Week 7

Topics covered:
L’Hopital’s Rule (as application of the Cauchy Mean Value Theorem)

Topics to cover:
® Applications of Lagrange’s Mean Value Theorem
® (i) f'(x) >0,<0thenincreasing,decreasing

(i) curve sketching, (the terminologies “critical point”, “point of inflection™)
® To prove all the “mean value theorems”, we need the Extreme Value Theorem.
Proof of n =0 TT by way of LMVT
® Proof of n=1TT by way of CMVT & LMVT

First Application of LMVT
Let f(x) be afunction such that f'(x) > 0 Vx € Domain, then
f(x) is strictly increasing. (i.e. whenever s <t inthe domain of f(x), then

f&)<f@®).

Remark: Similarly, we have f'(x) < 0Vx € Domain, then
f(x) is strictly decreasing.

Proof:
Want: Show f(s) < f(t) whenevers < t.

f(s)-f(®)

s—

Consider

By using the LMV, we have 3d between s &t such that L2LE = £/(a).

Now there are two cases for the word “between”, i.e. it means either s < d <t or
t<d<s

In either case, the denominator is “negative” because s <t ifandonlyif s —t <
0.
Hence it follows that the numerator is also “negative” to make the quotient

HONIO)

s—t

> 0....

Hence f(s) < f(t) as required.



Application of “f’'(x) > 0 implies “strictly increasing” ” in “curve sketching.

Recall our old example:

1
x(x-1)

Example: Sketch f(x) =

We have (i) lim_f(x) = 0%, (ii) lim f(x) = +oo, (iii) lim, f(x) = —eo, (iv)

lim f(x) = =0, () lim, f(x) = +oo, (Vi) lim f(x) = 0%,

What we don’t know
How many “bumps” are there?

By “bump”, we mean “local maximum/minimum points”. These points are found by

Q) Looking for point(s) c¢ satisfying the equation f'(c) = 0. (Such point ¢
is called a “critical point™)

(i)  Checking whether the function is “strictly increasing/decreasing” when
x < ¢ and near c; “strictly decreasing/increasing” when x > ¢ and near
c. (The first case means “c is a (local) maximum point”, the second case
means “c is a (local) minimum point”.)

(iii))  Sometimes, one can also check for (local) max/min points by considering
f"(c) <0 or >0.

Curve Sketching Example continued

Consider f(x) = :

x(x-1)
d
, _GxG-1) (- D+x] | —(2x-1)
Then f(X)— x2(x-1)2  x2(x-1)2  x2(x-1)2

Solving f'(x) =0 gives x = %

Now when x < % and near to it, we get f'(x) > 0. When x > % and near to it, we

get f'(x) <0. So x =§ is a local maximum point.



Definition: A point ¢ in the domain is called a point of “inflection” (or “inflexion”),
if for x < ¢ ((and near the point ¢), f""(x) >0 and for x > ¢ (and near the
point ¢), f"(x) < 0. (orvice versa, i.e. f"(x) <0 first,then f""(x) > 0 next).
(In short, it means “f"'(x) changes “sign” about the point c¢”)

Question: Does this function have a point of inflexion?

(ox— %2 (x=1)22-(22-1)3]x? (x—1)?]
Answer: No, because i( (2x 1)) = _< d

dx \ x2(x—1)2 x*(x—1)*

_ <x2(x —1)%2 — (2x — D[2x(x — D{2x — 1}]) _ o
x4 (x —1)*
x2(x —1)22 = (2x — 1)?[2x(x — 1]
x(x —1) = (2x — 1)?
xZ2—x=4x? —4x+1
0=3x%2-3x+1

3+vV9-12

le. x =

This has no solution. So there is no “inflection points”.
Proof of Taylor’s Theorem continued
e Donevia EVT &
e LMVT&
e CMVT
We will explain them one by one.
A technical result:
* Extreme Value Theorem
Assumption: f:[a,b] —» R is a continuous function.
Conclusion: f has global (or “absolute’”) max/min values.
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Left picture —a global max. attained inside the interval, global min. attained at the right end-point.

Right picture — both global max. and min. are attained at end-points.



Question: What do we mean by global abs. max value?

A point ¢ inthe domain of f(x) is called a “global” maximum point, if f(c) =
f(x), Vx in domain of f(x)

The value f(c) is called the “global” max. value of the function.

Similarly, one can define “global minimum point” and “value”.

Terminology:

One can summarized both maximum and minimum in the word “extremum”.
(Using this word, we can say “The EVT guarantees that any continuous function
defined on [a, b] has global extrema (“extrema” is the plural of “extremum™)”)

Remarks (for the EVT):
e Continuity is sufficient (we don’t need “differentiability”)
e Domain must be of the form [a, b]. ((a,b],[a, b), (a, b), etc. wouldn’t work!)
e Pure existence theorem (it doesn’t tell you how to find the max/min points)
e Using this, we can prove LMVT (via the RT)

Question: Do you remember the statement of RT?

Rolle’s Theorem

The following picture explains Rolle’s Theorem:

A

a C b

Rolles’ Theorem says: “If a function f(x) satisfies (1), (2), (3) below, then 3c €
(a,b) suchthat f'(c) = 0.” (In other words, the tangent line at the point x = ¢
is horizontal (or parallel to the x —axis)).

Assumptions for RT: (1) f:[a,b] = R iscontinuous, (2) f:(a,b) - R is
differentiable, (3) f(a) = f(b).

v



From RT to LMVT
(Idea) Rewrite % = f'(d) (notice that we have a quotient on the left-

hand side!) in the form of some function p(x) satisfying (*) p(a) = p(b) so

that we can use Rolle’s Theorem to get p'(c) = 0.

Question: Can we do that?
Answer: Look at Cauchy Mean Value Theorem (which is more complicated than
Lagrange’s Mean Value Theorem) to get an idea. CMVT says: For some
e between a & b
fB) —f@ _f'(e)
gb)—g@  g'(e)
Let’s rewrite it in the form (f(b) — f(a))g'(e) — (g(b) — g(a))f'(e) =0

We think this way: If we consider the function

q(x) = (f(b) = f(@)g(x) = (g(b) — g(a))f (x)
Then perhaps it will satisfies the assumptions of the Rolle’s Theorem.

That is, we have to check:

() qb) =2 (ii) q(a) =7
It turns out that g(a) = q(b). (Check it yourself 1) Therefore the assumptions of

Rolle’s Theorem are satisfied. It follows that there exists e between a & b
such that:

q'(e) =0
But q'(x) = (f(b) — f(0))g'(x) — (g(b) — g(@))f'(x)
So substituting x = e, we obtain
0=q'(e) = (f(b) — f(@))g'(e) = (g(b) — g(@)f'(e)

Rearranging, we obtain



F® - f@) _fe
(g(b) - g(@)  4g'(e

This is what we wanted to prove.

Proof of LMVT
Coming back, we observe that the conclusion of LMVT, i.e.
fb) - f(a)

b—a
can be understood as CMVT with g(x) = x. That is the following:

f)—fl@_ f'd _f@

b—a ix| 1

dx " ly=q
Now we repeat our idea used to prove the CMVT before and rewrite the fraction
in the following form:

(f(b) — f(@)g(x) — (b—a)f'(d) =0

= f'(d) 3d betweena &b

This leads us to consider the function p(x) defined by

p() = (f(0) - f(@)x — (b — )f (x)

Again, we try to check whether p(a) = p(b) so that we can apply Rolle’s
Theorem.

Substituting x = a and x = b in p(x) gives
p(@ = (f(b) - f(@)a—(b-a)f(a) =
p(b) = (fb) — f(@)b — (b —a)f (b) = -
So p(a) = p(b). Therefore Rolle’s Theorem says:

3d betweena &b suchthat p'(d) =0, i.e.
(f(0) = f@) = (b= a)f "(d) = 0

Which is what we wanted to prove.

Relations to Taylor’s Theorem
Two very simple cases of TT are:
n =0 case.



Ifwelet x =b, and a = ¢, we obtain

oo SO —f(0)
f'(c) =T
l.e.
fl)=f'"(c)x—c)+f(c)
=flc)+ f'(c)x—o).
l.e.

f(x) = f(c) + Error term.
Error term = # (x —o)?t

Remark: The n =0 TTis just LMVT!

The n =1 Taylor’s Theorem
Can we improve on the n = 0 Taylore’ Theorem (i.e. approximating the function
y = f(x) by the horizontal line y = f(c) ?)

Answer: Yes. We can try next f(x) = f(c) + f'(c)(x — c)+Error,

Where this time, the “Error” term is of the form

Q(x —¢)?
where @ is some number which we want to find.

Why? Because when x isnearto ¢, x — c isanumber whose absolute value is less
than1,s0 (x — ¢)? < |x —c|

Rearranging, we obtain

fG) = fle) = f'(@)(x—c) =Qx —c)?
Goal: Find a formula for the number “Q”.

To see this: Rewrite the above equation as

fO) —fl) - fiex—¢) _

(x —¢)?

Q

Question: How to find this number Q?

Interpret the above as “CMVT”, i.e.
Let A(x) = f(x) = f(c) = f(c)(x =0,



B(x) = (x — ¢)?

Then the above formula (LHS) is:
A —AQ) _A@ _f'd) - f'(0)1
B(x) —B(¢) B'(d) 2(d—-c¢)
for some (or 3) d € (c,x) or (x,c¢).
where d dependson c and x. Next, we use Cauchy Mean Value Theorem again to

get

1\ ., 1. .,
) r@-@re <1) ) 3 bermeen d&
T = 2f(e) e between C.
Similarly, one can prove Taylor’s Theorem for n = 2,3,4, -+ by repeated use
of CMVT and LMVT.

For example when n = 2, we get

) = £ - F O — ) - L (x— oy

(x—c)3

This expression, when we apply CMVT twice, then LMVT, will be equal to

(5) 7@



