Lect23-20180416

Wednesday, 11 April 2018 11:23 AM

Contractible Spaces, \mathbb{R}^n , \mathbb{D}^n , etc. Pick $x_0 \in X$ and $c: [0,1] \longrightarrow \{x_0\} \subset X$ Then $\pi_1(\chi, \chi_0) = \{c_3\}$. Trivial group, denoted 1. Circle S' and Punctured Plane R 1509 Let $x_0 \in S' \subset \mathbb{R}^2 \setminus \{0\}$. $\pi_1(\mathcal{S}^1, x_0) = \pi_1(\mathbb{R}^2 \setminus \{0\}, x_0) = (\mathcal{I}, +)$ First, define a mapping $\varphi: \mathbb{R}^2 \setminus \{0\} \longrightarrow \mathbb{S}^1$ $x \longrightarrow \varphi(x) = \frac{x}{\|x\|}$ $(cos \theta, sin \theta)$ We then have (prove later) \bullet $[\gamma] \in \pi_1(\mathbb{S}^1, \times_{\mathsf{o}}) \longmapsto [\gamma] \in \pi_1(\mathbb{R}^2 \times \mathbb{S}^1, \times_{\mathsf{o}})$ \bullet $[\gamma] \in \pi_1(\mathbb{R}^2 \setminus \{0_1, x_0\}) \mapsto [\phi \circ \gamma] \in \pi_1(\mathbb{S}^1, x_0)$ $\pi_{1}(\mathbb{R}^{2}\backslash\{0\},\mathbf{x})=\pi_{1}(\mathcal{S}^{\prime},\mathbf{x}_{0})$ $Fival(y, (z, t))$

Lect23-p2 Apr 17, Tuesday, 2018 9:26 AM

What steps are needed to have the above? Try to outline it. Calculate (not yet proof) $\pi_1(\mathbb{R}^2\backslash\{0\},x_0)=\pi_1(\mathbb{C}\backslash\{0\},x_0)\longrightarrow\mathbb{Z}$ $[3]$ $\mathcal{C}_{\mathcal{C}}$ $\overline{\mathsf{x}}$ winding number, W(r) How? Winding Number If $\gamma: [0,1] \longrightarrow \mathbb{C}\setminus\{0\}$ is piecewise differentiable with γ (0)= γ (1), then $w(\gamma) = \frac{1}{2\pi i} \int_{\gamma} \frac{d\overline{z}}{\overline{z}}$ For se [0,1], write $z = r(s) e^{i \theta(s)}$ $= \cdots = \frac{\theta(1) - \theta(0)}{1}$ 2π

Wednesday, 11 April 2018 11:23 AM

In the example, $\theta(s)$ varies as below. $\theta = 0$ $T = A$ $\theta = 0$ $\sum_{i=1}^{n}$ $f(0)=0$ θ (1) = 4T ि⊃2∏ 9-47-5 θ = 3 π The graph of D: [0,1] -SR looks like θ_1 π $\overline{52}$ $\overline{27}$ $\overline{\boldsymbol{n}}$ $\mathbf S$ Theorem. Let Υ : [0,1] $\longrightarrow \mathbb{R}^2\setminus\{\emptyset\}$ be continuous (not necessarily $\gamma(0) = \gamma(1)$). Then there is a continuous polar form parametrization, i.e., continuous $r: [0,1] \longrightarrow (0,\infty)$ and $\theta: [0,1] \longrightarrow \mathbb{R}$ such that $\gamma(s) = (r(s) \cos \theta(s), r(s) \sin \theta(s))$

Lect23-p4 Apr 17, Tuesday, 2018 9:29 AM Idea of proof. By compactness of [0,1], it can be covered by finitely many sneh open intervals Then Ols) can be inductively defined. Definition. In the case that $\delta(0) = \delta(1)$, $\frac{\text{winding}}{\text{number}}$ w(Y) = $\frac{1}{2\pi}(\theta(1)-\theta(0)) \in \mathbb{Z}$ Why independent of O(s)? For two choices θ (s), $\hat{\theta}$ (s), consider $S\in [0,1]$ continuous $\frac{1}{2\pi} [\hat{\theta}(s) - \theta(s)] \in \mathbb{Z}$ connected only constant in s $\frac{1}{1-\frac{1}{2\pi}}\left[\hat{\theta}^{(1)}-\theta^{(1)}\right]=\frac{1}{2\pi}\left[\hat{\theta}^{(0)}-\theta^{(0)}\right]$ $\frac{1}{1-\frac{1}{2\pi}}\left[\frac{\partial(u-\theta)}{\partial t} - \frac{1}{2\pi}\left[\frac{du}{dt}\right] - \frac{1}{2\pi}\left[\frac{1}{2\pi}\left(\frac{1}{2\pi} - \frac{1}{2\pi}\right)\right]$

Monday, 16 April 2018 10:15 AM

Combinatorial Winding Number $W(Y)$ Signed
sum(Lnr) X_{o} independent of L Homomorphism $\pi_{1}(\mathbb{R}^{2}\setminus\{0\},x_{0})\longrightarrow(X,+)$ For $\alpha_1 \beta$: [0,1] $\longrightarrow \mathbb{R}^2 \setminus \{0\}$, loops at x_0 Let L be a ray from 0, $Ln(\alpha * \beta) = (Ln \alpha) \mathsf{L} (Ln \beta)$ \therefore W $(\alpha \ast \beta) = w(\alpha) + w(\beta)$ Altematively, the continuous choices, θ a, θ p will define $\theta_{\alpha\star\beta}$ as illustration $W(\beta) = 0, -2n\pi$ Od $w(\alpha) = m$, 2mT \therefore W (a+B) = m+n

Notes Page 5

Lect23-p6 Apr 17, Tuesday, 2018 9:30 AM

 T Somorphism $\pi_1(\mathbb{R}^2 \setminus \{0\}, x_0) \longrightarrow (\mathbb{Z}, +)$ Obviously, $C: [0,1] \longrightarrow \{x_{0}\} \subset \mathbb{R}^{2}\backslash\{0\}$ $[C] \longleftrightarrow 0 \in \mathbb{Z}$ $Y: [0,1] \longrightarrow \mathbb{R}^2 \setminus \{0\}$ and F_{σ} $\overline{\gamma}$ = $[0,1]$ \longrightarrow \mathbb{R}^2 \searrow ζ_0 one-one $w(\overline{\gamma}) = -w(\gamma)$ For any $n \in \mathbb{Z}$, can construct $Y:[0,1] \longrightarrow \mathbb{R}^{2}\setminus\{0\}$ by onto $\gamma(s) = (cs(ns), sin(zns))$ \therefore $W(Y) = Y$.

Crucial Argument $\pi_1(\mathbb{R}^2\backslash\{0\},X_0)=(\mathbb{Z},+)$ Let $\alpha_0, \alpha_1 : [0,1] \longrightarrow \mathbb{R}^2 \setminus \{0\}$ be loops at x_0 and $a_0\simeq a_1$ rel fo, i], i.e., loop homotopic. Then $w(\alpha_0) = w(\alpha_1)$ x_0 $\xrightarrow{\alpha_1}$
 x_0 $\xrightarrow{\alpha_2}$

Monday, 16 April 2018 11:09 AM

What about $\pi_1(R^2\backslash\{0\},x_0)\stackrel{?}{=} \pi_1(S^1,x_0)$ $(L(Z,t)$ Recall $X_0 \in \mathbb{S}^1 \subset \mathbb{R}^2 \setminus \{0\} = \mathbb{C} \setminus \{0\}$ $\begin{array}{ccc}\n\gamma & \xrightarrow{\iota} & \gamma \\
\hline\n\zeta' & \xrightarrow{\iota} & \mathbb{R}^2\setminus\{0\}\n\end{array}$ $\varphi_{0}\gamma\Longleftrightarrow\qquad\qquad\gamma$ Theorem. Let $f: X \longrightarrow Y$ be continuous with $x_0 \in X$ and $y_0 = f(x_0) \in Y$. Then I homomorphism f_* : $\pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0)$ $[Y] \longrightarrow [long at y_{0}]$ for Well-defined: $\alpha_0 \simeq \alpha_1$ rel {0,1} \Rightarrow ? \approx ? rel $\{0,1\}$ homomorphic [a]. [B] \mapsto $\frac{1}{12}$ [a]. $\frac{1}{12}$ [B] ∦ ? $[ax\beta] \longleftrightarrow \int_{\#} [\alpha * \beta]$

Apr 17, Tuesday, 2018 9:31 AM

Remark. $\mathrm{id}_{\#}: \pi_1(X, x_0) \longrightarrow \pi_1(X, x_0)$ is exactly the id mapping. Warning f is $I-I$ \Rightarrow f f is $I-I$ f is onto \Rightarrow f is onto In the above context, we have (g',x_0) $\underbrace{\overbrace{\varphi}}^{i} (\overbrace{\mathbb{R}}^{2}\setminus\overline{\{0\}},x_0)$

Special: $\gamma(s)$ $\underbrace{\varphi}^{i}$ io $\gamma(s) = \gamma(s)$

(yoio $\gamma(s) \Longleftrightarrow i \circ \gamma(s) = \overline{id}_{S^1}$ $\therefore \pi_1(S, x) \xleftarrow{\underline{i_{\#}}} \pi_1(R^2\backslash \{0\}, x_0)$ Do we have $\varphi_{\#} \circ i_{\#} \equiv id_{\pi_1(S',X_0)}$? Theorem. Let $f:X\longrightarrow Y$, g: $Y\longrightarrow Z$ virth $x_0 \in X$, $y_0 = f(x_0) \in Y$, $\zeta_0 = g(y_0) \in Z$. Then $q_{\#} \cdot f_{\#} \equiv (q \cdot f)_{\#} : \pi_1(\times, \chi_0) \longrightarrow \pi_1(Z, \chi_0)$ $G_{\#}(f_{*}[\gamma]) = G_{\#}(f_{*}\gamma)] = [g_{*}f_{*}\gamma]$

Monday, 16 April 2018 2:13 PM

Now, we have $\frac{1}{4}$ ($\mathbb{R} \setminus \{0\}$, \sim), φ i=idg' $\frac{1}{\sqrt{n}}(S^1,X_0)\xrightarrow{\iota_{\text{eff}}}\pi_1(\mathbb{R}^2\backslash\{0\},X_0)$ $\varphi_{\#} \circ i_{\#} = (\varphi \circ i)_{\#} = id_{\#} = id$ What can we conclude? Sorry! We can only hove · lif is monomorphic, i.e., injective · 4# is epimorphic, i.e., surjective could be
 $\pi_1(g',x_0) = \begin{cases} 1 & \frac{1}{(4+1)^2} \pi_1(\#\mathbb{P}\backslash \{0\},x_0) = \mathbb{Z} \\ \frac{1}{(4+1)^2} & \frac{1}{(4+1)^2} \pi_1(\#\mathbb{P}\backslash \{0\},x_0) = \mathbb{Z} \end{cases}$ It could be What about (X,x_0) $\xrightarrow{f_1} (Y, y_1)$
 $\xrightarrow{f_2} (Y, y_2)$ We need to compare $\Pi_l(Y, y_1)$ and $\Pi_l(Y, y_2)$.

Apr 17, Tuesday, 2018 9:33 AM

Theorem If X is path connected (or at least x_1, x_2 are joined by a path). Then $\pi_1(X, x_1) = \pi_1(X, x_2)$ Proof. Let $\gamma: [0,1] \longrightarrow X$ be a poth joining x1 to x2, i.e, 86)=x1, 861)=x2 Then $\overline{\gamma}(s) = \gamma(1-s)$ is from x_2 to x_1 . $[a] \in \pi_1(X,x_1) \longmapsto [\overline{\gamma} * \alpha * \overline{\gamma}] \in \pi_1(X,x_2)$ $\frac{\sqrt{2}}{x_1}$ This is a bijection because au inverse is obvions. Also, it is homomorphic $\alpha * \beta \longmapsto \underline{\delta} * \alpha * \beta * \underline{\gamma} \equiv \underline{\delta} * \alpha * \underline{\gamma} * \underline{\delta} * \underline{\delta}$

Monday, 16 April 2018 2:37 PM

Theorem. Let $f_0:(X,X_0)\longrightarrow (Y,y_0)$ and $f_1: (x, x_0) \longrightarrow (x, y_1)$ be continuous. If fo 2f, then the diagram commutes $\pi_1(Y, Y_o)$ $\xrightarrow{\text{flo}} \pi_1(Y, Y_o)$
 $\xrightarrow{\text{r}} \pi_1(Y, Y_o)$ Proof. $f_0 \stackrel{H}{\sim} f_1 \implies f_0 \circ \alpha \simeq f_1 \circ \alpha$ but not rel $\{o_1\}$ $f\circ f_1 \Rightarrow f$ Park $\gamma: [0,1] \rightarrow \gamma$
 $f(\circ f_1) \Rightarrow f_1$ Park $\gamma: [0,1] \rightarrow \gamma$ $y(t) = H(x, t) = f(x) = y_0$
 $= H(x, 0) = f(x_0) = y_0$
 $= H(x, 0) = f(x_0) = y_0$
 $= H(x, 0) = f(x_0) = y_0$ $(f_0)_\#$ $\qquad \qquad$ $\qquad \qquad$ $\qquad \qquad \text{if } \forall o$ $[2] \in \Pi_1(X, X_0)$ $\begin{bmatrix} 8x(50d)*y \\ d & d \end{bmatrix}$ of Y_0

Apr 17, Tuesday, 2018 9:34 AM

Theorem Let f: X -> Y and g: Y -> X bc homotopy equindences on path connected X.Y, i.e., gof \simeq idx, fog \simeq idy. Then $\pi_1(x,x_1), \pi_1(x,y_1)$ are isomorphic. $\pi(X,2)$ $\xrightarrow{\pi}$ $\pi(Y,2)$ Proof. $G_{*} = f_{*} = (g_{*}f)_{*} = (id_{*})_{*} = id$ up to -1 $\frac{1}{4}$ $1-1$ and $\frac{9}{4}$ onto isonorphism $f_{\#} \circ g_{\#} = (f \circ g)_{\#} = (id \vee)_{\#} = id$ - f# onto and g# 1-1 Hence, both f# and 9# are isomorphisms.

Monday, 16 April 2018 3:06 PM

Definition. A subspace $A \subset X$ is a retract of X if I continuation r: X -> A such that \forall at A, $r(a)=a$; $r|_A \equiv id_A$ The wapping r is called a retraction. Equivalently, $A \xrightarrow{\iota} X \xrightarrow{\Gamma} A$, $roizid_A$ Example. S'ci, R2130} 4 >S' tamposition. 4 is surjective, la is injective. Definition. A retract ACX is called a deformation retract if $\Gamma \cong \mathrm{id}_X$ Example. S' is a deformation retract of
R²1504; need to modify 4 (Exercise) Theorem. If ACX is a deformation retract then $\pi_i(A, a_0) = \pi_i(X, a_0)$ for $a_0 \in A$ Proof $r \approx id_X \implies r_{\#} = (id_X)_{\#} = id$ up to isomorphism (base pt) For $a_0 \in A$ as base point of both $A, X,$
 $r_{\#} \equiv id$.

Lect23-p14

Monday, 16 April 2018 3:33 PM

Example. $\pi_1(\mathbb{S}^n) = \begin{cases} (z,+) & \text{if } n=1 \\ 1 & \text{if } n \geq 2 \end{cases}$ Rigorous proof nees Van Kampen Theorem
and induction \mathbb{S}^{n} , \mathbb{S}^{n-1} , \mathbb{S}^{n+2} , ... \mathbb{S}^{1} Proposition. $\Pi_{1}(X\times Y)=\Pi_{1}(X)\times \Pi_{1}(Y)$ direct product Example. $\pi_{1}(Tons) = (202 +)$ $\frac{1}{\pi(\mathcal{S}^{1} \times \mathcal{S}^{1})} = \frac{1}{\pi(\mathcal{S}^{1}) \times \pi(\mathcal{S}^{1})}$ $\pi(\mathcal{S}'\times \mathcal{S}') \longrightarrow \mathbb{Z}\oplus \mathbb{Z}$ $\begin{array}{cccc}\n\begin{array}{cccc}\n\begin{array}{cccc}\n\begin{array}{cccc}\n\alpha \\
\end{array} & \longrightarrow & \begin{array}{cccc}\n\alpha \\
\end{array}$ $Simplanty, \pi_1(S'x \dots xS') = (\mathbb{Z} \oplus \dots \oplus \mathbb{Z}, +)$

Apr 17, Tuesday, 2018 9:35 AM

