Chapter 6: Vector Space and Subspace

6.1 Vectors

Let R™ = : v; €E R, 1 <i<m is the set of all column vectors of length m with entries

Um,

from R.
R™ is also called the Fuclidean m-space. This is the same set M, 1(R).

For convenience, we often identify the set R™ with the Cartesian product of m identical real number
set, e, Rx -+« X R={(v,...,0m) |vi e R, 1 <i<m}.

m times

Theorem 6.1.1: Under the addition and scalar multiplication of matriz, we have
1. Additive Closure: If w, v € R™, then u + v € R™.
2. Commutativity: If uw, v € R™, then u+v =v + u.
3. Additive Associativity: If uw, v, w € R™, then u+ (v + w) = (u +v) + w.
4. Zero Vector: There is a vector, O, called the zero vector, such that w + 0, = u for all u € R™.
5. Additive Inverses: If u € R™, then there exists a vector —u € R™ so that u + (—u) = O,.
6. Scalar Closure: If a € R and uw € R™, then au € R™.
7. Scalar Multiplication Associativity: If a,b € R and w € R™, then a(bu) = (ab)u.
8. Distributivity across Vector Addition: If a € R and u, v € R™, then a(u + v) = au + av.
9. Distributivity across Scalar Addition: If a,b € R and u € R™, then (a + b)u = au + bu.

10. One: If u € R™, then lu = u.

Definition 6.1.2: A vector space V over R is a non-empty set with two laws of combination called

vector addition “+” (or simply addition) and scalar multiplication “” satisfying the following axioms:
(V1) +:V xV — V is a mapping and +(«, 3) written by « + § is called the sum of o and .

(V2) + is associative.

(V3) + is commutative.

(V4) There is an element, denoted by 0, such that & + 0 = « for all @ € V. Note that such vector is

unique. It is called the zero vector of V.
(V5) For each o € V there is an element in V', denoted by —a« such that o + (—a) = 0.

(V6) - : R x V — V is a mapping which associates ¢ € R and o € V' a unique element denoted by a - «

or simply aa in V. This mapping is called the scalar multiplication.

(V7) Scalar multiplication is associative, i.e., a(ba) = (ab)a for all a,b € R, a € V.
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(V8) Scalar multiplication is distributive with respect to +, i.e., a(a + ) = aa + af for all a € R,
a,BeV.

(V9) For each a,b € R, a € V, (a+ b)a = aa + ba.
(V10) For eacha € V, 1 -a = a.

Elements of V' and R are called vectors and scalars, respectively. After this section, vectors are often
denoted by lower case Greek letters «, 8,7, ... (you may still use u, v, w, ... ) and scalars are often denoted

by lower case Latin letters a, b, c,....

Lemma 6.1.3 (Cancellation Law): Suppose «, 8 and vy are vectors in a vector space. If a+ = a+ 7,
then 8 = ~.

Corollary 6.1.4: Suppose o and [ are vectors in a vector space. If a + 3 = «, then 8 = 0.

Proposition 6.1.5: Let V' be a vector space over R. We have
(a) Yoo € V, 0ax = 0.
(b) Va eV, (-1)a = —a.

(c) Ya € R, a0 = 0.

Examples:
1. The set {0} is a vector space over R.

2. Let n be a positive integer. R" is a vector space over R. In particular, R is a vector space over R.
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3. Let m and n be positive integers. The set M,, ,,(R) is a vector space over R under the usual addition

and scalar multiplication.

4. Suppose .# is an interval of R. Let C%(.#) be the set of all continuous real valued functions defined
on .#. Then C°(.#) is a vector space over R.

5. Let R[z]| be the set of all polynomials in the indeterminate = over R. Under the usual addition and

scalar multiplication of polynomials, R[x] is a vector space over R.

6. Let n be a positive integer. Let P, be the subset of R[x] consisting of all polynomials in = of degree
n or less (of course, together with the zero polynomial). Then P, is a vector space over R with the

same addition and scalar multiplication as in R[z]| defined in the previous example. Namely, P, can

n .
be written as { > axt
i=0

aiER}.

7. (MATH Major) I am free to define my set and my operations any way I please. They may not look
natural, or even useful, but we will now verify that they provide us with another example of a vector

space. We will check all it satisfies all the definition of vector spaces.

(The crazy vector space) Let C = {(x1,22) | x1, 2 € R}.

(a) Vector Addition: (z1, z2) ® (y1, ¥2) = (x1 +y1 + 1, 2 +y2 + 1).

(b) Scalar Multiplication: a - (x1, x2) = (ax1 + a — 1, axy + a — 1), where a € R.

e Property (V1) and (V6):

The result of each operation is a pair of real numbers, so these two closure properties are fulfilled.

e Property (V2):

e Property (V3):

ubv=(21,22) B (1, y2)=(@1+y1+1, z24+y2+1)
= +o1+1Lyp+ae+1)=(y1, y2) @ (z1, z2)

=vPdu

e Property (V4):

The zero vector is 0 = (—1, —1) (not (0,0))

ud0= (1, 22)® (-1, -1)=(x1+ (=) + 1, 20+ (1) +1) = (21, 22) = u
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e Property (V5):
For each vector, u, we must locate an additive inverse, —u. Here it is, —(x1, x2) = (—x1 —

2, —x3 — 2). As odd as it may look, I hope you are withholding judgment. Check:

u®d (—u) = (1, x2) B (—21 — 2, —19 — 2)
=@+ (21 —2)+ 1L, zo+ (—22—2)+1) = (-1, -1) =

e Property (V7):

a-(b-u)=a-(b-(r1, z2))

a-(bry1+b—1,bra+b—1)
(a(bz1+b—1)4+a—1,albra+b—-1)+a—1)
= ((abzxy +ab—a)+a—1, (abra +ab—a)+a—1)
= (abz1 + ab— 1, abxy + ab— 1)
= (
= (

a ) (:Uh .21?2)
ab) - u

e Property (V8):

a-(u

2
<

)
a- ((r1, 12) ® (y1, y2))
=a-(r1+y1+1, z2+y2+1)

=(alxz1+y1+1)+a—-1,a(ze+y2+1)+a—1)
=(ax1+ay1+a+a—1,axa+ays+a+a—1)

(

(
=(ax1+a—14+ayy+a—1+1,axe+a—14+ays+a—1+1)
=((ax1+a—-1)+(ay1 +a—1)+1, (axza+a—1)+ (aya+a—1)+1)
=(ax1+a—1,are+a—1)® (ay1 +a—1, aya +a—1)
=a- (21, 22) D a- (y1, y2)

=a-uda-v
e Property (V9):

(a+b)u

a+b)-(x1, z2)

(a+b)x1+(a+b)—1, (a+b)za+ (a+b)—1)

ary +bri+a+b—1,ars+bro+a+b—1)
ar1+a—1+bri+b—1+1,axa+a—1+bra+b—1+1)
(az1+a—1)+(bx1+b—1)+1, (axza+a—1)+ (bra+b—1)+1)
ary1+a—1,axa+a—1)® (b1 +b—1, bxg+b—1)
=a-(r1,22) B b (21, 22)

=a-u®d®b-u

= (
= (
= (
= (
= (
= (

e Property (V10):
1-u:1-(x1,xg):(:1:1+1—1,:1:2+1—1):(x1,m2):u
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Thus, C is a vector space, as crazy as that may seem.

Notice that in the case of the zero vector and additive inverses, we only had to propose possibilities
and then verify that they were the correct choices. You might try to discover how you would arrive at
these choices, though you should understand why the process of discovering them is not a necessary

component of the proof itself.

6.2 Subspaces

Definition 6.2.1: Let V be vector space. A subset W of V is said to be a subspace of V if
1. W is nonempty.

2. Fora,eW,a+5e€W.

3. Forae Rand a € W, aacc € W.

Proposition 6.2.2: Let V be a vector space and W a subspace of V.. Then 0 is in W.

Proof: By Definition 6.2.1 Condition 1, W is nonempty. So we may choose a € W.

By Definition 6.2.1 Condition 3, with a = —1, (-1)a = —a € W.

By Definition 6.2.1 Condition 2, choose # = —a. Then a+ € W. But a+ = a+ (—a) = 0. So
0cW. O

Theorem 6.2.3: Let V' be a vector space and W a subset of V.. W is a subspace if and only if
(a) W is nonempty.

(b) Foranya € R, o, € W, acc + 5 € W.

Example 6.2.1: V =R™ W ={0,,}.

W consists of one element. It is called the zero subspace of V.

Check that it is a subspace: W is nonempty. For any a € R, o, 3 e W, a = =05, aa+ 3 =0,, € W.
Thus by Theorem 6.2.3, W is a subspace. |

Example 6.2.2: V =R™, W = V. Obviously W is a subspace. |
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Example 6.2.3: V =R"™ W ={a € V|[a]; =0}.
Check that W is a subspace:

Example 6.2.4: We identify R® with RxRxR. Let V =R3and W = {(z,y,2) € R® | +2y+32 = 0}.

Example 6.2.5: V=R"™ W ={a e V|[a|; =1}

Example 6.2.6: V =R™ W ={(v1,...,05) €V | Y1 v =1}

Theorem 6.2.4: Let A € My, . N(A) is a subspace of R™.
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Example 6.1 Math major only: Let S, be the set of symmetric matrices of M, ,. Then S, is a
subspace of M, .
Checking: Since O,, € W, W is nonempty. Suppose a € R, A, B € W. Then A’ = A, B! = B.

(aA+ B)! = aA' + B' = aA + B.
Thus aA + B € S,,. Hence S, is a subspace by Theorem 6.2.3.

Example 6.2 Math major only: Let

F={f(z) e P.|f(1)=0}

Then F' is a subspace of P,.
Checking: Since the zero polynomial is in F', F' is nonempty. Suppose a € R, f,g € F. Then f(1) =
g(1) = 0. Hence

(af+9)(1)=af(l)+g(l)=a0+0=0.

So af + g € F. Hence F' is a subspace by Theorem 6.2.3.

Example 6.3 Math major only: Let

E={f(x) e P, | f(z) = f(-2)}.

Then F is a subspace of P,.
Checking: Since 0 € E, E is nonempty. Suppose a € R, f,g € E. Then f(z) = f(—x), g(z) = g(—=).
Hence

(af +g)(—z) = af(—x) + g(—z) = af (z) + g(z) = (af + g)(z).
So af + g € E. Hence FE is a subspace by Theorem 6.2.3.

6.3 Linear Combinations

Definition 6.3.1: Given n vectors ay, ..., a, € R™ and n scalars cy, ..., ¢, € R, their linear combination

is the vector

n
c1oq + -+ cpoy = E Ci Q.
i=1

Example 6.3.1: Suppose that

2 6 -5
4 3 2 2
c1=1,c0=—-4,c3=2,c4=—1 and a1 = -3 , Qg = 0 , Q3 = L , 0y = -
1 -2 1 7
1 -3 1
|9 ] | 4 | 0] | 3
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Their linear combination is

2 -5
4 3 2 2
-3 0 1 )
c1aq + caa + czasg + cpay = (1) . + (—4) y +(2) ) +(—1)
1 -3
L9 ] i 4 | i 0 | i 3 |
2] [-24] [-10] [-3] [-35]
—12 4 —2 —6
-3 0 2 5 4
= + + + =
8 2 -7 4
—4 —6 -1 -9
| 9 ] _—16_ i 0 | _—3_ _—10_

What vectors were you able to create? Do you think you could create the vector 8 = (13,15,5, —17,2, 25)*
in R® with a suitable choice of four scalars? Do you think you could create any possible vector from RS by
choosing the proper scalars? These last two questions are very fundamental, and time spent considering

them now will prove beneficial later.

Example 6.3.2: The system of linear equation

—7x1 — 6z — 1223 = -—-33
51 + bxry + Txgz = 24
T +  dxz = )
ie.,
—Tx1 — 69 — 1213 —-33
5x1 + dxo + Tx3 = 24
x1 +4z3 )
It can be rewritten as
=Tz —62x2 —12x3 —-33
5xq + 5x9 + Txs = 24
T 0xo 43 5
or
-7 —6 —12 —-33
x1 5 + 22 5 + x3 7 = 24
0 4 5

It is known that the system has only solution
Tl = —3, xTro = 5, xr3 = 2.

So, in the context of this example, we can express the fact that these values of the unknowns are a

solution by writing the linear combination,

—7 -6 —12 —33
(—3) 5 | +(5) +(2) T | = 24
4 5
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Notice how the three vectors in this example are the columns of the coefficient matrix of the system
of equations. This is our first hint of the important interplay between the vectors that form the columns

of a matrix, and the matrix itself. |

Example 6.3.3:

rT — X9 + 2x3 =
207 + x2 4+ 3 = 8
1 + @2 =
can be written as
1 — T2 + 223 1
2x1 + x2 + 3 = 8
xr1 + X2 5

Converting the left-hand side into a linear combination

1 -1 2 1
T 2 + 29 1 + x3 1 = 8
1 1 0 5

Row-reducing the augmented matrix for the system leads to the conclusion that the system is consistent

and has free variables, hence infinitely many solutions. For example, the two solutions

-1 2 1 -1 2
)1 2 [+®3) 1| +(1) =18 |=0B)1 2 |+(©2 1 | +(0)
1 0 ) 1 0

1 —1 2 -1 2 0
2)] 2 | +3) 1|+ (1) +(=3)] 2 | +(-2) 1 | +(-0) =| 0
1 0 1 1 0

1 -1 2 0
ol |+ 1]+ |=]o
1 1 0 0

Notice that these three vectors are the columns of the coefficient matrix for the system of equations.
This equality says there is a linear combination of those columns that equals the vector of all zeros. Give

it some thought, but this says that
1’1:—1, $2:1, {L‘3:1

is a nontrivial solution to the homogeneous system of equations with the coefficient matrix for the original

system. In particular, this demonstrates that this coefficient matrix is singular.
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Theorem 6.3.2: Let A € My, ,(R). o = (z1,...,2,)" € R" is a solution to the linear system of
equations LS(A,b) if and only if b equals the linear combination of the columns of A formed with the
entries of «,

n
b= -75114*1 + 33214*2 +---+ an*n = szA*z
=1

Proof: Since Aa = Z?:l xr; Ay, we have the theorem. O

Example 6.3.4: Let

1 -1 2 -1 1
Q] = 2 , Qg = 1 , 3 = 1 , Oy = 0 a/BZ
0 3 1 3

1. Determine if § is a linear combination of {a, s, as}. If yes, find the linear combination.

2. Determine if 3 is a linear combination of {a1, ag, as, as}. If yes, find the linear combination.
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Back to see

Example 3.2.9 Solve the following system of linear equations over R:

Ty + x9 — 4dxz + x4 = 3
201 — 3x9 + Txs + Txy = —4
To — 33 — x4 = 2
We get
r1 = 1 + x3 — 214
To = 2 + 3x3 + x4
and the general solution is
T 1+a—2b
o | 2+3a+b
x| a
T4 b

In this case, r = 2, D = {1,2} and F' = {3,4}.

Now the general solution can be expressed as a linear combination

1 1 1 —2
2 3 1

2 +a +0b

3 0 1 0

T4 0 0 1

We will develop the same linear combination using three steps. While the method above is instructive,

the method below will be our preferred approach.

Step 1. Write the vector of unknowns as a fixed vector, plus a linear combination of n — r vectors, using

the free variables as the scalars.

X

[y

xT
z = = + x5 + x4
X

w N

X

N

Step 2. Use 0’s and 1’s to ensure equality for the entries of the vectors with indices in F' (corresponding

to the free variables).

I
T2

z = 25 = 0 + 3 ] + x4 0
Iy 0 0

Step 3. For each lead variable, use the augmented matrix to formulate an equation expressing the lead
variable as a constant plus multiples of the free variables. Convert this equation into entries of

the vectors that ensure equality for each lead variable, one at a time.
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Mo
x2
g = 1 4+ 23 — 214 =
z3

Iq

I

€2
To = 2 4+ 3x3 + x4 =
3

Lq

It only takes us three vectors to describe the entire infinite solution set

+ZL‘3

S O NN o=
O = W

One more example:

Example 6.3.5: Consider a linear system of m = 5 equations in n = 7 unknowns x, . .

augmented matrix A.

2 1 -1

1 1 -3

(Alb) = 1 2 -8

3 3 -9

-2 -1 1

O o0 2

0 @ -5

rref(A|b) = 0 0 0
0 O 0

0 0 0

So rank(A) = r = 4 = rank(Al|b), also D = {1,2,5,6} and F = {3,4,7,8}. Thus, x1,z2, z5,x¢ are lead

variables while x3, x4, x7 are free variables. We try to apply our preferred approach to express the general

solution.
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-2
1

o T G SO )

0
0

©
0
0

o O

S O N -

— Ul = s

1
+x
11
0
1
. 3
T
11
0
r3, x4 €R

21
-5
—15
—24
-30

15
—10
11
—21
0

+ x4

+ x4
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Theorem 6.3.3: Suppose that (A|b) is the augmented matriz for a consistent linear system of m
equations in n unknowns. Let (H|a) = rref(A|b). Suppose that H has r leading columns, with indices
D = {ky,...,k.}, while the n — r non-leading columns have indices in F = {f1,..., fn—r,n + 1}. Define
vectors B, aj, 1 < j <n—r of length n by

0 fi € F
18] = yrer

lalp ifieD,i=d

1 if’iGF,iij
[ajli= 140 ifieF,i#f; -

_[H]k,fj ifieD,i=d
Then the set of solutions to the system of equations Ax = b is

S={B+cia1+ - +cprn_y|cr,...,cnor ER} = 5+chaj cgeR1<i<n-—r
j=1
Proof: We need only show that S is the solution set for the system Hx = a. Only the first r equations
of this system we have to consider.
Note that [H]gq, =0 except [Hlgq, = 1.
Now Vy € S, v =08+ Z cja; for some ¢j € R.

Jj=
Consider the ¢ entry of H% 1<i<r:

n n—r n
[Hyle=[H(B+ ZCJ% ¢ = [HB + ZCJ Hajle = [HleilBli + Y ¢; Y _[Hleilayli
7=l j=1 i=1 j=1 =1
= > [Hlea,[Blay, + ZCJ (Z Jedr [=[Hlr, 1] + [H]é,fj>
k=1 j=1 k=1
dﬁzcj Jea,[=[Hle,p;] + [Hleg;) = E+ZCJ Hle g, + [Hleg;) = lale.
So 7 is a solution of Hx = a.
For the second part of the proof, we let v = (z1,22,...,2,)" be a solution of Hx = a.

Consider each entry of the matrix equation that v makes equation ¢ of the system true for all 1 < ¢ < m,

n
[Hleazy + [Hlogws + - + [Hlgnan = Y _[Hlejz; = lal,
j=1
When ¢ < 7, the leading columns of H have zero entries in row ¢ with the exception of column dy,
which will contain a 1. So for 1 < ¢ < r, equation ¢ simplifies to

lag, + [Hlepyop + [Hlepop, + o+ [Hleg, 25, = 2d, + Z le.f; x5, = lale.
Thus
n—r n—r
(V]a, = wa, = [a]¢ + Z Hlop)zs, = [Bla, + > _loglaxy, = [B+ Y x50
j=1 j=1 d,
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This tells us that the entries of the solution vector 4 corresponding to lead variables (indices in D), are
equal to those of a vector in the set S. We still need to check the other entries of the solution vector v
corresponding to the free variables (indices in F') to see if they are equal to the entries of the same vector
in the set S. To this end, suppose 7 = f; € F. Then

[v]i = zp, =0+ 0xp +0xp, +---+0xyp,_, + 1oy, +0xp, +---+0xp,
= [Bli + g laali +xplonli + -+ xp [aj-ali + 2oyl + 2p [agiali + o+ o, an—r]i

n—r
5 + Z SUkazk
k=1

7

n—r
Soy=p+ > zpop €S, O
k=1

6.4 Spanning set
Definition 6.4.1: Given a set of vectors

S:{oq,...,ozk},

their span, (), is the set of all possible linear combinations of ay, ..., ax. Symbolically,
k
(S) = {Zaiai a; € R, 1 Sigk}.
i=1

For convenience, we let (&) = {0}. Also, ({a1,...,ax}) is simply denoted by (aq,...,ag).

Theorem 6.4.2: Let S ={ay,...,a} CV =R™. Then (S) is a subspace of V.

k
Proof: Clearly, (S) is not empty, since 0,, = > Oc; € (S5).

i=1

Main Questions:
1. Determine whether a vector a € (5).
2. Describe the set (S).
3. Is (S) =R™ if S is a subset of R™?
Example 6.4.1: Consider the set S ¢ R*

S={(1,1,3,1)"(2,1,2,-1)",(7,3,5,-5)", (1,1,-1,2)",(-1,0,9,0)"}.
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Is a = (—15,-6,19,5)" an element of (S)?

We are asking whether there are scalars a1, as, ag, a4, a5 € R such that

1 9 7 1 -1 ~15
L, . ., . 0 —6

a a a a a = x =
3 S 3 o > 19
1 -1 -5 9 0 5

Searching for these scalars is equivalent to finding solution to a linear system of equations with
augmented matrix
2 7 1 —-1|-15
1 3 1 0| -6
19
-1 -5 2 0 5

— W =
[\
ot
|
—_
Ne)

which row-reduces to
-1 0 3] 10

@ 0
0 ©
0 O

4 0 —1|-9
0 @D -2|-7
00 00 0|0

At this point, we see that the system is consistent. So we know there is a solution for the five scalars
ai,az,as,aq,as. This is enough evidence for us to say that a € (S). If we wished further evidence, we

could compute an actual solution, say
al = 2,@2 = 1,@3 = —2,a4 = —3,a5 = 2.
]

Example 6.4.2: Keeping the set S as in the previous example, is 3 = (3,1,2,—1)! an element of (S)?

We are asking whether there are scalars aq, as, as, a4, as such that

1 2 7 1 -1 3
1 1 1 0
a +a +a +a +a =f3= *
B 2 5 3 5 o 5 9 B ) (*)
1 -1 -5 2 0 -1

1 2 7 1 -1 3
1 1 3 1 0 1
3 2 5 -1 91 2
1 -1 -5 2 0|-1

which row-reduces to
-1 0 310

0
@ 4 0 —1|0
0

0@ —2|0

O)
0
0
00 00 0@

At this point, we see that the system is inconsistent. So there are no scalars a1, as, as, a4, as satisfying

(*). Thus 8 & (S). ]

From the above illustration, we can easy to get the following theorem (proof is omitted):
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Theorem 6.4.3: Suppose S = {aq,...,an} CR™. Let A be an m x n matriz whose i-th column is o;.

A wvector a € (S) if and only if Ax = « is consistent.

Example 6.4.3: Let a = (v1,v2,v3,v4)" € R Following Example 6.4.1, find the condition(s) of a such
that a € (5).

Theorem 6.4.4: Let S = {ai1,...,an} C R™ and let A be the m x m matriz with the i-th column is
a;. A is non-singular if and only if (S) = R™.

Proof: Note that (S) C R™ is always hold.
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Theorem 6.4.5: Suppose that A € My, ,, and H = rref(A). Suppose that H has r leading columns, with
indices given by D = {k1,...,k,}, while the n — r non-leading columns have indices F = {f1,..., fn—r}.

Construct the n — r vectors aj, 1 < j < n —r, of length n,
1 ifieF,i=f;
[ajli=40 ifi€F,i# f
—[Hlp,y;, ifi€D,i=dy
Then the null space of A is given by
N(A) = (a1,...,an—p).
Proof: This theorem follows from Theorem 6.3.3 by letting b = 0,,. O

Do not memorize this theorem. Instead, study the examples below.

Example 6.4.4: Find a spanning set of N/(A), where

2 1 5 1 5 1 ® 0 2 0 -1 2

1 1 3 1 6 -1 0 ®1 0 3 -1

A= -1 1 -1 0 4 3|20 00@ 4 -2
3 2 —4 -4 -7 0 0000 0 0

3 -1 5 2 2 3 0000 0 0
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