
Chapter 2: Matrices

We want to solve 
3x + 6y = 1,

y + z = 2,

−x + z = 3.

(♡)

To solve (♡), the approaches shown in Chapter 1 only involve the coefficients and the constant terms

of the linear system. So we arrange those coefficients and constants as the following rectangular arrays

(called matrices):

A =

 3 6 0

0 1 1

−1 0 1

 b =

 1

2

3

 .

Also we form the unknowns as the array x =

xy
z

. We want to represent the system as Ax = b. But,

how do we define the product of two matrices A and x? What is the definition of two equal matrices?

2.1 Matrices

Definition 2.1.1: A matrix over R is a rectangular display of scalars (real numbers). A matrix with

m rows and n columns is called an m × n matrix or matrix of size m × n. If m = n, then the matrix is

called a square matrix of order n (or size n). We use the notation

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...

am1 am2 · · · amn


to describe an m × n matrix, where aij ∈ R for 1 ≤ i ≤ m and 1 ≤ j ≤ n. For short, we use

A = [aij ] = (aij). This notation indicates that A is the matrix whose general (i, j)-th entry is aij . To

avoid some confusion we shall use the notation [A]i,j to denote the (i, j)-th entry of A.

Remark 2.1.2:

1. Some textbooks use large parentheses instead of brackets– the distinction is not important. In this

course, we shall adopt both.

2. Rows of a matrix will be referenced starting at the top and working down (i.e., row 1 is at the top)

and columns will be referenced starting from the left (i.e., column 1 is at the left).

Example 2.1.1:

B =

 −1 2 5 3

1 0 −6 1

−4 2 2 −2

 =

 −1 2 5 3

1 0 −6 1

−4 2 2 −2


is a matrix with m = 3 rows and n = 4 columns, i.e., B is a 3× 4 matrix. We can say that [B]2,3 = −6

while [B]3,4 = −2. �
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Definition 2.1.3:

1. A column vector of size or length n is an ordered list of n numbers, which is written in order

vertically, starting at the top and proceeding to the bottom. At times, we will refer to a column

vector as simply a vector.

2. Column vectors will be written in bold, usually with lower case Latin letter from the end of the

alphabet such as u, v, w, x, y, z.

3. Some books like to write vectors with arrows, such as u⃗. Writing by hand, some like to put arrows

on top of the symbol (I shall use this notation written on the white board), or a tilde underneath

the symbol, as in u
∼
, or a line under the symbol, as u.

4. To refer to the entry or component of vector v in location i of the list, we write [v]i.

2.2 Partition of Matrices

Sometimes we put horizontal lines or vertical lines to divide the matrix into different areas. It is same

as the matrix without the lines.

Example 2.2.1: The matrix 
1 2 3 4 3.5

0 −1 1 1.1 1

3 5.8 1 0 −3

1 8 0 0 7


is same as the following matrices:


1 2 3 4 3.5

0 −1 1 1.1 1

3 5.8 1 0 −3

1 8 0 0 7

 ,


1 2 3 4 3.5

0 −1 1 1.1 1

3 5.8 1 0 −3

1 8 0 0 7

 ,


1 2 3 4 3.5

0 −1 1 1.1 1

3 5.8 1 0 −3

1 8 0 0 7

 ,


1 2 3 4 3.5

0 −1 1 1.1 1

3 5.8 1 0 −3

1 8 0 0 7

 ,


1 2 3 4 3.5

0 −1 1 1.1 1

3 5.8 1 0 −3

1 8 0 0 7

 ,


1 2 3 4 3.5

0 −1 1 1.1 1

3 5.8 1 0 −3

1 8 0 0 7

 .

�

Example 2.2.2:

A =


1 2

3 4

5 6

7 8

 , u =


9

10

11

12

 , v =


13

14

15

16

 .

[A|u] =


1 2 9

3 4 10

5 6 11

7 8 12

 =


1 2 9

3 4 10

5 6 11

7 8 12

 , [A|u|v] =


1 2 9 13

3 4 10 14

5 6 11 15

7 8 12 15

 =


1 2 9 13

3 4 10 14

5 6 11 15

7 8 12 15

 .

�
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Example 2.2.3:

A =

[
1 2

3 4

]
, B =

[
5 6 7

8 9 10

]
,

C =

11 12

13 14

15 16

 , D =

21 22 23

24 25 26

27 28 29

 .

[A|B] =

[
1 2 5 6 7

3 4 8 9 10

]
=

[
1 2 5 6 7

3 4 8 9 10

]
,

[
A B

C D

]
=


1 2 5 6 7

3 4 8 9 10

11 12 21 22 23

13 14 24 25 26

15 16 27 28 29

 =


1 2 5 6 7

3 4 8 9 10

11 12 21 22 23

13 14 24 25 26

15 16 27 28 29

 .

�

Definition 2.2.1: Suppose A = (aij) is an m× n matrix. For 1 ≤ i ≤ m, the i-th row of A is the 1× n

matrix
[
ai1 · · · ain

]
(or sometimes is viewed as a row vector (ai1, . . . , ain)) which is usually denoted by

Ai∗.

For 1 ≤ j ≤ n, the j-th column of A is the m× 1 matrix


a1j
...

amj

 and is usually denoted by A∗j .

So A can be represented partition matrices as


A1∗

A2∗
...

Am∗

 or
[
A∗1 A∗2 · · · A∗n

]
. Note that the hori-

zontal or vertical lines are omitted.

2.3 Matrix Representations of Linear Systems

In general, we will consider the problem of solving n unknowns x1, x2, . . . , xn which satisfy the following

m equations simultaneously:
a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm

, (2.1)

where b1, b2, . . . , bm and aij (1 ≤ i ≤ m, 1 ≤ j ≤ n) are given constants. For avoiding the confusion,

sometimes we write ai,j to instead of aij . Let

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
...

...

am,1 am,2 · · · am,n

 and b =


b1

b2
...

bm

 . (2.2)
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A is called the coefficient matrix (or matrix of coefficients) of the system (2.1) and b is called the vector

of constants. We will write LS(A, b) as a shorthand expression for the system of linear equations (2.1),

which we will refer to as the matrix representation of the linear system.

A solution x =


x1

x2
...

xn

 is called a solution vector. But for saving space, we sometimes written a vector

as row form or an n-turple, for example, x =
[
x1 x2 · · · xn

]
or x = (x1, x2, . . . , xn).

[A|b] =


a1,1 a1,2 · · · a1,n b1

a2,1 a2,2 · · · a2,n b2
...

...
...

...
...

am,1 am,2 · · · am,n bm

 is called an augmented matrix of the system.

2.4 Algebra of Matrices

We denote Mm,n(R) (or Mm,n) to be the set of all m×n matrices over R. If m = n, then we sometimes

use Mn(R) to instead of Mn,n(R). We also denote M1,n(R) as Rn. But, mention again, we sometimes

write element of Rn as row vector form for saving space.

Definition 2.4.1: Two matrices A and B are said to be equal, which is denoted by A = B, if they are

both of the same size and [A]i,j = [B]i,j ∀i, j.

The symbol ∀ means ‘for every’ or ‘for each’, but is read as ‘for all’.

Definition 2.4.2: An m× n zero matrix, denoted by O (or Om,n, or Om×n), is a matrix whose entries

are all zero. If m = n, then we use On to instead of On,n. If A = (aij) ∈ Mn(R), then the sequence

of entries {a11, a22, . . . , ann}, is called the diagonal of A. A square matrix with zero entries everywhere

except in the diagonal is called a diagonal matrix. The identity matrix of order n, denoted by I or In, is

a diagonal matrix of order n with all entries in the diagonal are equal to 1.

For integers i, j, we define a notation δij by

δij =

 1 if i = j,

0 if i ̸= j.

This is called the Kronecker delta. Then [In]i,j = δij for 1 ≤ i, j ≤ n. Clearly, δij = δji.

Definition 2.4.3: Let U and L be n× n matrices. U is said to be upper triangular if [U ]i,j = 0 ∀ i > j

and L is said to be lower triangular if [L]i,j = 0 ∀ i < j.

Therefore, a diagonal matrix is both upper and lower triangular matrix.

The zero vector 0 = 0n of size (or length) n is a column vector of size n whose entries are 0, i.e.,
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0n = On,1. The standard unit vectors of length n are

e1 =



1

0

0
...

0


, e2 =



0

1

0
...

0


, . . . , en =



0

0

0
...

1


.

That is, [ei]j = δi,j , 1 ≤ i, j ≤ n.

Definition 2.4.4: Let A,B ∈ Mm,n. The sum of A and that of B, denoted by A+B, is an m×n matrix

whose (i, j)-th entry is the sum of the (i, j)-th entries of A and B, i.e., (A+B)i,j = (A)i,j + (B)i,j ∀ 1 ≤
i ≤ m, 1 ≤ j ≤ n. The operation “+” is called the addition (of matrices).

Example 2.4.1: If A =

[
2 −3 4

1 0 −7

]
and B =

[
6 2 −4

3 5 2

]
, then

A+B =

[
2 −3 4

1 0 −7

]
+

[
6 2 −4

3 5 2

]
=

[
2 + 6 −3 + 2 4 + (−4)

1 + 3 0 + 5 −7 + 2

]
=

[
8 −1 0

4 5 −5

]
. �

Proposition 2.4.5: Let A,B,C ∈ Mm,n. Then we have

(1) A+B = B +A. Commutativity of addition

(2) A+ (B + C) = (A+B) + C. Associativity of addition

(3) A+O = A. Identity of addition

(4) there is a unique matrix A′ such that A+A′ = O. Inverse of addition

Since the additive inverse of A is unique, we use −A to denote it.

(1) By definition we have to show (A + B)i,j = (B + A)i,j for each 1 ≤ i ≤ m

and 1 ≤ j ≤ n.

(A+B)i,j = (A)i,j + (B)i,j

= (B)i,j + (A)i,j

= (B + A)i,j.

(4) Proof of the uniqueness: Suppose A+ A′ = O and A+B = O.

A′ (3)= A′ +O sub.
= A′ + (A+B)

(2)
= (A′ + A) +B

(1)
= (A+ A′) +B

sub.
= O +B

(1)
= B +O

(3)
= B.

�

Definition 2.4.6: Let A ∈ Mm,n, c ∈ R. Define cA ∈ Mm,n by (cA)i,j = c(A)i,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

This multiplication is called scalar multiplication and cA is called the scalar product of A by c.
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Example 2.4.2: If A =

 2 8

−3 5

0 1

 and c = 7, then

cA = 7

 2 8

−3 5

0 1

 =

 7(2) 7(8)

7(−3) 7(5)

7(0) 7(1)

 =

 14 56

−21 35

0 7

 .

�

Proposition 2.4.7: Let A,B ∈ Mm,n, c, d ∈ R. Then we have

(1) c(A+B) = cA+ cB. Left distributive law for scalar multiplication

(2) (c+ d)A = cA+ dA. Right distributive law for scalar multiplication

(3) (cd)A = c(dA). Associativity of scalar multiplication

(4) 1A = A and (−1)A = −A.

(5) Suppose A ̸= O and cA = O. Then c = 0.

(4) We want to show (−1)A = −A.

By uniqueness, we have to show:

A+ (−1)A
(4)
= 1A+ (−1)A

(2)
= (1 + (−1))A

= 0A = O.

(5) Since A ̸= O, there is an entry, (A)i,j ̸= 0 for some i, j.

0 = (O)i,j = (cA)i,j = c(A)i,j.
Since (A)i,j ̸= 0, c = 0. �
Back to see the system (♡), we want to write the system as Ax = b. So we have the following

definition.

Definition 2.4.8: Suppose A is an m×n matrix with columns A∗1, . . . , A∗n and u is a vector of size n.

Then the matrix-vector product of A with u is the linear combination

Au = [u]1A∗1 + [u]2A∗2 + · · ·+ [u]nA∗n =
n∑

i=1

[u]iA∗i. (2.3)

So, the matrix-vector product is yet another version of multiplication, at least in the sense that we

have yet again overloaded juxtaposition of two symbols as our notation. Note that, an m × n matrix

times a vector of size n will create a vector of size m. So if A is rectangular, then the size of the vector

changes.

Let us write down (2.3) more precisely. Let A = (ai,j) and u =


u1

u2
...

un

.
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Au =


u1a1,1 + u2a1,2 + · · ·+ una1,n

u1a2,1 + u2a2,2 + · · ·+ una2,n
...

u1am,1 + u2am,2 + · · ·+ unam,n

 =


∑n

i=1 uia1,i∑n
i=1 uia2,i

...∑n
i=1 uiam,i

 =


∑n

i=1 a1,iui∑n
i=1 a2,iui

...∑n
i=1 am,iui

 .

Now, system (♡) can be written as

Ax =

 3 6 0

0 1 1

−1 0 1


xy
z

 =

 1

2

3

 = b.

Example 2.4.3: Consider

A =

 1 4 2 3 4

−3 2 0 1 −2

1 6 −3 −1 5

 , u =


2

1

−2

3

−1

 .

Then

Au = 2


1

−3

1

+ 1


4

2

6

+ (−2)


2

0

−3

+ 3


3

1

−1

+ (−1)


4

−2

5

 =


7

1

6

 .

�

Proposition 2.4.9: The set of solutions to the linear system (2.1) equals the set of solutions for x in

the vector equation Ax = b, where A and b are defined in (2.2) and x =


x1
...

xn

.
Theorem 2.4.10: Suppose that A and B are m × n matrices such that Ax = Bx for every x ∈ Rn.

Then A = B.

Proof: Since Ax = Bx ∀x ∈ Rn, substitute x by ej ∈ Rn for any j, 1 ≤ j ≤ n.

We have

A∗j = Aej = Bej = B∗j.

Hence A = B. �

Definition 2.4.11: Let A ∈ Mm,n and B ∈ Mn,p. We define the product AB ∈ Mm,p by

AB = A
[
B∗1 B∗2 · · · B∗p

]
=
[
AB∗1 AB∗2 · · · AB∗p

]
.

Look at the j-th column of AB. It is AB∗j. Hence

[AB∗j]k =
n∑

i=1

[A]k,i[B]i,j.
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So we have the following formula:

[AB]k,j = [A]k,1[B]1,j + [A]k,2[B]2,j + · · ·+ [A]k,n[B]n,j =
n∑

i=1

[A]k,i[B]i,j

for 1 ≤ k ≤ m, 1 ≤ j ≤ p.

How to memorize the formula: To find the (i, j)-th entry of AB.

(1) Find the i-th row of A (simply called the row below).

(2) Find the j-th column of B (simply called the column below).

(3) sum up the product the corresponding entries of the row and the column, i.e., (entry 1 of the row ×
entry 1 of the column) + (entry 2 of the row × entry 2 of the column) + · · ·

Example 2.4.4: Suppose

A =

 1 2 −1 4 6

0 −4 1 2 3

−5 1 2 −3 4

 , B =


1 6 2 1

−1 4 3 2

1 1 2 3

6 4 −1 2

1 −2 3 0

 .

Find the (3, 2)-entry of AB and also find AB.

The 3-rd row of A is
[
−5 1 2 −3 4

]

The 2-nd column of B is


6

4

1

4

−2

.
Let us do the multiplication:

row −5 1 2 −3 4

column 6 4 1 4 −2

product −30 4 2 −12 −8

The sum is

−30 + 4 + 2− 12− 8 = −44.

From the definition

AB =

 A


1

−1

1

6

1

 A


6

4

1

4

−2

 A


2

3

2

−1

3

 A


1

2

3

2

0



 .

For practice, we compute each entry of AB by the above formula:
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AB =

 1 2 −1 4 6

0 −4 1 2 3

−5 1 2 −3 4




1 6 2 1

−1 4 3 2

1 1 2 3

6 4 −1 2

1 −2 3 0

 =

 28 17 20 10

20 −13 −3 −1

−18 −44 12 −3

 .
�

Remark 2.4.12: Note that B and A must be of the proper size in order that BA is defined. Even if

AB is defined, AB may not equal to BA. For example, A =

[
1 0

0 0

]
and B =

[
0 1

0 0

]
then AB =

[
0 1

0 0

]

and BA =

[
0 0

0 0

]
. Thus matrix multiplication is not commutative. Also note that the product of two

nonzero matrices may be a zero matrix as the above example shown.

Proposition 2.4.13: For A,B and C are matrices (when the statement includes the matrix multipli-

cation, the sizes of A, B, C, the identity matrix I and zero matrix O are chosen suitably), c ∈ R, we
have

(1) (cA)B = A(cB) = c(AB). Scalar pull through

(2) (AB)C = A(BC). Associativity of multiplication

(3) AI = A, IB = B. Identity for multiplication

(4) A(B + C) = AB +AC. Left distributive law

(5) (A+B)C = AC +BC. Right distributive law

(6) AO = O and OB = O. Zero matrix for multiplication

Proof: (3): Let A ∈ Mm,n and I = In. For each i, j, 1 ≤ i ≤ m and 1 ≤ j ≤ n,

[AIn]ij =
n∑

k=1

[A]ik[I]kj = [A]ikδkj

= [A]ij.

So AI = A.

(2): Let A ∈ Mm,n, B ∈ Mn,p and C ∈ Mp,q.

Note that AB ∈ Mm,p, (AB)C ∈ Mm,q, BC ∈ Mn,q and A(BC) ∈ Mm,q.
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For each i, j, 1 ≤ i ≤ m and 1 ≤ j ≤ q,

[(AB)C)]ij =

p∑
l=1

[AB]il(C)lj =

p∑
l=1

(
n∑

k=1

[A]ik(B)kl

)
[C]lj

=

p∑
l=1

n∑
k=1

([A]ik[B]kl) [C]lj =

p∑
l=1

n∑
k=1

[A]ik [(B)kl(C)lj]

=
n∑

k=1

p∑
l=1

[A]ik ([B]kl[C]lj) =
n∑

k=1

[A]ik

(
p∑

l=1

[B]kl[C]lj

)

=
n∑

k=1

[A]ik[BC]kj = [A(BC)]ij.

So (AB)C = A(BC). �
It is because that the associative law holds on addition, scalar multiplication and multiplication, we

usually omit to write the parentheses “( )”.

Let A be a square matrix and n a positive integer. An denotes the product of n A’s, i.e., An =

n times︷ ︸︸ ︷
AA · · ·A.

By convention, we let A0 = I.

Definition 2.4.14: The transpose At of a matrix A = [aij ] ∈ Mm,n is the matrix in Mn,m that whose

(i, j)-th entry is aji. That is,

[At]i,j = [A]j,i ∀ i = 1, . . . , n, j = 1, . . . ,m.

Proposition 2.4.15: Let A and B be matrices (when the statement includes the matrix multiplication,

the sizes of A and B are chosen suitably). Then

(1) (At)t = A. Transpose of the transpose

(2) (A+B)t = At +Bt. Transpose of a sum

(3) (AB)t = BtAt. Transpose of a product

(4) (cA)t = cAt for c ∈ R.

Proof: (3): Suppose A ∈ Mm,n and B ∈ Mn,p. Note that AB ∈ Mm,p and (AB)t ∈
Mp,m. For 1 ≤ j ≤ p and 1 ≤ i ≤ m,

[(AB)t]ji = [AB]ij

=
n∑

k=1

[A]ik[B]kj =
n∑

k=1

[B]kj[A]ik

=
n∑

k=1

[Bt]jk[A
t]ki = [BtAt]ji.

So (AB)t = BtAt. �

Definition 2.4.16: A square matrix S is called symmetric if St = S, i.e., [S]i,j = [S]j,i ∀ i, j. A square

matrix A is called skew-symmetric or anti-symmetric if At = −A, i.e., [A]i,j = −[A]j,i ∀ i, j.
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Example 2.4.5: The matrix

A =


2 3 −9 5 7

3 1 6 −2 −3

−9 6 0 −1 9

5 −2 −1 4 −8

7 −3 9 −8 −3


is symmetric.

The matrix

B =


0 3 −9 5 7

−3 0 6 −2 −3

9 −6 0 −1 9

−5 2 1 0 −8

−7 3 −9 8 0


is skew-symmetric. �

Proposition 2.4.17: Let A ∈ Mn(R) be a skew-symmetric matrix. Then each entry in the diagonal of

A is zero, i.e., [A]i,i = 0 for each i.

2.5 Block Multiplication

Let A ∈ Mm,n and B = (B1 | B2), where B1 ∈ Mn,p1 and B2 ∈ Mn,p2 . By Definition 2.4.11, we have

AB = (AB1 | AB2). It can be generalized to block (matrix) multiplication.

Let A ∈ Mm,n. Suppose that there are two partitions of m and n. Namely, m = m1 + · · · +mr and

n = n1 + · · · + ns for some positive integers mi, nj (1 ≤ i ≤ r, 1 ≤ j ≤ s). Then A can be partitioned

into rs submatrices as a partitioned matrix:

A =


A1,1 · · · A1,s

...
...

...

Ar,1 · · · Ar,s

 ,

where each Ai,j is an mi × nj submatrices of A.

Suppose B is an n× p matrix of a partitioned matrix

B =


B1,1 · · · B1,t

...
...

...

Bs,1 · · · Bs,t

 ,

where p = p1 + · · ·+ pt, p1, . . . , pt are positive integers and each Bj,k is an nj × pk submatrices of B.

Let C = AB. Then C is an m× p matrix which may be partitioned in a partitioned matrix:

C =


C1,1 · · · C1,t

...
...

...

Cr,1 · · · Cr,t

 ,

where each Ci,k is an mi × pk submatrices of C.

By a tedious but straightforward verification, one can show that Ci,k =
s∑

j=1
Ai,jBj,k for each i, k.

Such multiplication is referred as partitioned multiplication or block multiplication. Thus when we

multiply two partitioned matrices, we may regard blocks as entries and multiply in the usual way.
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Example 2.5.1: Let

A =


1 1 0 1 2 2 1

0 −1 −1 −1 0 1 1

1 0 1 1 0 1 1

0 0 1 0 1 0 1

0 1 0 2 3 1 2



B =



1 2 3 1 1 0 1

0 1 2 −3 −1 0 −1

1 0 0 0 1 1 1

2 2 1 −3 0 0 0

−2 3 −1 0 −1 1 2

0 1 0 1 3 0 2

1 0 0 2 0 −1 0


.

Let C = AB. Then C can be written as a block form:

C =

 C1,1 C1,2 C1,3

C2,1 C2,2 C2,3

C3,1 C3,2 C3,3

 ,

where C1,1 is a 2× 1 matrix, C1,2 is a 2× 2 matrix, C1,3 is 2× 4 matrix and so on.

We consider the matrix C1,3. Since C1,3 = A1,1B1,3 +A1,2B2,3 +A1,3B3,3,

C1,3 =

(
1 1 0

0 −1 −1

) 1 1 0 1

−3 −1 0 −1

0 1 1 1


+

(
1 2

−1 0

)(
−3 0 0 0

0 −1 1 2

)
+

(
2 1

1 1

)(
1 3 0 2

2 0 −1 0

)

=

(
−2 0 0 0

3 0 −1 0

)
+

(
−3 −2 2 4

3 0 0 0

)
+

(
4 6 −1 4

3 3 −1 2

)

=

(
−1 4 1 8

9 3 −2 2

)
.

One can compute all the Ci,j ’s and obtains

C =


0 13 4 −1 4 1 8

−2 −2 −3 9 3 −2 2

5 5 4 1 5 0 4

0 3 −1 2 0 1 3

0 15 1 −4 −1 1 7

 .

Example 2.5.2: Let A be an m×n matrix and B be an n×p matrix. By using the block multiplication

we have

AB =


A1∗B

A2∗B
...

Am∗B

 .
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Example 2.5.3: Compute A3, where A =


2 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 2 3

0 0 0 −1 1

.

A =


2 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 2 3

0 0 0 −1 1

. Let D =

 2 0 0

0 1 0

0 0 −1

, B =

(
2 3

−1 1

)
.

Then A =

(
D O3,2

O2,3 B

)
. And then A2 =

(
D2 O3,2

O2,3 B2

)
, A3 =

(
D3 O3,2

O2,3 B3

)
.

It is easy to see that D3 =

 8 0 0

0 1 0

0 0 −1

.

We only need to compute B3.

B2 =

(
2 3

−1 1

)(
2 3

−1 1

)
=

(
1 9

−3 −2

)

B3 =

(
2 3

−1 1

)(
1 9

−3 −2

)
=

(
−7 12

−4 −11

)
.

D3 =

 8 0 0

0 1 0

0 0 −1

, B3 =

(
−7 12

−4 −11

)
.

Then

A3 =


8 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 −7 12

0 0 0 −4 −11

 .
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