row j (or by multiplying the column i by a scalar ¢ and adding to the column
j), i # j. Then det(B) = det(A).

Proof:
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Theorem 9.3.6:

ail
ai—1,1
b1 +c1
Qj+1,1
anl
Similarly
ail
a1
Gn1
ail
as1
an1

a12

a;—1,2
ba + c2

Qj41,2

aij—1

az 5—1
An,j—1
aii—1

az j—1

Gp, j—1

a1n arl
Ai—1n ai—1,1
b, +cp| = b1
Ait+1,n Qi+1,1
Ann anl
bi +c1 a4

by +c2  asji1

bn +¢n QAn,j+1
b1 a1 1
by azj41
bn A, j+1

Proof: Expand along row i (or column 7).

a12

a;—1,2

bo

Qj41,2

Q1n

a2n

ann

Aln

a2n

ann

a1

a21

Gnl

Qin ail aio QAin
Gi—1,n i—1,1 A5—-1,2 Qi—1n
b, |+| a co Cn
Ai+1n ai+1,1 Q41,2 Ait+1,n
Ann anl an2 Ann
a1j—1 €1 Q1,5+1 A1n
azj—1 €2 Qg j+1 a2n
Gnj—1 Cn Gpj+1 Ann

O

We will perform a sequence of elementary row operations on a matrix, shooting for an upper triangular

matrix, whose determinant will be simply the product of its diagonal entries. For each row operation, we
will track the effect on the determinant via Theorems 9.3.4, 9.3.5 and 9.3.2.

Example 9.3.1: Compute
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9.4 Examples

Example 9.4.1: Compute

1 ai a2 as
1 a1+0b; a2 as
1 ai as + by as
1 aq ao as + bs.
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Example 9.4.2: Let A, be an n x n matrix

r 1 1 1
1 =z 1 1
1 1 =z 1 n
1 11 x
Find det(Ay). n

Example 9.4.3: Let B, be an n X n matrix in the form

[1—a1 a9 0 - 0 0
-1 ]_—CLQ as
0 -1 l1—ag --- 0 0
0 e l—ap an
0 0 0 - =1 1-—ay,]
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1. Show that det(B,) = det(Bp—1) + (—1)"(a1az - - - ay).

2. Hence show det(B,) =1+ > (—1)!(ajaz - a;).
i=1

Answer:

1. By adding Rq,...

det(B,,) =

,Rn—1 to R, we have

1—a1
—1
0

—a

a2

1—a2

-1

0
0

0
as
1—(13
0
0

Expand along the last row, the above determinant is

as 0
1-— a9 as

()" (-a)| —1 1-ay
0 0

0
0
0

- An—1

0
0
0

an

=

1—a1

0 0

0

0
l—ap—1 ap

0 1

as 0 0

-1 1—&2 as 0
0 -1 1—(13
0 0 0 1—an—

The first matrix is a lower triangular matrix, so the determinant is the product of the diagonal entries,

the second matrix is B,_1. Thus,

det(By) = (—1)"(ay - - an) + det(Bn_1).

2. We prove the result by mathematical induction:

Step 1: The formula is valid for n = 1: det(B1) =1 — ay.

Step 2: Suppose the formula is true for n = k, we want to show that the formula is true for n = k + 1:

det(Bjy1) = (=) Y (ay - - apq1) + det(By,)

The formula is true for n = k + 1.

k
=1+ Z(—l)i(alag ca) + (=DM 0 apg)
i=1

k+1

=14 (~1)(a1---ay).
=1

Step 3: By mathematical induction, the formula is valid for all positive integer.

Explanation: The formula is true for k = 1, then it is true for £ 4+ 1 = 2, so true for £k + 1 = 3, etc.

Hence true for all integers. This process is called mathematical induction.

Example 9.4.4: Let C, be an n X n matrix given by
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1. Show that det(C,,) = a(z + a)" ! + (z — a) det(Cy,_1).
2. Show that det(C,,) = 1((z +a)" + (z — a)").
Leave to students as an exercise.

Example 9.4.5: (Vandermonde Determinant) This is the most important example of determinant.

Let ) )
1 1 1 . 1
ai az as Qn
2 2 2 2
ay as as ay,
L%:: . . . . 9
n—2 n—2 n—2 n—2
ay as as ay
n—1 n—1 n—1 n—1
La1 ) as an "

where n > 2.
n—1
1. det(V,,) = det(Vp—1) [] (an — a;).
i=1

2. det(V,) = [

1<i<j<n

(a; — a;).

Answer:

1. Applying —anRn—1+ Rn, —anRpn—2+ Rp-1, ..., —anR1 + Ro, we have

det(V,)

n
ay
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1
a1 — Aan

aj —aian

Gn
-1 n—2

1
ag — Qp
a% — a0y,
n—2 n—3
n—1 n—2
Qo — Qg9 Gp

1
a3 — ap
2
a3z — asan
n—2 n—3
n—1 n—2
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9.5 More Properties of Determinants
By Theorems 9.3.4, 9.3.5 and 9.3.2 we have

Corollary 9.5.1:

1. Let I, X979 B i £ j. Then det(E) = —1.

2. Let I, R E. Then det(E) = c.
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Ri+R; . .
3. Let I, AN E,i#j. Then det(E) = 1.
Corollary 9.5.2: Let A be a square matriz. Let B be the matrixz obtained from A by applying an
elementary row operation on A. Let E be obtained by applying the same row operation on I,. Then
B = FEA and det(B) = det(EA) = det(E) det(A).

Proof: By Theorem 5.4.4, B = EA. The last result follows from Theorems 9.3.4, 9.3.5 and 9.3.2 and
Corollary 9.5.1. O

Theorem 9.5.3: A is nonsingular if and only if det(A) # 0.

Proof: Suppose A is nonsingular. By Theorem 8.3.7 A is row equivalent to I,. By Corollary 3.1.4,
A = PI, = P, where P is a product of elementary matrices. Applying Corollaries 9.5.2 and 9.5.1
repeatedly we have det(A) # 0.

Suppose A € M, is singular. By Theorem 5.4.4 and 8.3.7, PA = rref(A) with rank(A) < n, where P
is a product of elementary matrices. Hence rref(A) has a zero row. Therefore det(PA) = 0. Applying
Corollary 9.5.2 repeatedly, det(PA) = det(P)det(A). Since P is a product of elementary matrices
(invertible), det(P) # 0. So det(A) = 0. O

In fact we have the following stronger result:
Theorem 9.5.4: Suppose A, B € M,,. Then
det(AB) = det(A) det(B).

Proof: Suppose A is nonsingular. By Theorem 8.3.7, A is row equivalent to I,,. By Theorem 5.4.4, A is a
product of elementary matrices. Applying Corollary 9.5.2 repeatedly we have det(AB) = det(A) det(B).
Suppose A is singular. By Theorem 5.3.3. AB is singular. By Theorem 9.5.3, det(A) = 0 and

det(AB) = 0. Hence det(AB) = det(A) det(B) = 0.
O

Corollary 9.5.5: If A is invertible, then det(A™!) = [det(A)]~1.

Theorem 9.5.6 (Cramer’s rule): Let A be an invertible matriz of order n. Let b € R™. Let Mj, be the
square matriz by replacing the k-th column of A by b. If

x = (r1,29,...,2,)"
s a solution of Ax = b, then
det(Mk)
Tp = —t
det(A)
where k =1,...,n.
Proof:
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Example 9.5.1: Using Carmer’s rule to solve the following system of linear equation.

1 + 2x9 + 3x3 = 2
T + a3 = 3
T + To — r3 = 1

Solution:
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Theorem 9.5.7 (Formula for inverse): Suppose A € M, is an invertible matriz. Then
(=)™ det(A(d]))
det(A)

Pay attention to the order of the indices i and j!

(A7 =

Proof: For convenience, write B = A~!. That is, AB = I,,.

Let C be the square matrix of order n whose (i, j)-the entry is defined by (—1)"+7 det(A(il5)), i.e.,
[Cliy = (—1)"* det(A(il)) = det(A)[Bl;:

In many textbooks, the matrix C is called the cofactor matriz of A. The transpose of C, C?, is called
the adjoint matriz of A which is denoted by adj(A). So adj(A) = C* = det(A)B and we have

Al'=B= adj(A).

det(A)
In general, the formula
Aadj(A) = det(A)I, = adj(A)A

always holds.

Example 9.5.2: By the above formula, find the inverse of

1 2 3
A= 1 0 1
11 -1

Solution: Firstly we have det(A) = 6.

A(1]1) = ( (1’ _1 ) L det(A(L|1)= —1; A(1]2) = ( 1 _1 ) det(A(112))= —2;
A(13) = ( 1 (1) ) L det(A(L[3) =1 A(21) = ( i _i’ ) . det(A@2|1)= —5;
A(2]2) = ( 1 _i’ ) det(A(212))= —4:  A(2]3) = ( 1 i )  det(A(2)3))= —1
A@3[1) = ( 3 ? ) O deb(A@I) =2 A(3[2) = ( 1 i’ ) C det(A(32)= —2:
A(3]3) = ( 1 3 )  deb(A(3]3))= —2.
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