
Chapter 6: Vector Space and Subspace

6.1 Vectors

Let Rm =




v1
...

vm


∣∣∣∣∣∣∣∣ vi ∈ R, 1 ≤ i ≤ m

 is the set of all column vectors of length m with entries

from R.
Rm is also called the Euclidean m-space. This is the same set Mm,1(R).

For convenience, we often identify the set Rm with the Cartesian product of m identical real number

set, i.e., R× · · · × R︸ ︷︷ ︸
m times

= {(v1, . . . , vm) | vi ∈ R, 1 ≤ i ≤ m}.

Theorem 6.1.1: Under the addition and scalar multiplication of matrix, we have

1. Additive Closure: If u, v ∈ Rm, then u+ v ∈ Rm.

2. Commutativity: If u, v ∈ Rm, then u+ v = v + u.

3. Additive Associativity: If u, v, w ∈ Rm, then u+ (v +w) = (u+ v) +w.

4. Zero Vector: There is a vector, 0m, called the zero vector, such that u+ 0m = u for all u ∈ Rm.

5. Additive Inverses: If u ∈ Rm, then there exists a vector −u ∈ Rm so that u+ (−u) = 0m.

6. Scalar Closure: If a ∈ R and u ∈ Rm, then au ∈ Rm.

7. Scalar Multiplication Associativity: If a, b ∈ R and u ∈ Rm, then a(bu) = (ab)u.

8. Distributivity across Vector Addition: If a ∈ R and u, v ∈ Rm, then a(u+ v) = au+ av.

9. Distributivity across Scalar Addition: If a, b ∈ R and u ∈ Rm, then (a+ b)u = au+ bu.

10. One: If u ∈ Rm, then 1u = u.

Definition 6.1.2: A vector space V over R is a non-empty set with two laws of combination called

vector addition “+” (or simply addition) and scalar multiplication “·” satisfying the following axioms:

(V1) + : V × V → V is a mapping and +(α, β) written by α+ β is called the sum of α and β.

(V2) + is associative.

(V3) + is commutative.

(V4) There is an element, denoted by 0, such that α + 0 = α for all α ∈ V . Note that such vector is

unique. It is called the zero vector of V .

(V5) For each α ∈ V there is an element in V , denoted by −α such that α+ (−α) = 0.

(V6) · : R × V → V is a mapping which associates a ∈ R and α ∈ V a unique element denoted by a · α
or simply aα in V . This mapping is called the scalar multiplication.

(V7) Scalar multiplication is associative, i.e., a(bα) = (ab)α for all a, b ∈ R, α ∈ V .
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(V8) Scalar multiplication is distributive with respect to +, i.e., a(α + β) = aα + aβ for all a ∈ R,
α, β ∈ V .

(V9) For each a, b ∈ R, α ∈ V , (a+ b)α = aα+ bα.

(V10) For each α ∈ V , 1 · α = α.

Elements of V and R are called vectors and scalars, respectively. After this section, vectors are often

denoted by lower case Greek letters α, β, γ, . . . (you may still use u,v,w, . . . ) and scalars are often denoted

by lower case Latin letters a, b, c, . . . .

Lemma 6.1.3 (Cancellation Law): Suppose α, β and γ are vectors in a vector space. If α+ β = α+ γ,

then β = γ.

Proof: There exists −α. So

β = β + 0 = β + α + (−α) = α + β + (−α)

= α + γ + (−α) = α + (−α) + γ = 0+ γ = γ + 0 = γ. �

Corollary 6.1.4: Suppose α and β are vectors in a vector space. If α+ β = α, then β = 0.

Proof: By (V4),

α + β = α = α + 0.

By Lemma 6.1.3, β = 0. �

Proposition 6.1.5: Let V be a vector space over R. We have

(a) ∀α ∈ V , 0α = 0.

(b) ∀α ∈ V , (−1)α = −α.

(c) ∀a ∈ R, a0 = 0.

Proof:

(a) Consider

0α = (0 + 0)α = 0α + 0α.

By Corollary 6.1.4, 0α = 0.

(b) 0 = 0α = (1 + (−1))α = 1α + (−1)α = α + (−1)α. Thus, by uniqueness

(−1)α = −α.

(c) a0 = a(0+ 0) = a0+ a0. By Corollary 6.1.4, a0 = 0. �
Examples:

1. The set {0} is a vector space over R.

2. Let n be a positive integer. Rn is a vector space over R. In particular, R is a vector space over R.
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3. Let m and n be positive integers. The set Mm,n(R) is a vector space over R under the usual addition

and scalar multiplication.

4. Suppose I is an interval of R. Let C0(I ) be the set of all continuous real valued functions defined

on I . Then C0(I ) is a vector space over R.

5. Let R[x] be the set of all polynomials in the indeterminate x over R. Under the usual addition and

scalar multiplication of polynomials, R[x] is a vector space over R.

6. Let n be a positive integer. Let Pn be the subset of R[x] consisting of all polynomials in x of degree

n or less (of course, together with the zero polynomial). Then Pn is a vector space over R with the

same addition and scalar multiplication as in R[x] defined in the previous example. Namely, Pn can

be written as

{
n∑

i=0
aix

i

∣∣∣∣ ai ∈ R
}
.

7. (MATH Major) I am free to define my set and my operations any way I please. They may not look

natural, or even useful, but we will now verify that they provide us with another example of a vector

space. We will check all it satisfies all the definition of vector spaces.

(The crazy vector space) Let C = {(x1, x2) | x1, x2 ∈ R}.

(a) Vector Addition: (x1, x2)⊕ (y1, y2) = (x1 + y1 + 1, x2 + y2 + 1).

(b) Scalar Multiplication: a · (x1, x2) = (ax1 + a− 1, ax2 + a− 1), where a ∈ R.

� Property (V1) and (V6):

The result of each operation is a pair of real numbers, so these two closure properties are fulfilled.

� Property (V2):

u⊕ (v ⊕w) = (x1, x2)⊕ ((y1, y2)⊕ (z1, z2))

= (x1, x2)⊕ (y1 + z1 + 1, y2 + z2 + 1)

= (x1 + (y1 + z1 + 1) + 1, x2 + (y2 + z2 + 1) + 1)

= (x1 + y1 + z1 + 2, x2 + y2 + z2 + 2)

= ((x1 + y1 + 1) + z1 + 1, (x2 + y2 + 1) + z2 + 1)

= (x1 + y1 + 1, x2 + y2 + 1)⊕ (z1, z2)

= ((x1, x2)⊕ (y1, y2))⊕ (z1, z2)

= (u⊕ v)⊕w

� Property (V3):

u⊕ v = (x1, x2)⊕ (y1, y2) = (x1 + y1 + 1, x2 + y2 + 1)

= (y1 + x1 + 1, y2 + x2 + 1) = (y1, y2)⊕ (x1, x2)

= v ⊕ u

� Property (V4):

The zero vector is 0 = (−1, −1) (not (0, 0))

u⊕ 0 = (x1, x2)⊕ (−1, −1) = (x1 + (−1) + 1, x2 + (−1) + 1) = (x1, x2) = u
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� Property (V5):

For each vector, u, we must locate an additive inverse, −u. Here it is, −(x1, x2) = (−x1 −
2, −x2 − 2). As odd as it may look, I hope you are withholding judgment. Check:

u⊕ (−u) = (x1, x2)⊕ (−x1 − 2, −x2 − 2)

= (x1 + (−x1 − 2) + 1, x2 + (−x2 − 2) + 1) = (−1, −1) = 0

� Property (V7):

a · (b · u) = a · (b · (x1, x2))

= a · (bx1 + b− 1, bx2 + b− 1)

= (a(bx1 + b− 1) + a− 1, a(bx2 + b− 1) + a− 1)

= ((abx1 + ab− a) + a− 1, (abx2 + ab− a) + a− 1)

= (abx1 + ab− 1, abx2 + ab− 1)

= (ab) · (x1, x2)

= (ab) · u

� Property (V8):

a · (u⊕ v)

= a · ((x1, x2)⊕ (y1, y2))

= a · (x1 + y1 + 1, x2 + y2 + 1)

= (a(x1 + y1 + 1) + a− 1, a(x2 + y2 + 1) + a− 1)

= (ax1 + ay1 + a+ a− 1, ax2 + ay2 + a+ a− 1)

= (ax1 + a− 1 + ay1 + a− 1 + 1, ax2 + a− 1 + ay2 + a− 1 + 1)

= ((ax1 + a− 1) + (ay1 + a− 1) + 1, (ax2 + a− 1) + (ay2 + a− 1) + 1)

= (ax1 + a− 1, ax2 + a− 1)⊕ (ay1 + a− 1, ay2 + a− 1)

= a · (x1, x2)⊕ a · (y1, y2)

= a · u⊕ a · v

� Property (V9):

(a+ b) · u

= (a+ b) · (x1, x2)

= ((a+ b)x1 + (a+ b)− 1, (a+ b)x2 + (a+ b)− 1)

= (ax1 + bx1 + a+ b− 1, ax2 + bx2 + a+ b− 1)

= (ax1 + a− 1 + bx1 + b− 1 + 1, ax2 + a− 1 + bx2 + b− 1 + 1)

= ((ax1 + a− 1) + (bx1 + b− 1) + 1, (ax2 + a− 1) + (bx2 + b− 1) + 1)

= (ax1 + a− 1, ax2 + a− 1)⊕ (bx1 + b− 1, bx2 + b− 1)

= a · (x1, x2)⊕ b · (x1, x2)

= a · u⊕ b · u

� Property (V10):

1 · u = 1 · (x1, x2) = (x1 + 1− 1, x2 + 1− 1) = (x1, x2) = u
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Thus, C is a vector space, as crazy as that may seem.

Notice that in the case of the zero vector and additive inverses, we only had to propose possibilities

and then verify that they were the correct choices. You might try to discover how you would arrive at

these choices, though you should understand why the process of discovering them is not a necessary

component of the proof itself.

6.2 Subspaces

Definition 6.2.1: Let V be vector space. A subset W of V is said to be a subspace of V if

1. W is nonempty.

2. For α, β ∈ W , α+ β ∈ W .

3. For a ∈ R and α ∈ W , aα ∈ W .

Proposition 6.2.2: Let V be a vector space and W a subspace of V . Then 0 is in W .

Proof: By Definition 6.2.1 Condition 1, W is nonempty. So we may choose α ∈ W .

By Definition 6.2.1 Condition 3, with a = −1, (−1)α = −α ∈ W .

By Definition 6.2.1 Condition 2, choose β = −α. Then α + β ∈ W . But α + β = α + (−α) = 0. So

0 ∈ W . �

Theorem 6.2.3: Let V be a vector space and W a subset of V . W is a subspace if and only if

(a) W is nonempty.

(b) For any a ∈ R, α, β ∈ W , aα+ β ∈ W .

Proof: [⇒] By Definition 6.2.1 Condition 1, W is nonempty.

Next, for a ∈ R, α, β ∈ W , by Definition 6.2.1 Condition 3, aα ∈ W . By

Definition 6.2.1 Condition 2, aα + β ∈ W .

[⇐] Condition 1 of Definition 6.2.1 holds obviously.

For any α, β ∈ W , choose a = 1. By Condition (b) we have α+β = 1α+β ∈ W .

So Condition 2 of Definition 6.2.1 holds.

For α ∈ W , choose a = −1 and β = α. By Condition (b) we have (−1)α+α ∈
W . Hence [(−1) + 1]α = 0α = 0 in W .

For a ∈ R and α ∈ W . Let β = 0. By Condition (b) we have aα = aα+0 ∈ W .

So Condition 3 of Definition 6.2.1 holds.
Thus, W is a subspace. �

Example 6.2.1: V = Rm, W = {0m}.
W consists of one element. It is called the zero subspace of V .

Check that it is a subspace: W is nonempty. For any a ∈ R, α, β ∈ W , α = β = 0m, aα+ β = 0m ∈ W .

Thus by Theorem 6.2.3, W is a subspace. �

Example 6.2.2: V = Rm, W = V . Obviously W is a subspace. �
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Example 6.2.3: V = Rm, W = {α ∈ V | [α]1 = 0}.
Check that W is a subspace:

First all, 0 ∈ W , so W is nonempty.
For any a ∈ R, α, β ∈ W . Then [α]1 = [β]1 = 0. So [aα+β]1 = a[α]1+[β]1 = 0.

Hence aα + β ∈ W . Thus by Theorem 6.2.3, W is a subspace. �

Example 6.2.4: We identify R3 with R×R×R. Let V = R3 and W = {(x, y, z) ∈ R3 | x+2y+3z = 0}.

Obviously 03 ∈ W , so W is nonempty.

For any c ∈ R, α = (a1, a2, a3), β = (b1, b2, b3) ∈ W ,

a1 + 2a2 + 3a3 = 0 and b1 + 2b2 + 3b3 = 0.

Now cα + β = (ca1 + b1, ca2 + b2, ca3 + b3). So

(ca1 + b1) + 2(ca2 + b2) + 3(ca3 + b3) = c(a1 + 2a2 + 3a3) + (b1 + 2b2 + 3b3) = 0.

Hence

cα + β = (ca1 + b1, ca2 + b2, ca3 + b3) ∈ W.

Thus by Theorem 6.2.3, W is a subspace. �

Example 6.2.5: V = Rm, W = {α ∈ V | [α]1 = 1}.
Method 1. Obviously 0 /∈ W . By Proposition 6.2.2, W is not a subspace.
Method 2. Suppose α, β ∈ W . Then [α + β]1 = [α]1 + [β]1 = 2. So α + β /∈ W .
Now W violates Definition 6.2.1 Condition 2 and hence W is not a subspace. �

Example 6.2.6: V = Rm, W = {(v1, . . . , vm)t ∈ V |
∑n

i=1 vi = 1}.

Method 1. Obviously 0 /∈ W . So by Proposition 6.2.2, W is not a subspace.

Method 2. Let

α = β = (1, 0, . . . , 0)t.

Then both α and β are in W .

α + β = (2, 0, . . . , 0)t.

Obvious α+β /∈ W . Therefore W violates Definition 6.2.1 Condition 2 and hence
W is not a subspace. �

Theorem 6.2.4: Let A ∈ Mm,n. N (A) is a subspace of Rn.

Proof: Since 0n ∈ N (A), so N (A) ̸= ∅.

For a ∈ R, α, β ∈ N (A),

Aα = 0m, Aβ = 0m.

Then

A(aα + β) = aAα + Aβ = a0m + 0m = 0m.

So

aα + β ∈ N (A).
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Thus by Theorem 6.2.3, N (A) is a subspace. �

Example 6.1 Math major only: Let Sn be the set of symmetric matrices of Mn,n. Then Sn is a

subspace of Mn,n.

Checking: Since On ∈ W , W is nonempty. Suppose a ∈ R, A,B ∈ W . Then At = A, Bt = B.

(aA+B)t = aAt +Bt = aA+B.

Thus aA+B ∈ Sn. Hence Sn is a subspace by Theorem 6.2.3.

Example 6.2 Math major only: Let

F = {f(x) ∈ Pn | f(1) = 0}.

Then F is a subspace of Pn.

Checking: Since the zero polynomial is in F , F is nonempty. Suppose a ∈ R, f, g ∈ F . Then f(1) =

g(1) = 0. Hence

(af + g)(1) = af(1) + g(1) = a0 + 0 = 0.

So af + g ∈ F . Hence F is a subspace by Theorem 6.2.3.

Example 6.3 Math major only: Let

E = {f(x) ∈ Pn | f(x) = f(−x)}.

Then E is a subspace of Pn.

Checking: Since 0 ∈ E, E is nonempty. Suppose a ∈ R, f, g ∈ E. Then f(x) = f(−x), g(x) = g(−x).

Hence

(af + g)(−x) = af(−x) + g(−x) = af(x) + g(x) = (af + g)(x).

So af + g ∈ E. Hence E is a subspace by Theorem 6.2.3.

6.3 Linear Combinations

Definition 6.3.1: Given n vectors α1, . . . , αn ∈ Rm and n scalars c1, . . . , cn ∈ R, their linear combination

is the vector

c1α1 + · · ·+ cnαn =
n∑

i=1

ciαi.

Example 6.3.1: Suppose that

c1 = 1, c2 = −4, c3 = 2, c4 = −1 and α1 =



2

4

−3

1

2

9


, α2 =



6

3

0

−2

1

4


, α3 =



−5

2

1

1

−3

0


, α4 =



3

2

−5

7

1

3


.
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Their linear combination is

c1α1 + c2α2 + c3α3 + c4α4 = (1)



2

4

−3

1

2

9


+ (−4)



6

3

0

−2

1

4


+ (2)



−5

2

1

1

−3

0


+ (−1)



3

2

−5

7

1

3



=



2

4

−3

1

2

9


+



−24

−12

0

8

−4

−16


+



−10

4

2

2

−6

0


+



−3

−2

5

−7

−1

−3


=



−35

−6

4

4

−9

−10


.

�

What vectors were you able to create? Do you think you could create the vector β = (13, 15, 5,−17, 2, 25)t

in R6 with a suitable choice of four scalars? Do you think you could create any possible vector from R6 by

choosing the proper scalars? These last two questions are very fundamental, and time spent considering

them now will prove beneficial later.

Example 6.3.2: The system of linear equation

−7x1 − 6x2 − 12x3 = −33

5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

i.e., −7x1 − 6x2 − 12x3

5x1 + 5x2 + 7x3

x1 + 4x3

 =

 −33

24

5

 .

It can be rewritten as  −7x1

5x1

x1

+

 −6x2

5x2

0x2

+

 −12x3

7x3

4x3

 =

 −33

24

5


or

x1

 −7

5

1

+ x2

 −6

5

0

+ x3

 −12

7

4

 =

 −33

24

5

 .

It is known that the system has only solution

x1 = −3, x2 = 5, x3 = 2.

So, in the context of this example, we can express the fact that these values of the unknowns are a

solution by writing the linear combination,

(−3)

 −7

5

1

+ (5)

 −6

5

0

+ (2)

 −12

7

4

 =

 −33

24

5

 .
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Notice how the three vectors in this example are the columns of the coefficient matrix of the system

of equations. This is our first hint of the important interplay between the vectors that form the columns

of a matrix, and the matrix itself. �

Example 6.3.3:

x1 − x2 + 2x3 = 1

2x1 + x2 + x3 = 8

x1 + x2 = 5

can be written as  x1 − x2 + 2x3

2x1 + x2 + x3

x1 + x2

 =

 1

8

5

 .

Converting the left-hand side into a linear combination

x1

 1

2

1

+ x2

 −1

1

1

+ x3

 2

1

0

 =

 1

8

5

 .

Row-reducing the augmented matrix for the system leads to the conclusion that the system is consistent

and has free variables, hence infinitely many solutions. For example, the two solutions

x1 = 2, x2 = 3, x3 = 1;

x1 = 3, x2 = 2, x3 = 0

can be used together to say that,

(2)

 1

2

1

+ (3)

 −1

1

1

+ (1)

 2

1

0

 =

 1

8

5

 = (3)

 1

2

1

+ (2)

 −1

1

1

+ (0)

 2

1

0

 .

Ignore the middle of this equation, and move all the terms to the left-hand side,

(2)

 1

2

1

+ (3)

 −1

1

1

+ (1)

 2

1

0

+ (−3)

 1

2

1

+ (−2)

 −1

1

1

+ (−0)

 2

1

0

 =

 0

0

0

 .

Regrouping gives

(−1)

 1

2

1

+ (1)

 −1

1

1

+ (1)

 2

1

0

 =

 0

0

0

 .

Notice that these three vectors are the columns of the coefficient matrix for the system of equations.

This equality says there is a linear combination of those columns that equals the vector of all zeros. Give

it some thought, but this says that

x1 = −1, x2 = 1, x3 = 1

is a nontrivial solution to the homogeneous system of equations with the coefficient matrix for the original

system. In particular, this demonstrates that this coefficient matrix is singular.
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Theorem 6.3.2: Let A ∈ Mm,n(R). α = (x1, . . . , xn)
t ∈ Rn is a solution to the linear system of

equations LS(A, b) if and only if b equals the linear combination of the columns of A formed with the

entries of α,

b = x1A∗1 + x2A∗2 + · · ·+ xnA∗n =
n∑

i=1

xiA∗i.

Proof: Since Aα =
∑n

i=1 xiA∗i, we have the theorem. �

Example 6.3.4: Let

α1 =

 1

2

3

 , α2 =

 −1

1

0

 , α3 =

 2

1

3

 , α4 =

 −1

0

1

 , β =

 1

1

3

 .

1. Determine if β is a linear combination of {α1, α2, α3}. If yes, find the linear combination.

2. Determine if β is a linear combination of {α1, α2, α3, α4}. If yes, find the linear combination.

Answer:

1. To determine if β is a linear combination of {α1, α2, α3}, we need to solve

x1α1 + x2α2 + x3α3 = β,

i.e.,
x1 − x2 + 2x3 = 1

2x1 + x2 + x3 = 1

3x1 + 3x3 = 3

The augmented matrix is 1 −1 2 1

2 1 1 1

3 0 3 3

 rref−−→

 1 0 1 0

0 1 −1 0

0 0 0 1


Because the last column of the rref is a leading column, the system of linear

equations is not solvable. Hence β is not a linear combination of {α1, α2, α3}.

2. To determine if β is a linear combination of {α1, α2, α3, α4}, we need to solve

x1α1 + x2α2 + x3α3 + x4α4 = β,

The augmented matrix is

(
α1 α2 α3 α4 β

)
=

 1 −1 2 −1 1

2 1 1 0 1

3 0 3 1 3


Using the standard method, we find one solution (there are infinitely many)

x1 =
5

6
, x2 = −2

3
, x3 = 0, x4 =

1

2
,
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i.e.

β =
5

6
α1 −

2

3
α2 +

1

2
α4.

�
Back to see

Example 3.2.9 Solve the following system of linear equations over R:
x1 + x2 − 4x3 + x4 = 3

2x1 − 3x2 + 7x3 + 7x4 = −4

x2 − 3x3 − x4 = 2

We get

x1 = 1 + x3 − 2x4

x2 = 2 + 3x3 + x4

and the general solution is 
x1

x2

x3

x4

 =


1 + a− 2b

2 + 3a+ b

a

b

 .

In this case, r = 2, D = {1, 2} and F = {3, 4}.
Now the general solution can be expressed as a linear combination

x1

x2

x3

x4

 =


1

2

0

0

+ a


1

3

1

0

+ b


−2

1

0

1

 .

We will develop the same linear combination using three steps. While the method above is instructive,

the method below will be our preferred approach.

Step 1. Write the vector of unknowns as a fixed vector, plus a linear combination of n− r vectors, using

the free variables as the scalars.

z =


x1

x2

x3

x4

 =


+ x3


+ x4




Step 2. Use 0’s and 1’s to ensure equality for the entries of the vectors with indices in F (corresponding

to the free variables).

z =


x1

x2

x3

x4

 =

 0

0

+ x3

 1

0

+ x4

 0

1


Step 3. For each lead variable, use the augmented matrix to formulate an equation expressing the lead

variable as a constant plus multiples of the free variables. Convert this equation into entries of

the vectors that ensure equality for each lead variable, one at a time.
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x1 = 1 + x3 − 2x4 ⇒


x1

x2

x3

x4

 =


1

0

0

+ x3


1

1

0

+ x4


−2

0

1



x2 = 2 + 3x3 + x4 ⇒


x1

x2

x3

x4

 =


1

2

0

0

+ x3


1

3

1

0

+ x4


−2

1

0

1


It only takes us three vectors to describe the entire infinite solution set


1

2

0

0

+ x3


1

3

1

0

+ x4


−2

1

0

1


∣∣∣∣∣∣∣∣∣∣
x3, x4 ∈ R

 .

�
One more example:

Example 6.3.5: Consider a linear system of m = 5 equations in n = 7 unknowns x1, . . . , x7, having the

augmented matrix A.

(A|b) =


2 1 −1 −2 2 1 5 21

1 1 −3 1 1 1 2 −5

1 2 −8 5 1 1 −6 −15

3 3 −9 3 6 5 2 −24

−2 −1 1 2 1 1 −9 −30

 .

rref(A|b) =


1O 0 2 −3 0 0 9 15

0 1O −5 4 0 0 −8 −10

0 0 0 0 1O 0 −6 11

0 0 0 0 0 1O 7 −21

0 0 0 0 0 0 0 0

 .

So rank(A) = r = 4 = rank(A|b), also D = {1, 2, 5, 6} and F = {3, 4, 7, 8}. Thus, x1, x2, x5, x6 are lead

variables while x3, x4, x7 are free variables. We try to apply our preferred approach to express the general

solution.

Step 1.

z =



x1
x2
x3
x4
x5
x6
x7


=




+ x3




+ x4




+ x7




.
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Step 2.

z =



x1
x2
x3
x4
x5
x6
x7


=


0

0

0


+ x3


1

0

0


+ x4


0

1

0


+ x7


0

0

1


.

Step 3.

x1 = 15− 2x3 + 3x4 − 9x7 ⇒z =



15

0

0

0


+ x3



−2

1

0

0


+ x4



3

0

1

0


+ x7



−9

0

0

1



x2 = −10 + 5x3 − 4x4 + 8x7 ⇒z =



15

−10

0

0

0


+ x3



−2

5

1

0

0


+ x4



3

−4

0

1

0


+ x7



−9

8

0

0

1



x5 = 11 + 6x7 ⇒z =



15

−10

0

0

11

0


+ x3



−2

5

1

0

0

0


+ x4



3

−4

0

1

0

0


+ x7



−9

8

0

0

6

1



x6 = −21− 7x7 ⇒z =



15

−10

0

0

11

−21

0


+ x3



−2

5

1

0

0

0

0


+ x4



3

−4

0

1

0

0

0


+ x7



−9

8

0

0

6

−7

1


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�

Theorem 6.3.3: Suppose that (A|b) is the augmented matrix for a consistent linear system of m

equations in n unknowns. Let (H|a) = rref(A|b). Suppose that H has r leading columns, with indices

D = {k1, . . . , kr}, while the n− r non-leading columns have indices in F = {f1, . . . , fn−r, n+ 1}. Define

vectors β, αj, 1 ≤ j ≤ n− r of length n by

[β]i =

 0 if i ∈ F

[a]k if i ∈ D, i = dk

[αj ]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i ̸= fj

−[H]k,fj if i ∈ D, i = dk

.

Then the set of solutions to the system of equations Ax = b is

S = {β + c1α1 + · · ·+ cn−rαn−r | c1, . . . , cn−r ∈ R} =

β +

n−r∑
j=1

cjαj

∣∣∣∣∣∣ cj ∈ R, 1 ≤ i ≤ n− r

 .

Proof: We need only show that S is the solution set for the system Hx = a. Only the first r equations

of this system we have to consider.

Note that [H]ℓ,di = 0 except [H]ℓ,dℓ = 1.

Now ∀γ ∈ S, γ = β +
n−r∑
j=1

cjαj for some cj ∈ R.

Consider the ℓ entry of Hγ, 1 ≤ ℓ ≤ r:

[Hγ]ℓ = [H(β +

n−r∑
j=1

cjαj)]ℓ = [Hβ]ℓ +

n−r∑
j=1

cj [Hαj ]ℓ =

n∑
i=1

[H]ℓ,i[β]i +

n−r∑
j=1

cj

n∑
i=1

[H]ℓ,i[αj ]i

=
r∑

k=1

[H]ℓ,dk [β]dk +
n−r∑
j=1

cj

(
r∑

k=1

[H]ℓ,dk [−[H]k,fj ] + [H]ℓ,fj

)

= [β]dℓ +

n−r∑
j=1

cj
(
[H]ℓ,dℓ [−[H]ℓ,fj ] + [H]ℓ,fj

)
= [a]ℓ +

n−r∑
j=1

cj
(
−[H]ℓ,fj + [H]ℓ,fj

)
= [a]ℓ.

So γ is a solution of Hx = a.

For the second part of the proof, we let γ = (x1, x2, . . . , xn)
t be a solution of Hx = a.

Consider each entry of the matrix equation that γ makes equation ℓ of the system true for all 1 ≤ ℓ ≤ m,

[H]ℓ,1x1 + [H]ℓ,2x2 + · · ·+ [H]ℓ,nxn =

n∑
j=1

[H]ℓ,jxj = [a]ℓ

When ℓ ≤ r, the leading columns of H have zero entries in row ℓ with the exception of column dℓ,

which will contain a 1. So for 1 ≤ ℓ ≤ r, equation ℓ simplifies to

1xdℓ + [H]ℓ,f1xf1 + [H]ℓ,f2xf2 + · · ·+ [H]ℓ,fn−rxfn−r = xdℓ +
n−r∑
j=1

[H]ℓ,fjxfj = [a]ℓ.

Thus

[γ]dℓ = xdℓ = [a]ℓ +
n−r∑
j=1

(−[H]ℓ,fj )xfj = [β]dℓ +
n−r∑
j=1

[αj ]dℓxfj =

β +
n−r∑
j=1

xfjαj


dℓ

.
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This tells us that the entries of the solution vector γ corresponding to lead variables (indices in D), are

equal to those of a vector in the set S. We still need to check the other entries of the solution vector γ

corresponding to the free variables (indices in F ) to see if they are equal to the entries of the same vector

in the set S. To this end, suppose i = fj ∈ F . Then

[γ]i = xfj = 0 + 0xf1 + 0xf2 + · · ·+ 0xfj−1
+ 1xfj + 0xfj+1

+ · · ·+ 0xfn−r

= [β]i + xf1 [α1]i + xf2 [α2]i + · · ·+ xfj−1
[αj−1]i + xfj [αj ]i + xfj+1

[αj+1]i + · · ·+ xfn−r [αn−r]i

=

[
β +

n−r∑
k=1

xfkαk

]
i

.

So γ = β +
n−r∑
k=1

xfkαk ∈ S. �

6.4 Spanning set

Definition 6.4.1: Given a set of vectors

S = {α1, . . . , αk},

their span, ⟨S⟩, is the set of all possible linear combinations of α1, . . . , αk. Symbolically,

⟨S⟩ =

{
k∑

i=1

aiαi

∣∣∣∣∣ ai ∈ R, 1 ≤ i ≤ k

}
.

For convenience, we let ⟨∅⟩ = {0}. Also, ⟨{α1, . . . , αk}⟩ is simply denoted by ⟨α1, . . . , αk⟩.

Theorem 6.4.2: Let S = {α1, . . . , αk} ⊂ V = Rm. Then ⟨S⟩ is a subspace of V .

Proof: Clearly, ⟨S⟩ is not empty, since 0m =
k∑

i=1
0αi ∈ ⟨S⟩.

For a ∈ R, α, β ∈ ⟨S⟩, there exists a1, . . . , ak; b1, . . . , bk ∈ R such that

α =
k∑

i=1

aiαi,

β =
k∑

i=1

biαi.

Now, aα + β =
k∑

i=1
(aai + bi)αi is in ⟨S⟩. By Theorem 6.2.3, ⟨S⟩ is a subspace

of V . �
Main Questions:

1. Determine whether a vector α ∈ ⟨S⟩.

2. Describe the set ⟨S⟩.

3. Is ⟨S⟩ = Rm if S is a subset of Rm?

Example 6.4.1: Consider the set S ⊂ R4

S = {(1, 1, 3, 1)t, (2, 1, 2,−1)t, (7, 3, 5,−5)t, (1, 1,−1, 2)t, (−1, 0, 9, 0)t}.
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Is α = (−15,−6, 19, 5)t an element of ⟨S⟩?
We are asking whether there are scalars a1, a2, a3, a4, a5 ∈ R such that

a1


1

1

3

1

+ a2


2

1

2

−1

+ a3


7

3

5

−5

+ a4


1

1

−1

2

+ a5


−1

0

9

0

 = α =


−15

−6

19

5

 .

Searching for these scalars is equivalent to finding solution to a linear system of equations with

augmented matrix 
1 2 7 1 −1 −15

1 1 3 1 0 −6

3 2 5 −1 9 19

1 −1 −5 2 0 5


which row-reduces to 

1O 0 −1 0 3 10

0 1O 4 0 −1 −9

0 0 0 1O −2 −7

0 0 0 0 0 0

 .

At this point, we see that the system is consistent. So we know there is a solution for the five scalars

a1, a2, a3, a4, a5. This is enough evidence for us to say that α ∈ ⟨S⟩. If we wished further evidence, we

could compute an actual solution, say

a1 = 2, a2 = 1, a3 = −2, a4 = −3, a5 = 2.

�

Example 6.4.2: Keeping the set S as in the previous example, is β = (3, 1, 2,−1)t an element of ⟨S⟩?
We are asking whether there are scalars a1, a2, a3, a4, a5 such that

a1


1

1

3

1

+ a2


2

1

2

−1

+ a3


7

3

5

−5

+ a4


1

1

−1

2

+ a5


−1

0

9

0

 = β =


3

1

2

−1

 . (*)

This is equivalent to finding a solution to a linear system of equations with augmented matrix
1 2 7 1 −1 3

1 1 3 1 0 1

3 2 5 −1 9 2

1 −1 −5 2 0 −1


which row-reduces to 

1O 0 −1 0 3 0

0 1O 4 0 −1 0

0 0 0 1O −2 0

0 0 0 0 0 1O


At this point, we see that the system is inconsistent. So there are no scalars a1, a2, a3, a4, a5 satisfying

(*). Thus β ̸∈ ⟨S⟩. �

From the above illustration, we can easy to get the following theorem (proof is omitted):

Prepared by Prof. W.C. Shiu MATH1030 Linear Algebra I-20/21-6-16



Theorem 6.4.3: Suppose S = {α1, . . . , αn} ⊂ Rm. Let A be an m× n matrix whose i-th column is αi.

A vector α ∈ ⟨S⟩ if and only if Ax = α is consistent.

Example 6.4.3: Let α = (v1, v2, v3, v4)
t ∈ R4. Following Example 6.4.1, find the condition(s) of α such

that α ∈ ⟨S⟩.

Applying Gauss-Jordan elimination to the augmented matrix
1 2 7 1 −1 v1
1 1 3 1 0 v2
3 2 5 −1 9 v3
1 −1 −5 2 0 v4

 ,

we obtain 
1 0 −1 0 3 −3v1 + 5v2 − v4
0 1 4 0 −1 v1 − v2
0 0 0 1 −2 2v1 − 3v2 + v4
0 0 0 0 0 9v1 − 16v2 + v3 + 4v4


If 9v1 − 16v2 + v3 + 4v4 = 0, then the last column is not a leading column. So

α ∈ ⟨S⟩.
For 9v1 − 16v2 + v3 + 4v4 ̸= 0, although the above is not in rref, the equation

corresponding to the last row is

0 = 9v1 − 16v2 + v3 + 4v4.

Hence the corresponding system of linear equations is inconsistent and thus α ̸∈
⟨S⟩.

We therefore conclude that α ∈ ⟨S⟩ if and only if 9v1 − 16v2 + v3 + 4v4 = 0. �

Theorem 6.4.4: Let S = {α1, . . . , αm} ⊂ Rm and let A be the m ×m matrix with the i-th column is

αi. A is non-singular if and only if ⟨S⟩ = Rm.

Proof: Note that ⟨S⟩ ⊆ Rm is always hold.

[⇒] If A is non-singular, then for every β ∈ Rm, Ax = β has a unique solution by

Theorem 5.3.6 (or Theorem 4.3.4). Hence β ∈ ⟨S⟩. So Rm ⊆ ⟨S⟩, hence we have

⟨S⟩ = Rm.

[⇐] Let H = rref(A). By Theorem 5.4.4 (if we do not apply Theorem 5.4.4, then

the proof is difficult), there is an invertible matrix P such that H = PA.

Suppose A is singular, then H ̸= Im. The last row of H is a zero row. Let β =

(0, . . . , 0, 1)t = em. Then Hx = β is inconsistent. Now, when α = P−1β ∈ Rm,

the system Ax = α is inconsistent. Thus α /∈ ⟨S⟩. So ⟨S⟩ ̸= Rm. This completes

the proof.
�
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Theorem 6.4.5: Suppose that A ∈ Mm,n and H = rref(A). Suppose that H has r leading columns, with

indices given by D = {k1, . . . , kr}, while the n− r non-leading columns have indices F = {f1, . . . , fn−r}.
Construct the n− r vectors αj, 1 ≤ j ≤ n− r, of length n,

[αj ]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i ̸= fj

−[H]k,fj if i ∈ D, i = dk

Then the null space of A is given by

N (A) = ⟨α1, . . . , αn−r⟩ .

Proof: This theorem follows from Theorem 6.3.3 by letting b = 0m. �

Do not memorize this theorem. Instead, study the examples below.

Example 6.4.4: Find a spanning set of N (A), where

A =


2 1 5 1 5 1

1 1 3 1 6 −1

−1 1 −1 0 4 −3

−3 2 −4 −4 −7 0

3 −1 5 2 2 3


rref−−−→


1O 0 2 0 −1 2

0 1O 1 0 3 −1

0 0 0 1O 4 −2

0 0 0 0 0 0

0 0 0 0 0 0

 .

First, the non-leading columns have indices F = {3, 5, 6}. So we will construct

the n − r = 6 − 3 = 3 vectors with a pattern of zeros and ones dictated by the

indices in F . This is the realization of the first two lines of the three-case definition

of the vectors αj in Theorem 6.4.5, 1 ≤ j ≤ n− r.

α1 =


1

0

0


, α2 =


0

1

0


, α3 =


0

0

1


.

Each of these vectors arises due to the presence of a column that is not a pivot

column. The remaining entries of each vector are the entries of the non-leading

column, negated, and distributed into the empty slots in order (these slots have

indices in the set D, so also refer to leading columns). This is the realization

of the third line of the three-case definition of the vectors αj in Theorem 6.4.5,

1 ≤ j ≤ n− r.

α1 =



−2

−1

1

0

0

0


, α2 =



1

−3

0

−4

1

0


, α3 =



−2

1

0

2

0

1


.
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So N (A) = ⟨α1, α2, α3⟩. �
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