Chapter 8: Bases and Dimension

8.1 Basis

Definition 8.1.1: Let V be a vector space. Then a subset % of V is said to be a basis for V if
1. & is linearly independent.
2. (B) =V, ie., #spans V.

Remark: Most of the time V' is a subspace of R™. Occasionally V' is assumed to be a subspace of M,, ,

or P,. It does not hurt to assume V is a subspace of R™.

Example 8.1.1: Let V =R™. Then & = {ei,...,en} is a basis for V (recall that all the entries of e;
is zero, except the i-th entry being 1). It is called the standard basis.

Answer: Obviously £ is linearly independent.
m

Also, for any a = (v1,...,v0) €V, a= > vie; € (B). So (B)=V. |
i=1

Example 8.1.2: A vector space can have different bases. Example, 8 = {ej,e2} is a basis and

1 1
g = { <0> , (1> } is also a basis for R2.

Example 8.1 Math major only: V = Mss. Let

ELL — 10 EL2
0 ol 0 ol
ol 0 0 22 0 0
1 0|’ 0 1|’

Then # = {EV!, EY2 B2 E22} is a basis for V.
Check:
Obviously £ is linearly independent (exercise).

Also for any A € V,

A=|" "1 = aBY 4 bEY 4 cBP 4 dE*2,

c

So <<%> = ]\/fgvg.

Example 8.2 Math major only: Let V = M,,,. For 1 <i<m, 1< j <mn,let E% be the m x n
matrix with (4, j)-th entry equal to 1 and all other entries equal to 0.
Then {E% |1 <i<m,1<j<n}is a basis for V. (exercise).

Example 8.3 Math major only: Let V = P,.
Then 1,z,2%,...,2" is a basis.
It is easy to show that S = {1,z,22%,...,2"} is linearly independent.
Also any polynomial
f(z) = ag + a1x + asx® + - - + a,z"”

is a linear combinations of S.

Prepared by Prof. W.C. Shiu MATH1030 Linear Algebra I-20/21-8-1



Combining Theorems 7.2.8 and 7.3.5 we have

Theorem 8.1.2: Suppose that A is a square matriz of order m. The columns of A form a basis for R™

if and only if A is nonsingular.
From Theorem 7.3.5 we have

Theorem 8.1.3: Let S be a finite subset of R™. Then basis for (S) exists. In fact, there exists a subset
T of S such that T is a basis for (S).

This theorem can be extended to any vector space, for example a subspace of M,, ,. Following is an

extension.

Theorem 8.1.4: Let S = {a,...,a,} be a finite subset of a vector space. Then basis for (S) exists.
In fact, there exists a subset B of S such that B is a basis for (S).

Before to prove the above theorem we show a useful lemma first.

Lemma 8.1.5: Let S be a finite subset of a vector space. If a € S is linearly dependent on other vectors

in S, then (S) = (S'\ {a}).

Proof: It is clearly that (S \ {a}) C (S). So, we only need to show that (S) C (S'\ {a}).

Proof of Theorem 8.1.4:

8.2 Dimension

Theorem 8.2.1 (Steintz Replacement Theorem): Let V' be a vector space. Suppose V = (aq, ..., o).

Then every linearly independent set {f51,...,Bm} contains at most n elements.

Proof:

Prepared by Prof. W.C. Shiu MATH1030 Linear Algebra I-20/21-8-2



Corollary 8.2.2: If a vector space has one basis with n elements, then all the other bases also have n

elements.

Proof: Suppose & = {ai,...,an} and & = {f1,..., B} are bases of a vector space. Since V = (&)
and £ is linearly independent, by Theorem 8.2.1 m < n.
We change the role of & and A, we will obtain that n < m.

Hence m = n. O

Definition 8.2.3: Let V be a nonzero vector space. Suppose {ai,...,a} is a basis for V. Then ¢ is
called the dimension of V and is denoted by t = dim V and V is called a finite dimensional vector space.

For convenience, we define dim{0} = 0.

Remark 8.2.4: By Corollary 8.2.2, the dimension is well-defined if a vector space contains a basis. So

the next question is whether a vector space has a basis.

Corollary 8.2.5: Suppose m > n. Then any m wvectors in an n-dimensional vector space must be

linearly dependent.

Corollary 8.2.5 just follows from Theorem 8.2.1. We provide a directed proof for Corollary 8.2.5 as follows:
Proof: Suppose that S = {vy,...,v,} is a basis of the vector space V. Let R = {uy,...,up}, where

m > n. We will now construct a nontrivial relation of linear dependence on R.

Since (S) =V, each u; can be written as a linear combination of the vectors in S. This means there
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exist a;; € R, 1 <4< n, 1< j<m,such that
n

U] = a11V1 + 212 + -+ + Ap1Vy = E a;1V;
i=1

n
U2 = @12V1 + A22V2 + - -+ + Ap2Vy = E a;20;
i=1

n
Uy = AU + A2V2 + -+ + QpUp = E AimU;
i=1

Now we form the homogeneous system of n equations in the m unkowns, x1,z2,...,Z,,, where the

coefficients are the just-discovered scalars a;j,

m
E a1;Tj = a1171 + a12T2 + -+ + 1Ty, =0
J=1

m
E a2jTj = 2171 + a22T2 + -+ + A2 Ty = 0
7=1

m

Z njTj = Ap1T1 + Ap2%2 + - + ApmTm = 0

j=1
This is a homogeneous system with more unknowns than equations. So there are infinitely many solutions.
Choose a nontrivial solution and denote it by x1 = ¢1, 9 = co, ..., Ty = Cp. As a solution to the

homogeneous system, we then have

m
g a1;¢; = ai1¢1 + a12c2 + -+ + a1y, =0
j=1

m
E a2;jCj = a1C1 + A22€2 + *++ + A2mCm = 0
=1

m
E (pjCj = Ap1C1 + Ap2Ca + ++ + ApmCm = 0
7j=1

The scalars ¢y, co, ..., ¢, will provide the nontrivial relation of linear dependence we desire,

m

c1u] + coug + -+ CpUy, = E cjuy

J

m n m n n m
= Z Cj Z az'jvz- = Z cjaijv,- = Z cjaijfui
J i j 1 i g
n m n
= Z ZaijCj v; = ZOvi =0.
7 7 7
Hence R is linearly dependent. O

Example 8.4 Math major only: dimR"™ =m.

Example 8.5 Math major only: dim M,,, = mn. See Example 8.2.
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Example 8.6 Math major only: dim P, =n + 1. See Example 8.3.

Example 8.7 Math major only: Let Sy be the set of 2 x 2 symmetric matrices. For A € So,
a b 1 o] o1 00

=a +b +c
b ¢ 0 0 10 0 1

%:10\01’00
()O'_l 0] |01

is a basis for Sy. Hence dim Sy = 3.

A=

We can show that

Example 8.8 Math major only: Let R[z] be the set of all real polynomials. As {1,z,22 23, ...}

being linearly independent, so dim R[z] does not exist (or we can write dim R[z] = c0).

Lemma 8.2.6: Let V be a vector space and aq,...,ap,a € V. Suppose S = {aq,...,ar} is linearly
independent and « ¢ (S). Then S = {au, ..., ax, a} is linearly independent.

Proof: Let the relation of linear dependence of S” be

aior + -+ apap + ac = 0.

Theorem 8.2.7: In a finite dimensional vector space, any linearly independent set of vectors can be

extended to a basis.

Proof: Let {f1,..., 8y} be alinearly independent set in an m-dimensional vector space V. Let {a1,...,an}
be a basis of V. Clearly n < m and {f1,...,0n,@1,...,n} spans V. If n = 0, then there is nothing

to prove. So we assume n > 0. Thus {f,...,08,,@1,..., 0y} is linearly dependent. Then there are
n

m
bi,...,by,a1,...,anm € Rnot all zero such that ) b;8;+ > aja; = 0. We claim that at least one a; # 0.
i=1 j=1

For otherwise, if all the a;’s are zero, then we have i b;3; = 0 and by the assumption, by = --- = b, = 0.
This is impossible. =

Thus by Lemma 8.2.6 {S1,..., Bn,1,...,Qj—1, Qji1,...qn} still spans V. If n > 1, then this set is
linearly dependent and we can apply the above argument to discard another a; and still obtain a spanning
set of V. We continue this process until we get m spanning vectors, n of which are 51,...,3,. Thisis a

required basis. O

Remark 8.2.8: From the proof above, we see that there are more than one way of extending a linearly

independent set to a basis.
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Let V be a finite dimensional vector space and let W be a subspace of V. What is the dimension of
W? That means whether W contains a basis. Is there any relation between the dimension of W and the

dimension of V7?7 We shall answer these questions below.

Theorem 8.2.9: A subspace W of an m-dimensional vector space V' is a finite dimensional vector space

of dimension at most m.

Proof: If W = {0}, then W is 0-dimensional.

Corollary 8.2.10: Let V be a subspace of R™. There exists a basis for V.
Corollary 8.2.11: Let S = {aq,...,an} CR™. Then dim (S) < n and dim (S) < m.

Theorem 8.2.12: Let W be a subspace of V' with a basis = {au,...,a,}. Assume that dimV = m.

Then there exists a basis BU {ani1,...,cm} of V for some vectors api1,. .., in V.
Proof: This follows from Theorem 8.2.7. Il

Remark 8.2.13: Every infinite dimensional vector space also has a basis. However to show this, we
have to require axiom of choice or apply Kuratowski-Zorn’s lemma, which is beyond the scope of this

course.

Theorem 8.2.14: Let V' be an n-dimensional vector space and o/ = {a1,aq,...,an} be a set of vectors

in V. Then the following statements are equivalent:
(a) < is a basis.

(b) o is linearly independent.

(c) V=().

Proof:

(a)=-(b): Clear.
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Corollary 8.2.15: Suppose W1 and Wo are two subspaces of V. If W1 C Wy and dim Wy = dim Wy <
oo, then W1 = Ws.

Proof: Suppose {ai,...,an} is a basis of Wi. Then {ay,...,a,} C Wy is linearly independent. Since
dim Wy = dim W5, by Theorem 8.2.14 it is also a basis of W5. Therefore, W, = Wh. O

Remark 8.2.16: The condition W; C W5 is crucial. For taking Wy = ((1,0)") and Wa = ((0,1)"), it is
easy to see that Wy # Wy yet dim W = dim Wy = 1.

8.3 Ranks and Nullity of a Matrix

Since the RREF of a matrix A is unique, the number of non-zero rows of the RREF of A is denoted by
r(A), which is called the rank of A (has already been defined in Chapter 5).

Definition 8.3.1: Suppose that A € M,, ;.
1. The nullity of A is the dimension of the null space of A4, i.e., n(A) = dim(N(A)).
2. The column rank of A is the dimension of the column space of A, colrank(A) = dim(C(A)).
3. The row rank of A is the dimension of the row space of A, rowrank(A) = dim(R(A)).
By Theorem 7.3.5, we have
Theorem 8.3.2: Suppose that A € M,, . Then r(A) = colrank(A).
In other sections of MATH1030, 7(A) is defined to be colrank(A) directly.

Example 8.3.1: Let us compute the rank and nullity of

2 -4 -1 3 2 1 —4
1 -2 0 0 4 O 1
-2 4 1 0 -5 —4 -8

A=

1 -2 1 1 6 1 -3

2 —4 -1 1 4 -2 -1

-1 2 3 -1 6 3 -1

We have
» -2 0 0 4 0 1
0 0@ O 3 0 -2
0 0 0 -1 0 -3
rref(A) = ©

0 0 0 O 0 @ 1
0 0 0 O 0 0 0
0 0 0 O 0 0 0

From rref(A) we record D ={1,3,4,6} and F' = {2,5,7}.

By Theorem 7.2.10, {A.1, As3, Awa, Ass} is a basis of C(A). So r(A) = colrank(A) = 4.

By Theorem 7.2.9, {(2,1,0,0,0,0,0), (—4,0,—3,1,1,0,0), (~1,0,2,3,0, —1,1)!} is a basis of A'(A).
Hence n(A) = 3.

Now we have r(A) + n(A) = 4 + 3 = 7 = the number of column of A. [ |
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Theorems 7.2.9 and 7.2.10 show that
Theorem 8.3.3 (Dimension Formula): Suppose A € My, . Then
r(A) + n(A) = n.
Corollary 8.3.4: Let A be an m x n matriz. Then
r(A) = r(AY).

Equivalently
dimC(A) = dimR(A).

Proof:

Corollary 8.3.5: Let A be an m x n matriz. Then

r(A) = rowrank(A).

Theorem 8.3.6: Suppose that A € M,,. The following are equivalent.

1. A is nonsingular.

2. r(A) =n.
3. n(A)=0
Proof:

With a new equivalence for a nonsingular matrix, we can update Theorem 7.2.8 which becomes a list

requiring double digits to number.
Theorem 8.3.7: Suppose that A € M,,. The following are equivalent.
1. A is nonsingular.

2. A is row equivalent to I,.

3. N(A) = {0,}.

4. The linear system LS(A,b) has a unique solution for every possible choice of b.

5. A is invertible. Skip it if Chapter 5 has not been taught.
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6. The columns of A form a linearly independent set.
7. The column space of A is R", i.e., C(A) = R".

8. The columns of A form a basis for R™.

9. The rank of A is n, i.e., 7(A) =n.

10. The nullity of A is zero, i.e., n(A) = 0.
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