
Chapter 4: Homogeneous Systems and Nonsingular Matri-
ces

4.1 Homogeneous Systems

Definition 4.1.1: A system of linear equations is homogeneous if the vector of constants is the zero

vector, i.e.,

a11x1 + a12x2 + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2nxn = 0
...

...
...

am1x1 + am2x2 + · · · + amnxn = 0

Definition 4.1.2: The homogenous system corresponding to a linear system Ax = b is Ax = 0. We

often say that Ax = 0 is the homogenous part of Ax = b.

Example 4.1.1: The following is a homogenous system of linear equations:

x1 − 2x2 + 3x3 − 4x4 = 0

x2 − x4 = 0

x1 + 3x2 − 5x3 + 5x4 = 0

It is the homogenous part of the linear system

x1 − 2x2 + 3x3 − 4x4 = 1

x2 − x4 = 2

x1 + 3x2 − 5x3 + 5x4 = 3

�

Theorem 4.1.3: Suppose that a system of linear equations is homogeneous. Then the system is consis-

tent. In fact 0 is a solution, i.e., x1 = x2 = · · · = xn = 0 is a solution. Such solution is called a trivial

solution.

Example 4.1.2:

−7x1 − 6x2 − 12x3 = 0

5x1 + 5x2 + 7x3 = 0

x1 + 4x3 = 0

The reduced row echelon form of the augmented matrix is 1O 0 0 0

0 1O 0 0

0 0 1O 0


It has n− r = 3− 3 = 0 free variables. Hence it has only the trivial solution. �

Notice that when we do row operations on the augmented matrix of a homogeneous system of linear

equations the last column of the matrix is all zeros. Any row operation will convert zeros to zeros and

thus, the final column of the matrix in reduced row-echelon form will also be all zeros. So we may ignore

the last column of the augmented matrix, i.e., we only consider the coefficient matrix for a homogeneous

system.

Prepared by Prof. W.C. Shiu MATH1030 Linear Algebra I-20/21-4-1



Example 4.1.3:

x1 − x2 + 2x3 = 0

2x1 + x2 + x3 = 0

x1 + x2 = 0

The reduced row echelon form of the coefficient matrix is 1 −1 2

2 1 1

1 1 0

 rref−−→

 1O 0 1

0 1O −1
0 0 0


It has n− r = 3− 2 = 1 free variable which is x3. Set x3 = a. We have x1 = −a
and x2 = a. So the solution set is

{(−a, a, a)T | a ∈ R}.

Geometrically, these are points in three dimensions that lie on a line through the
origin. �

Example 4.1.4:

2x1 + x2 + 7x3 − 7x4 = 0

−3x1 + 4x2 − 5x3 − 6x4 = 0

x1 + x2 + 4x3 − 5x4 = 0

Applying elementary row operations on the coefficient matrix: 2 1 7 −7
−3 4 −5 −6
1 1 4 −5

 R1↔R3−−−−→

 1 1 4 −5
−3 4 −5 −6
2 1 7 −7

 3R1+R2−−−−−→
−2R1+R3

 1 1 4 −5
0 7 7 −21
0 −1 −1 3


−R3−−−−→
R2↔R3

 1 1 4 −5
0 1 1 −3
0 7 7 −21

 −7R2+R3−−−−−→
−R2+R1

 1O 0 3 −2
0 1O 1 −3
0 0 0 0


It has n− r = 4− 2 = 2 free variables which are x3 and x4.

Now we have {
x1 = −3x3 + 2x4
x2 = −x3 + 3x4.

We set x3 = a and x4 = b. The solution set is

{(−3a+ 2b,−a+ 3b, a, b)T | a, b ∈ R}.

�

Theorem 4.1.4: Suppose that a homogeneous system of linear equations has m equations and n un-

knowns with n > m. Then the system has infinitely many solutions.

Proof: By Theorem 4.1.3, the system is consistent. By Theorem 3.4.3, the system has infinitely many

solutions. �
If n = m, then we can have a unique solution or infinitely many solutions (see Examples 4.1.2 and

4.1.3).
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4.2 Null Space of a Matrix

Definition 4.2.1: The null space of a matrix A, denoted by N (A), is the set of all the vectors that are

solutions to the homogeneous system Ax = 0.

Example 4.2.1: Suppose

A =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7

0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

 .

Then

x =



3

0

−5
−6
0

0

1


y =



−4
1

−3
−2
1

1

1


.

are in N (A) as Ax = 04 and Ay = 04. However, the vector

z =



1

0

0

0

0

0

2


/∈ N (A) as Az =


−17
16

−16
73

 6= 04.

Example 4.2.2: Let us compute the null space of

A =

 2 −1 7 −3 −8
1 0 2 4 9

2 2 −2 −1 8

 .

Translating Definition 4.2.1, we simply desire to solve the homogeneous system Ax = 0.

So we row-reduce the matrix A to obtain 1O 0 2 0 1

0 1O −3 0 4

0 0 0 1O 2

 .

The unknowns (of the homogeneous system) x3 and x5 are free (since columns

1, 2 and 4 are leading columns), so we arrange the equations represented by the

matrix in rref to
x1 = −2x3 − x5
x2 = 3x3 − 4x5
x4 = − 2x5
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So we can write the infinite solution set using column vectors,

N (A) =




−2x3 − x5
3x3 − 4x5

x3
−2x5
x5



∣∣∣∣∣∣∣∣∣∣∣
x3, x5 ∈ R


.

For saving space, we write

N (A) =

{[
−2x3 − x5 3x3 − 4x5 x3 −2x5 x5

]T ∣∣∣∣ x3, x5 ∈ R
}

or

N (A) = {(−2x3 − x5, 3x3 − 4x5, x3,−2x5, x5) | x3, x5 ∈ R}.

�

Example 4.2.3: Compute the null space of

C =


−4 6 1

−1 4 1

5 6 7

4 7 1

 .

C =


−4 6 1

−1 4 1

5 6 7

4 7 1

 −R2−−−−→
R1↔R2


1 −4 −1
−4 6 1

5 6 7

4 7 1


4R1+R2
−5R1+R3−−−−−−→
−4R1+R4


1O −4 −1
0 −10 −3
0 26 12

0 23 5


− 1

10R2−−−−→


1O −4 −1
0 1 3/10

0 26 12

0 23 5

 −26R2+R3−−−−−−→
−23R2+R4


1O −4 −1
0 1 0.3

0 0 4.2

0 0 −1.9

 10
42R3−−−→
10
19R4


1 −4 −1
0 1 0.3

0 0 1

0 0 −1


R3+R4−−−−−−−→
R3+R1

−0.3R3+R2


1 −4 0

0 1 0

0 0 1O

0 0 0

 4R2+R1−−−−−→


1O 0 0

0 1O 0

0 0 1O

0 0 0


There are no free variable in the homogeneous system represented by the row-

reduced matrix. Thus, there is only the trivial solution, the zero vector, 03. So

we can write the (trivial) solution set as

N (C) = {03}.

�
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4.3 Nonsingular Matrices

In this section we specialize further and consider matrices with equal numbers of rows and columns,

which when considered as coefficient matrices lead to systems with equal numbers of equations and

unknowns.

Definition 4.3.1: Suppose A is a square matrix. Suppose further that the solution set to the homoge-

neous linear system of equations Ax = 0 is {0}, in other words, the system has only the trivial solution.

Then we say that A is a nonsingular matrix. Otherwise we say A is a singular matrix.

Example 4.3.1: Let A be the matrix in Example 4.1.3. Since the system of linear equations Ax = 0

has nontrivial solutions.

Hence A is singular.

Let

B =

 −7 −6 −12
5 5 7

1 0 4

 .

By Example 4.1.2, the system of linear equationsBx = 0 has only trivial solutions. So it is nonsingular.

�

Theorem 4.3.2: Suppose that A is a square matrix. A is nonsingular if and only if rref(A) is the

identity matrix.

Proof: Suppose A ∈Mn. Let r be the number of nonzero rows in rref(A). Since

Ax = 0 is always consistent, by Theorem 3.4.1, the system Ax = 0 has n− r free

variables.

(⇒) If A is nonsingular, then the system Ax = 0 has a unique solution. Thus,

there is no free variable. Hence r = n. So rref(A) has n leading columns among

its total of n columns. This is enough to force rref(A) to be the identity matrix

In.
(⇐) Since A ∼ In, Ax = 0n is equivalent to Inx = 0n. Clearly, there is only
trivial solution. By definition, A is nonsingular. �

Corollary 4.3.3: Suppose that A is a square matrix. Then A is nonsingular if and only if N (A) = {0}.

Proof: N (A) = {x | Ax = 0}. By definition A is nonsingular if and only if {x | Ax = 0} = {0}. Hence
we have the corollary. �

Theorem 4.3.4: Suppose that A ∈ Mn. A is nonsingular if and only if the system LS(A, b) has a

unique solution for every choice of the constant vector b.

Proof: (⇐) The hypothesis for the ‘if part’ is that the system Ax = b has a

unique solution for every choice of the constant vector b.

We will make a very specific choice for b: b = 0. Then we know that the

system Ax = 0 has a unique solution. But this is precisely the definition of what

it means for A to be nonsingular.
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(⇒) We assume that A is nonsingular. By Theorem 4.3.2. there is a sequence of

elementary row operations that will convert A into the identity matrix In.
Form the augmented matrix A′ = (A|b) and apply the same sequence of ele-

mentary row operations to A′. The result will be the matrix B′ = (In|c). The
system becomes Inx = c. Clearly, the vector c is the only solution. Therefore,
the solution of Ax = b is unique. �

Theorem 4.3.5: Suppose that A ∈Mn. The following are equivalent.

1. A is nonsingular.

2. A is row equivalent to In.

3. N (A) = {0n}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

Proof: The statement that A is nonsingular is equivalent to each of the subsequent statements by

Theorem 4.3.2, Corollary 4.3.3 and Theorem 4.3.4. �
The next theorem tells us that in order to find all of the solutions to a linear system of equations, it

is sufficient to find just one solution, and then find all of the solutions to the corresponding homogeneous

system. This explains part of our interest in the null space, the set of all solutions to a homogeneous

system.

Theorem 4.3.6: Suppose that p is one solution to the linear system of equations LS(A, b). Then y is

a solution to LS(A, b) if and only if y = p+ z for some vector z ∈ N (A), i.e.,

1. If y is a solution to Ax = b, then y − p ∈ N (A).

2. If z ∈ N (A), then p+ z is a solution of Ax = b.

In other words, there is a one-to-one correspondence between

solution set of Ax = b←→ N (A),

through

y 7→ y − p,

p+ z

7→

z.

Proof: Since p is one solution to the linear system of equations, Ap = b.

1. If y is a solution to the system, then Ay = b. Hence A(y − p) = Ay − Ap =

b− b = 0. So y − p ∈ N (A).

2. Suppose z ∈ N (A). We have Az = 0. So A(p + z) = Ap + Az = b + 0 = b.

Hence p+ z is a solution of Ax = b.

�
So, we may write the solution set of Ax = b as

{z + p | z ∈ N (A)},

where p is a solution of Ax = b. The solution p is called a particular solution of Ax = b. The above set

is often denoted by N (A) + p = p+N (A).
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Example 4.3.2: Consider the system

2x1 + x2 + 7x3 − 7x4 = 8,

−3x1 + 4x2 − 5x3 − 6x4 = −12,
x1 + x2 + 4x3 − 5x4 = 4.

By inspection we have three solutions,

y1 =


0

1

2

1

 , y2 =


4

0

0

0

 , y3 =


7

8

1

3

 .

Let p = y1. And let A be the coefficient matrix of this system. Then

y2 − p =


4

−1
−2
−1

 , y3 − p =


7

7

−1
2


are in N (A) (check!).

We can show that

N (A) =

x3


−3
−1
1

0

+ x4


2

3

0

1


∣∣∣∣∣∣∣∣∣ x3, x4 ∈ R

 .

By the theorem, the solution set is

p+N (A) =



0

1

2

1

+ x3


−3
−1
1

0

+ x4


2

3

0

1


∣∣∣∣∣∣∣∣∣ x3, x4 ∈ R

 .

�
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