Chapter 7: Linear Independence, Column and Row Spaces

7.1 Span by Fewer Vectors

Example 7.1.1: Let a3 = (2,-3,1)!, as = (1,4,1)}, ag = (7,-5,4)! and ay = (=7,—6,—5)". Let

W = (a1, a2, a3, 04).

Let
2 1 7 —7
Dz(al ay oy a4)= 3 4 -5 —6
11 4 -5

Check that the vector 8 = (2,3,0,1)! is a solution to the homogeneous system Dz = 03. That is,
2a1 + 3as + 0az + 1ay = 03.

We may rewrite it as
oy = (—2)0&1 + (—3)0&2.

This equation says that whenever we encounter the vector ay, we can replace it with a specific linear
combination of the vectors oy and as. So using a4 in the spanning set of W along with a7 and as is
excessive.

Since any linear combination of a1, g, a3, ay
aay + bag + cas + doy
= aoq + bag + caz + d((—2)ay + (=3)az)
= (a —2d)a; + (b — 3d)aa + cas
can be rewritten as a linear combination of aq, ag, as. So W = (aq, ae, a3).
So the span of our set of vectors, W, has not changed, but we have described it by the span of a set
of three vectors, rather than four. Furthermore, we can achieve yet another, similar, reduction.

Check that the vector
v=(-3,-1,1,0)

is a solution to the homogeneous system Dx = 03. We can write the linear combination,
(—3)@1 + (—1)0&2 + lag = 0s3.

We can solve for as,

ag = 3aq + las.

This equation says that whenever we encounter the vector a3, we can replace it with a specific linear
combination of the vectors a; and as. So, as before, the vector ag is not needed in the description of W,

provided we have a; and a9 available. So
W = <041, 052> .

From the above equation, we may also obtain as = —3a; + a3 and a1 = —%ag + %043. So we may get
that W = (a1, a3) = (ag, as). |
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So W began life as the span of a set of four vectors, and we have now shown (utilizing solutions to
a homogeneous system) that W can also be described as the span of a set of just two vectors. Convince
yourself that we cannot go any further. In other words, it is not possible to dismiss either a1 or as
in a similar fashion and winnow the set down to just one vector. What was it about the original set
of four vectors that allowed us to declare certain vectors as surplus? And just which vectors were we
able to dismiss? And why did we have to stop once we had two vectors remaining? The answers to
these questions motivate linear independence our next section and next definition, and so are worth

considering carefully now.
7.2 Linearly Independent
Definition 7.2.1: Given a set of vectors S = {ay,...,a,}, a true statement of the form

aia; + -+ apay, =0

is a relation of linear dependence (or linear relation) on S. If this statement is formed in a trivial fashion,

ie, a; =0, 1 <4 <n, then we say it is the trivial relation of linear dependence on S.

Definition 7.2.2: The set of vectors S = {aq, ..., an} is linearly dependent if there is a relation of linear
dependence on S that is not trivial. We also say that the vectors aq, ..., ay are linearly dependent. In the

case where the only relation of linear dependence on S is the trivial one, then S is a linearly independent

set of vectors. We also say that the vectors aq, ..., a, are linearly independent.

Remark 7.2.3: In other word, a4, ..., a, are linearly dependent if (and only if) there are ay, ..., a, € R,
n

not all zero, such that > a;a; = 0.
i=1

Remark 7.2.4: To prove ag, ..., «a, are linearly independent, we need to start with a relation of linear

dependence and somehow conclude that the scalars involved must all be zero, i.e., that the relation of

linear dependence only happens in the trivial fashion. In mathematical (symbolic) statement

n
Ezla1+---—|—anan:Zaiaz':O:ai:()Vi.
i=1

Example 7.2.1: Consider the set of n = 4 vectors from R5,
S=1{(2,-1,3,1,2),(1,2,-1,5,2),(2,1,-3,6,1), (—6,7,—1,0,1)"}.

To determine linear independence we first form a relation of linear dependence,

2 1 2 —6
-1 2 7

al 3 + a2 -1 + as -3 + ay -1 =0
6 0

2

We know that a1 = a2 = ag = a4 = 0 is a solution to this equation, but that is of no interest

whatsoever. That is always the case, no matter what four vectors we might have chosen. We are curious
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to know if there are other, nontrivial, solutions. Row-reducing

5 1 2 -6 ® 0 0 -2
12 1 7 0 @® 0 4
3 -1 -3 -1 | 2L 0 0 @ -3
5 6 0 0 0 0 0

5 2 1 1 00 0 0

We could solve this homogeneous system completely, but for this example all we need is one nontrivial

solution.

Example 7.2.2: Consider the set of n = 4 vectors from R?,
T= {(27 _]-7 37 ]-a 2)15’ (]-7 27 _]-a 57 2)t7 (27 ]-7 _3a 6a 1)t7 (_6> 77 _17 17 1)t}

To determine linear independence we first form a relation of linear dependence,

2 1 2 6
-1 2 1 7

al 3 + as -1 + as -3 + a4 -1 =0.
1 6 1
2 1 1
5 1 2 -6 ® 0 0 0
12 1 7 0 @® 0 0
3 -1 -3 -1 |25 0 0 @ o
1 5 6 1 00 0 @
5 2 1 1 0 0 0 0

From the form of this matrix, we see that there are no free variables. So the solution is unique, and
because the system is homogeneous, this unique solution is the trivial solution. So we know that there is
only one way to combine the four vectors of 7" into a relation of linear dependence. And that one way is

the easy and obvious way. In this situation we say that 7' is linearly independent. |
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Theorem 7.2.5: Suppose that S = {aq,...,an} CR™ and A is the m x n matriz whose columns are

the vectors in S. The following statements are equivalent:
(1) S is a linearly independent set,

(2) the homogeneous system Ax = 0y, has a unique solution,
(3) r(A) = rank(A) = n.

Proof:

Example 7.2.3: Is the set of vectors
S = {(2’ _17 37 1a 05 3)t> (9a _67 _27 37 27 1)t7 (17 ]-a 17 07 07 l)tv (_37 17 47 27 17 2)ta (67 _27 17 47 3> 2)t}

linearly independent or linearly dependent?
Solution: Theorem 7.2.5 suggests we place these vectors into a matrix as columns and analyze the

row-reduced version of the matrix,

2 91 -3 6 ®»® o0 o0 0 -1
-1 -6 1 1 -2 0o @® 0 0 1
3 =21 4 1 rref 0 0 @ O 2
1 0 2 4 0o 0 0 (@ 1
0o 20 1 3 0 0 0 O 0
3 1 2 2 0 0 0 O 0
Now we have r =4 < 5 =n. By Theorem 7.2.5, S is a linearly dependent set. |

Example 7.2.4: Consider n = 9 vectors from R*
(_1737172)t7 (7717_376)t7 (1727_1a_2)t7 (07472>9)t7 (57_2747 3)t7 (2717_6ﬂ4)t7 (37()’ _37 1)t7
(1,1,5,3), (—=6,—1,1,1) .

To employ Theorem 7.2.5, we form a 4 x 9 matrix, C', whose columns are these vectors

-1 7 0O 5 2 31 -6

C— 3 1 24 -2 1 01 -1
-3 -1 2 4 -6 -3 5 1

2 6 -29 3 4 13 1
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Theorem 7.2.6: Suppose that S = {ai,...,a,} CR™ and n > m. Then S is a linearly dependent set.

Proof:

We will now specialize to sets of n vectors from R™. This will put Theorem 7.2.6 off-limits, while

Theorem 7.2.5 will involve square matrices.

Theorem 7.2.7: Suppose that A is a square matriz. Then A is nonsingular if and only if the columns

of A form a linearly independent set.

Proof:

A is nonsingular <= Az = 0 has a unique solution

<= columns of A are linearly independent.

Combining Theorem 6.4.4 and the above theorem, here is the update to Theorem 5.3.6.
Theorem 7.2.8: Suppose that A € M,,. The following are equivalent.
1. A is nonsingular.
2. A is row equivalent to I,.
3. N(A) ={0,}.
4. The linear system LS(A,b) has a unique solution for every possible choice of b.
5. A is invertible. (Skip it if Chapter 5 has not been taught.)
6. The columns of A form a linearly independent set.
7. The columns of A span R™.

We update to Theorem 6.4.5

Theorem 7.2.9: Suppose that A € My, ,, and H = rref(A). Suppose that H has r leading columns, with
indices given by D = {dy,...,d,}, while the n — r non-leading columns have indices F' = {f1,..., fo—r}.

Construct the n —r vectors oy, 1 < j <n —r, of length n,

1 if’iGF,’i:fj
[aj]i =4 0 ifieF,i#f;
_[H]k,fj ifiGD,i:dk
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(1) N(A) ={aq,...,an_r).
(2) ai,...,an_ are linearly independent.

Proof: (1) was proved in Theorem 6.4.5.

n—r
To prove (2), we start with ) a;a; = 0 for some a; € R (see Remark 7.2.4). Note that [a]; = dy, ;
i=1
fori € F.

Example 7.2.5: Find the null space of

A= 0 7 7 10 -—-13

Solution:
®» 0 0 1 -2
o @ 0 -2 2
AT 0 0 @ -1
0 0 0 0
0 0 O 0

z4 and x5 are free variables.

aq corresponding to x4 = 1, x5 = 0 and as corresponding to x4 = 0, 5 = 1. We have

-1 2
2 -2
o] = —2 Qg = 1
1 0
0 1
By Theorem 7.2.9, N(A) = (a1, az). |
Suppose a set contains a zero vector, say S = {0, ag,...,a,}. Then

10+ O0as + - - - + O, = 0.

Hence S is linearly dependent.

So, we only consider some finite sets containing non-zero vectors.

Prepared by Prof. W.C. Shiu MATH1030 Linear Algebra I-20/21-7-6



Theorem 7.2.10: A set of non-zero vectors {ai,...,an} is linearly dependent if and only if there is a

vector oy, that is a linear combination of ay,awo, ..., o5 with j < k.

Proof:

7.3 Casting-out Method and Column Space

In Example 7.1.1 we used four vectors to create a span. With a relation of linear dependence in hand,
we were able to cast out two of these four vectors and create the same span from a subset of just two
vectors from the original set of four. We did have to take some care as to just which vector we casted out.
In the next example, we will be more methodical about just how we choose to eliminate vectors from a

linearly dependent set while preserving a span. This method is called the casting-out method.

Example 7.3.1: We begin with a set S containing seven vectors from R*,

0 —1 7 -9

o 2 8 —1 3 9 —13 7
’ 0|’ 2 1| =3 || -4 |’ 12 |7 -8

~1 —4 2 4 8 -31 37

and define W = (S).

The set S is obviously linearly dependent, since we have n = 7 vectors from R*. So we can slim down
S some, and still create W as the span of a smaller set of vectors.

As a device for identifying linear relations among the vectors of S, we place the seven column vectors

of S into a matrix as columns,

1 4 0 -1 0 7 =9
2 8 -1 3 9 —-13 7
o o0 2 -3 -4 12 -8
-1 -4 2 4 8 -31 37

A=

A nontrivial solution to Az = 0 will give us a nontrivial linear relation on the columns of A (which are
the elements of the set S). The rref of A is the matrix

M4 0 0 2 1 -3
g_| 0 0® 013 5
00 0 @ 2 —6
00 0 0 0 0

So we can easily create solutions to the homogeneous system Ax = 0 using the free variables xs, x5, xg, T7.

Any such solution will provide a relation of linear dependence on the columns of A. These solutions
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will allow us to solve for one column vector as a linear combination of some others, in the spirit of
Theorem 7.2.10, and remove that vector from the set. We will set about forming these linear combinations
methodically.
Set the free variable x9 = 1, and set the other free variables to zero. Then a solution to Az = 0 (also
to Hr = 0) is
a1 = (—4,1,0,0,0,0,0)

which can be used to create the linear combination
(—4)A + 1A +0A,3+0A4s + 0Ass + 0A46 + 0A7 = 0.
Then A, can be expressed as a linear combination of {A,},
Awo = 4A,.

This means that A,s is surplus, and we can span W just as well with a smaller set with this vector
removed,

W = <A*1a A*37 A*4) A*5a A*ﬁv A*7> .
Now, set the free variable x5 = 1, and set the other free variables to zero. Then a solution to Hx = 0
is
Q2 = (_27 07 _]-a _27 17 07 O)t
which can be used to create the linear combination
Then A,5 can be expressed as a linear combination of {A,1, A3, A},

A*E) = 2A*1 + 1A*3 + 2A*4-

This means that A,s is surplus, and we can span W just as well with a smaller set with this vector
removed,

W = <A*1a A*37 A*47 A*Ga A*7> .

Do it again, set the free variable zg = 1, and set the other free variables to zero. Then we have
a3 = (-1,0,3,6,0,1,0)"
which can be used to create the linear combination
(—1)Asx1 + 042 + 34,3 + 644 + 0Aus + 1A + 047 = 0.
Then A,s can be expressed as a linear combination of {A.;, A.3, A},
A = 1A + (—3)Ass + (—6) Asy.

This means that A,g is surplus, and we can span W just as well with a smaller set with this vector
removed,

W = (A, Ays, A, Ayr) .

Set the free variable z7 = 1, and set the other free variables to zero. We have

ay = (3,0,-5,-6,0,0,1)"
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which can be used to create the linear combination
3A41 + 042 + (—5)Aus + (—6) Ay + 0A5 + 046 + 1A7 =0
Then A,7 can be expressed as a linear combination of { A1, As3, Asa},
A7 = (=3)Axq + 5A.3 + 6A,4.

This means that A7 is surplus, and we can span W just as well with a smaller set with this vector
removed,
W = (As, Aus, Asa)

You might think we could keep this up, but we have run out of free variables. And not coincidentally,
the set {A.1, Ass, Asa} is linearly independent (check this!). It should be clear how each free variable was
used to eliminate a column from the set used to span the column space, as this will be the essence of the

proof of the next theorem.

Definition 7.3.1: Let A € M,, . A column of A corresponding the leading column of rref(A) is called

a leading column of A. The leading column index of rref(A) is also the leading column index of A.
Important: The above example shows that

1. The leading columns of A form a linearly independent set.

The leading column index of A is D = {1, 3,4}. So {A.1, As3, Awa} is a linearly independent sets.

2. All the other columns of A are linear combinations of A.1, As3, Awa.

In fact, the relation can be written explicitly. First, obviously by H

Hi.o = 4H, = 4e;

H,5s =2H1 + Hy3 +2H,4 = 2e1 + €2 + 2e3
H.=H, —3H,3 —6H,y = e — 3ey — bes

H,; =—-3H, +5H,3+6H,y = —3e; + bes + beg

Correspondingly we have

A = 4A4

Ay =240 + Az + 2454
Ase = A1 —3A,3 — 6444
Ay = =34, + 54,3+ 64,4

n
Suppose A € M, ,. Let Z%‘A*z‘ be a linear combination of A,;’s, where a; € R. Let P be any
i=1
invertible matrix. Then

0, = Zn:aZA*Z ~— 0,=P <zn: alA*Z> = Zn:al(PA*Z) (71)
=1 =1 i=1

In particular, if P is such that PA = rref(A), then PA,; is the i-th column of rref(A). So their linear

relation can be easily inspected.
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Definition 7.3.2: Suppose A € M,, . The subspace spanned by the columns of A is called the column
space of A and denoted by C(A). That is, C(A) = (A1, ..., Awn).

Now, we restate Theorem 6.3.2 as
Theorem 7.3.3: Suppose A € M,, , and b € R™. Then b € C(A) if and only if LS(A,b) is consistent.
Thus, an alternative (and popular) definition of the column space of an m x n matrix A is
C(A) ={y e R™" |y = Az for some x € R"} = {Ax |z € R"} CR™.

Lemma 7.3.4: Let {ou,..., a5} and {B1,...,5:} be two subsets of a vector space. If each B; is a linear

combination of {au,...,as}, then (B1,...,0) C (a1, ..., as).

Proof:
Theorem 7.3.5: Suppose A = [al an} € My, . Let H = rref(A) with D = {d1,...,d,} the set
of indices for the leading columns of H (also of A). Then

1. T=A{woqgy,...,aq,.} is a linearly independent set.

2. C(A) =(T)

Proof: Note that H.y, =e; € R™, 1 <j <.
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Example 7.3.2: Let S = {a; = (1,0,—1,1)", a2 = (0,1,2, -1)}, a3 = (1,1,1,0)}, aq = (—1,1,1,2)F,
as = (—2,3,2,7)"'}. Find a maximal linearly independent subset of S (i.e., the largest and linearly

independent subset of .S).

Since the rref of a matrix is unique, the procedure of Theorem 7.3.5 leads us to a unique set T.
However, there is a wide variety of possibilities for sets T" that are linearly independent and which can be
employed in a span to span C(A). Without proof, we list two other possibilities for the above example:

T ={ay,as,a4} and T* = {az, a3, as}.
Can you prove that 7" and T* are linearly independent sets and C(A) = (T") = (T™*)?

These are maximal linear independent subsets of S too.

Example 7.3.3: Let

1 2 7 1 -1
1 1

A 3 1 0
3 2 5 -1
1 -1 -5 2 0

Find C(A) as a null space of a linear system or a null space of some matrix.

Solution:
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Example 7.3.4: Let
1 4 0 -1 0 7 =9
2 8 -1 3 9 -13 7
o 0o 2 -3 -4 12 -8
-1 -4 2 4 8 -31 37

A:

Find a minimal subset of the set of columns of A that spans C(A) (this is called a minimal spanning set
of C(A), or a basis of C(A) later).

Solution: This is the same matrix in Example 7.3.1.

Restate the last statement of Theorem 7.2.8 we have

Theorem 7.3.6: Suppose A € M,,. A is nonsingular if and only if C(A) = R™.

7.4 Row Space
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Definition 7.4.1: Suppose A € M,,,. The row space of A, R(A), is the column space of A, i.e.,

R(A) = C(AY).

Informally, the row space is the set of all linear combinations of the rows of A. However, we write

the rows as column vectors, thus the necessity of using the transpose to make the rows into columns.

Additionally, with the row space defined in terms of the column space, all of the previous results of this

chapter can be applied to row spaces.

Example 7.4.1: Find R(A) for

1 4 0 -1 0 7 =9
2 8 -1 3 9 -13 7
o 0 2 -3 —4 12 -8
-1 -4 2 4 8 =31 37

A=

To build the row space, we transpose the matrix,

At

I
|
—_
w
|
w

0 9 —4 8
7T —-13 12 -31
-9 7T -8 37

1
0 -1
R(A) =C(A") = < -1 1, 31, -3 |,
0 9 —4
7 —13 12
-9 7 -8
First, row-reduce A,
® 0 o0 -
o ©® o
o0 @ ¥
0 0 0 0
0 0 O 0
0O 0 0 0
0O 0 0 0
Since the leading columns have indices D = {1,2,3}, the column space of A’

-31
37

can be spanned by the
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first three columns of A’,

1 2 0
4 8
0 —1 2
R(A):C(At):< -1 1, 3 1. -3 >
0 9 —4
7 ~13 12
-9 7 -8

Theorem 7.4.2: Suppose A and B are row-equivalent m x n matrices. Then R(A) = R(B).

Proof:

Theorem 7.4.3: Suppose that A is a matriz and H = rref(A). Let S be the set of nonzero columns of
Ht. Then

2. S is a linearly independent set.

Proof:

Prepared by Prof. W.C. Shiu MATH1030 Linear Algebra I-20/21-7-14



Example 7.4.2: Let X = ((1,2,1,6,6), (3,-1,2,—1,6)", (1,—1,0,—1,—2)", (—3,2,-3,6,—10)").
Let A be the matrix whose rows are the vectors in X, so by design X = R(A). Now

2 1 6 6
3 —1 2 -1 6

A=
1 -1 0o -1 =2
-3 2 -3 6 -—-10
We get
» 0 0 2 —1
0 0 3 1
H =rref(A) = ©

0o 0 @® -2 5
0 0 0 0 O

Then the above theorem says that we can grab the nonzero columns of H' and write
X =R(A) =R(H) ={((1,0,0,2,-1)",(0,1,0,3,1)",(0,0,1,-2,5)") .
Note that, the vectors in the spanning set of X here are not come form the original vectors. ]
Theorem 7.4.4: Suppose A is a matriz. Then C(A) = R(AY).
Proof: C(A) = C((AY)!) = R(AY). O
Example 7.4.3: Find a spanning set of the column space of A in Example 7.4.1. Here

1 4 0 -1 0 7 =9
2 8 -1 3 9 -13 7

A=
0 0 2 -3 —4 12 -8
-1 —4 2 4 8 =31 37
Method 1.
M4 00 2 1 -3
A rref 0 0 @ 0 1 -3 5)
00 0@ 2 —6
0 0 0 0 0 0 O
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By Theorem 7.3.5
C(A) = <(17 27 07 _1)t> (Oa _17 27 2)ta (_1a 37 _37 4)t> .

Method 2. The transpose of A is

Al=1 1 3 -3

7T =13 12 =31
-9 7T -8 37

We have
© 0 0 -2
o @ o
00 @ ¥
H=rref(AY=| 0 0 0 0
0 0 0 0
0o 0 0 0
0O 0 0 0
Hence

This is a very nice description of the column space. Fewer vectors than the 7 involved in the definition,

and the pattern of the zeros and ones in the first 3 slots can be used to advantage. For example, let us
check if

B=(3,9,1,4)
is in C(A) or not. If it is, then
3 1 0 0 x
9 0 1 0 Y
= =X —|— + A = 5
B 1 0 Y 0 1 z
31 12 13 31 12, 13

4 -7 7 7 i s

for some z,y,z € R.

From the first three coordinate, we have x = 3,y = 9,2z = 1. Let us check the last coordinate:

31 12 13
— X3+ = x9+ —x1=4.
X 3 7 X 9 7 X

Hence 8 € C(A).

Remark 7.4.5: Both methods describe algorithms to find bases for the column space (i.e., linear
independent sets generate the column space which will be introduced in next chapter). Here are the

differences.
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1. In Method 1, we find a subset of columns that form a basis. However in Method 2, the basis is not

a subset of columns.

2. Given a vector § € C(A), it is easier to express it as a linear combination of the basis given by
Method 2.
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