Lect24-20180418

Mar 22, Thursday, 2018 3:27 PM

Result of Algebraic Topology

After you have stirred your coffee, one drop of coffee has gone back to its original position.

Browner Flxed Point Theorem

Let D' = {xeR: 1x1<1}.

Every continuous $f: \mathbb{D}^n \longrightarrow \mathbb{D}^n$ has a fixed point. That is, $\exists x \in \mathbb{D}^n$ such that $f(x_0) = x_0$

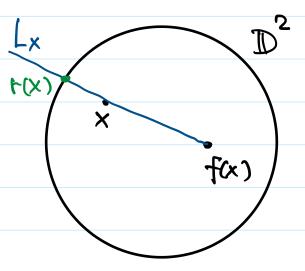
Proof for n=2.

Suppose otherwise, $\forall x \in \mathbb{D}^2$, $f(x) \neq x$ Then the straight line L_x is defined, $L_x = \{(1-t)x + tf(x) : t \in (-\infty, 1]\}$

And, $L_X \cap S'$ is a singleton, call it $\Gamma(X)$.

In other words.

$$r: \mathbb{D}^2 \longrightarrow \mathbb{S}'$$



is defined and continuous.

Why?

Indeed, $r(x) = \frac{x, f(x), \langle x, f(x) \rangle, |x||, |f(x)||}{||x - f(x)||^2}$ Solution of a quadratic equation Moreover, r = idsi, i.e., roi = idsi: s' -> s' Therefore, $r = D^2 \rightarrow S'$ is a retraction $\mathcal{I}_{\#} \to \mathcal{I}_{1}(\mathbb{D}^{2})$ never

injective

Another result

There is a place on earth where its temperature and humidity are exactly the same as its "diametrically opposite" place. can be something else antipodal

Borsuk-Ulam Theorem

Every continuous $f: \mathcal{F}^n \longrightarrow \mathbb{R}^n$ has $x_0 \in \mathcal{F}^n$ such that $f(x_0) = f(-x_0)$.

• (temperature, humidity): $S^2 \longrightarrow \mathbb{R}^2$ is continuous; to and -xo are antipodal

One Equivalent Version

There is no continuous odd $g: S^n \rightarrow S^{n-1}$

$$g(-x) = -g(x) \forall x$$

Apr 18, Wednesday, 2018 5:07 PM

">" Regard $g: S^n \rightarrow S^{n-1} \subset \mathbb{R}^n$, we have that $X_0 \in S^n$ satisfying $g(x_0) = g(-x_0)$ $g(x_0) = g(x_0)$

$$\therefore g(x_0) = 0 \notin \mathcal{Z}^{n-1}$$

" by contrapositive"

Assume $f: S^n \to \mathbb{R}^n$ is continuous, but $\forall x \in S^n \quad f(x) \neq f(-x)$ Define $a: S^n \to S^{n-1}$

Define $g: S^n \longrightarrow S^{n-i}$ by $g(x) = \frac{f(x) - f(-x)}{\|f(x) - f(-x)\|}$

non-zero

what's wrong?

Therefore, q is continuous

Clearly, $\forall x \in S^n$, g(-x) = -g(x)

Proof of Equivalent version, n=2

Let $q: S^2 \longrightarrow S^1$ be continuous.

Assume g is odd, i.e., $\forall x \in S^2$, q(-x) = -q(x)

Recall that RP = 5/(x~-x)

i.e., $S^n \xrightarrow{q_n} \mathbb{RP}^n$

× --> [x]={x,-x}

g: RP²→RP¹ is well-defined
[x] → [g(x)]

 $[-\times] \longmapsto [g(-\times)] = [-g(\times)] = [g(x)]$

Exercise. g is continuous (hint: diagram below)

 $\hat{q}_{\pm}: \pi_{l}(\mathbb{R}P^{2}) \longrightarrow \pi_{l}(\mathbb{R}P^{l})$

(7/2,+)

Exercise. RPI is homeomorphic to S

By MATH 2070,
$$\hat{g}_{\#} \equiv 0$$

Meaning: For every loop & in RP2, gox is a trivial loop in RP1

$$S^{2} = \begin{pmatrix} 3 \\ -\frac{1}{2} \\ 3 \end{pmatrix} = S^{1}$$

$$g(x)$$

$$g(x$$

commot be trivial

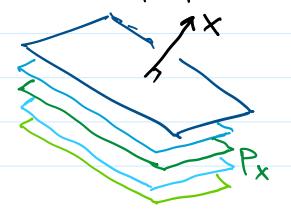
Ham Soundwich Theorem

Given any irregular shape of two pieces of bread and a ham, no matter how they are placed, there is a way to cut them simultaneously into holves.

Proof.

Let A, Az, Az C R3 be the two pieces of bread and ham.

Every $x \in S^2$ determines all the cuts (oriented) perpendicular to x.



Choose the one that cuts Az into half, and call the plane Px.

exists by Intermediate Value Theorem Apr 18, Wednesday, 2018

5:09 PM

Then Px also "cuts" each A1, A2 into two parts, one in the direction of X, but not necessarily into half.

Let $f_k(x) = volume of A_k$ cut by P_x in the direction of $X \in S^2$ $f=(f_1, f_2): S^2 \longrightarrow \mathbb{R}^2$ is continuous By Borsuk-Ulam, $\exists x \in S^2$ such that $f(x_0) = f(-x_0)$

meaning??

Pxo and Pc-xor cut Ax into some size

 $f_1(x_0) = f_1(-x_0)$ and $f_2(x_0) = f_2(-x_0)$

Same cut but measuring Equal from opposite side halves

It already ents Az into equal halves

Q.E.D.