Lect23-20180416

Wednesday, 11 April 2018 11:23 AM

Contractible Spaces, Rn, Dn, etc.

Pick xoe X and c: [0,1] -> [xo] [X Then $\pi_1(X,x_0) = \{[c]\}.$

Trivial group, denoted 1.

Circle 5 and Punctured Plane R21809

Let xo ES' C R2/804.

$$\pi_1(S', x_0) = \pi_1(\mathbb{R}^2 \setminus \{0\}, x_0) = (\mathbb{Z}, +)$$

First, define a mapping

$$x \mapsto \varphi(x) = \frac{x}{\|x\|}$$

 $(\cos\theta, \sin\theta)$

We then have (prove later)

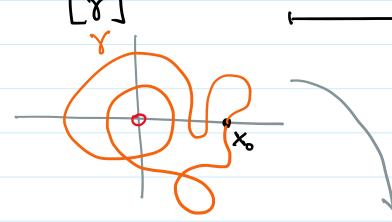
•
$$[\Upsilon] \in \Pi_1(\mathbb{R}^2 \setminus \{\emptyset\}, \infty) \mapsto [\phi, \gamma] \in \Pi_1(\mathbb{S}^1, \times_{\bullet})$$

•
$$\pi_{i}(\mathbb{R}^{2}\setminus\{0\}, \mathcal{K}) = \pi_{i}(\mathcal{I}^{i}, \mathcal{K}_{o})$$

What steps are needed to have the above? Try to outline it.

Calculate (not yet proof)

$$\pi_{1}(\mathbb{R}^{2}\setminus\{0\},\chi_{0})=\pi_{1}(\mathbb{C}\setminus\{0\},\chi_{0})\longrightarrow\mathbb{Z}$$



winding number, w(r)
How?

Winding Number

If $\gamma: [0,1] \longrightarrow (1)$ for is piecewise differentiable with $\gamma(0) = \gamma(1)$, then

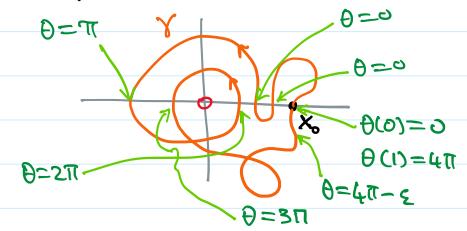
$$w(r) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z} =$$

For se [0,1], write

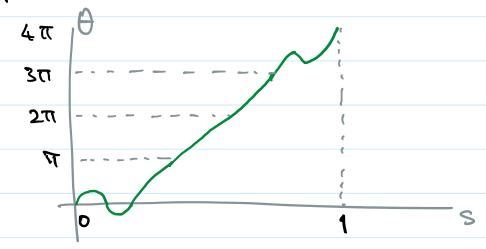
= r(s)ei0(s)

$$= \cdots = \frac{\theta(1) - \theta(0)}{2\pi}$$

In the example, $\theta(s)$ varies as below.



The graph of 0:[0,1] -> TR looks like



Theorem. Let $V: [0,1] \longrightarrow \mathbb{R}^2 \setminus \{0\}$ be continuous (not necessarily Y(0) = Y(1)).

Then there is a continuous polar form parametrization, i.e., continuous $Y: [0,1] \longrightarrow (0,\infty)$ and $\theta: [0,1] \longrightarrow \mathbb{R}$ such that $Y(s) = (r(s) \cos \theta(s), r(s) \sin \theta(s))$

Apr 17, Tuesday, 2018 9:29 AM

Idea of proof.

By compactness of [0,1], it can be covered by finitely many such open intervals Then OLS) can be inductively defined.

Definition. In the case that $\delta(0) = \delta(1)$, winding $w(y) = \frac{1}{2\pi} (\theta(1) - \theta(0)) \in \mathbb{Z}$ number

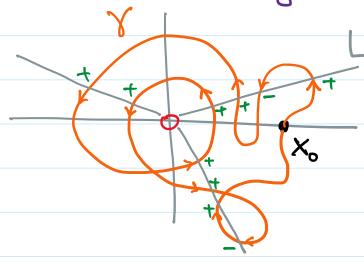
Why independent of O(s)?

For two choices $\theta(s)$, $\hat{\theta}(s)$, consider $s \in [0,1]$ continuous $\frac{1}{2\pi i} \left[\hat{\theta}(s) - \theta(s) \right] \in \mathbb{Z}$ connected only constant in s

$$\frac{1}{2\pi} \left[\hat{\theta}(1) - \theta(1) \right] = \frac{1}{2\pi} \left[\hat{\theta}(0) - \theta(0) \right]$$

$$\left[\cos\theta - \cos\theta\right] = \frac{1}{2\pi} \left[\cos\theta - \cos\theta\right] = \frac{1}{2\pi} \left[\cos\theta - \cos\theta\right]$$

Combinatorial Winding Number



W(Y)

Signed (Lnr)

independent of L

Honomorphism Tr. (R21503, x0) -> (Z,+)

For a, B: [0,1] -> R2/50f, loops at xo

Let L be a ray from 0,

Γυ(ακβ) = (Γυα) Π (Γυβ)

 $w(\alpha + \beta) = w(\alpha) + w(\beta)$

Alternatively, the continuous choices, Da, Op will define DX*B as illustration

 $W(\alpha) = m$, $2m\pi$

Dar (a+B) = m+n

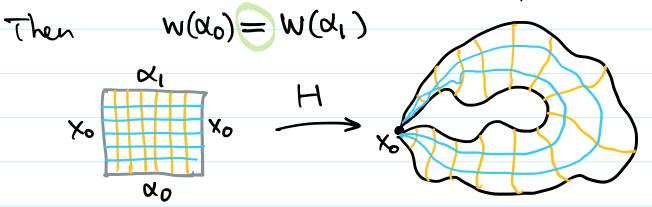
Apr 17, Tuesday, 2018 9:30 AM

Tsomermorphism $T_1(\mathbb{R}^2 \setminus \{0\}, x_0) \longrightarrow (\mathbb{Z}, +)$ Obviously, $C : [0,1] \longrightarrow \{x_0\} \subset \mathbb{R}^2 \setminus \{0\}$ $[C] \longmapsto 0 \in \mathbb{Z}$

For $Y: [0,1] \longrightarrow \mathbb{R}^2 \setminus \{0\}$ and $Y: [0,1] \longrightarrow \mathbb{R}^2 \setminus \{0\}$ one-one $\mathbb{R}^2 \setminus \{0\}$ one-one

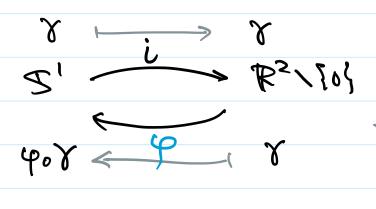
For any $n \in \mathbb{Z}$, can construct $\Upsilon : [0,1] \longrightarrow \mathbb{R}^2 \setminus \{0\}$ by onto $\Upsilon(s) = (cis(2ns), sin(2ns))$ $\vdots \qquad W(\Upsilon) = N.$

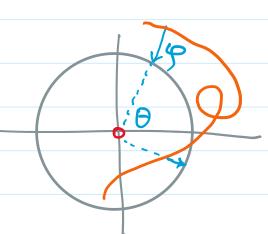
Crucial Argument $\Pi_1(\mathbb{R}^2\backslash SOL, X_0) = (\mathbb{Z}\backslash +)$ Let $X_0, X_1 : [0,1] \longrightarrow \mathbb{R}^2\backslash SOL$ be loops at X_0 and $X_0 \simeq X_1$ rel $\{0,1\}$, i.e., loop homotopic.



What about $T_1(\mathbb{R}^2 \setminus \{0\}, \times) \stackrel{?}{=} T_1(\mathcal{I}^1, \times_0)$ $L(\mathbb{Z}, +)$

Recall XOE SIC R21901 = (1) [0]





Theorem. Let $f: X \longrightarrow Y$ be continuous with $x_0 \in X$ and $y_0 = f(x_0) \in Y$. Then

I honomorphism

$$f_{\#}: \pi_{i}(X, \chi_{o}) \longrightarrow \pi_{i}(X, y_{o})$$

Well-defined: ∞ ~x, rel {0,1}
⇒ ? ~? rel {0,1}

. homomorphic [a]. [B] \longrightarrow $f_{\#}[a]. f_{\#}[B]$

[a*B] +> f#[a*B]

Apr 17, Tuesday, 2018

9:31 AM

Remark. $id_{\sharp}: \Pi_{1}(X,X_{\delta}) \rightarrow \Pi_{1}(X,X_{\delta})$ is exactly the id mapping. Warning f is $1-1 \Longrightarrow f_{\sharp}$ is 1-1f is onto $\Longrightarrow f_{\sharp}$ is onto

In the above context, we have $(S', x_0) \xrightarrow{i} (R^2 \setminus 50^1, x_0)$ Special: $Y(s) \mapsto i_0 Y(s) = Y(s)$ $\varphi_{0i_0} Y(s) \leftarrow \varphi_{0i_0} = id_{S^1}$ $\varphi_{0i_0} Y(s) \leftarrow \varphi_{0i_0} = id_{S^1}$

 $\pi_{1}(S', \chi_{0}) \xrightarrow{i_{\#}} \pi_{1}(\mathbb{R}^{2} \setminus 50^{1}, \chi_{0})$

Do we have $\varphi_{\bullet} \circ i_{\dagger} \equiv id_{\pi_{i}}(s'_{i} \times_{i})$?

Theorem. Let $f: X \to Y$, $g: Y \to Z$ with $x_0 \in X$, $y_0 = f(x_0) \in Y$, $\xi_0 = g(y_0) \in Z$. Then $g_{\#} \circ f_{\#} = (g_0 f)_{\#} : \pi_1(X, x_0) \to \pi_1(Z, \xi_0)$ $g_{\#}(f_{\#}[X]) = g_{\#}([f_0X]) = [g_0 f_0 Y]$

Now, we have
$$(S', x_0) = (\mathcal{F}' \setminus \{0\}, x_0), \varphi_0 \in \mathcal{F}' \setminus \{0\}, x_0)$$

$$\varphi_{\#} \circ i_{\#} = (\varphi_{\circ} i)_{\#} = id_{\#} = id_{\#}$$

what can we conclude?

Sorry! We can only have

- · It is monomorphic, i.e., injective
- · 9# is epimorphic, i.e., surjective

could be
$$\pi_{l}(S', x_{o}) = \begin{cases} 1 & \text{if} \\ \frac{1}{2} & \text{if} \end{cases} (\Re^{2} | Sot, x_{o}) = \mathbb{Z}$$

What about
$$(X, X_0) \xrightarrow{f_1} (Y, y_1)$$
?
$$\xrightarrow{f_2} (Y, y_2)$$
?

We need to compare $T_1(Y, y_1)$ and $T_1(Y, y_2)$.

Theorem If X is path connected (or at least x_1, x_2 are joined by a path), then $T_1(X, x_1) = T_1(X, x_2)$ isomorphic

Proof. Let $Y: [0,1] \longrightarrow X$ be a path joining x_1 to x_2 , i.e., $Y(0)=x_1$, $Y(1)=x_2$ Then $\overline{Y}(s)=Y(1-s)$ is from x_2 to x_1 .

[a] = T, (X,x,) ->[7* x*)] = T,(X,x2)

This is a bijection because au inverse is obvious.

 Theorem. Let $f_0:(X, x_0) \rightarrow (Y, y_0)$ and $f_1:(X, x_0) \longrightarrow (Y, y_1)$ be continuous.

If $f_0 \simeq f_1$ then the diagram commutes $(f_0)_{\sharp\sharp} \rightarrow \pi_1(Y, y_0)$ $\pi_1(X, x_0) \longrightarrow (f_0)_{\sharp\sharp} \rightarrow \pi_1(Y, y_0)$ (f_0) $\pi_1(X, x_0) \longrightarrow (f_0)_{\sharp\sharp} \rightarrow \pi_1(Y, y_0)$

Proof. fo = f, => food = food but not red 50,13

fo=f, => = park Y: [0,1] -> Y.
How? Y(0)=y0, Y(1)=y1.

 $f_0: X \to Y$ $f_0: X \to Y$

[a]=TI,(X,Xo) [food] at yo

[a]=TI,(X,Xo) [8*(food)*Y] at yo

(fi)# > [food]*Y] at yo

(fi)# > [food] at yo

Theorem. Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ be homotopy equivalences on path connected X,Y, i.e., $g \in Y \cong id_X$, $f \circ g \cong id_Y$.

Then T(X,x,), T(Y,y,) are isomorphic.

Proof. $\pi_i(X,?) \xrightarrow{f_{\#}} \pi_i(Y,?)$

 $g_{\#} \circ f_{\#} = (g_{p}f)_{\#} = (id_{X})_{\#} = id$

:, f# 1-1 and 9# onto

up to

f#09# = (fog)# = (idy)# =id

: f# onto and 9# 1-1

Hence, both ff and 9# are isomorphisms,

3:06 PM

Definition. A subspace A C X is a retract of X if 3 continuation r: X -> A such that $\forall a \in A$, r(a) = a; $r|_A \equiv id_A$ The wapping r is called a retraction.

Equivalently, A City X — > A, roi = idA

Example. S'ci>R2/30/ 4>S'

teroposition. It is surjective, it is injective.

Definition. A retract ACX is called a deformation retract if r=idx Example. S' is a deformation retract of R21501; need to modify 4 (Exercise)

Theorem. If ACX is a deformation retract then $\pi_i(A, \alpha_0) = \pi_i(X, \alpha_0)$ for $\alpha_0 \in A$

Proof. $r \simeq id_X \implies r_\# = (id_X)_\# = id$

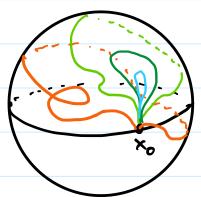
up to isomorphism (base pt)

For $a_0 \in A$ as base point of both A, X, $r_{\sharp \sharp} = id$.

Monday, 16 April 2018

3:33 PM

Example.
$$\pi_1(S^n) = \{(Z,+) \text{ if } n=1 \}$$



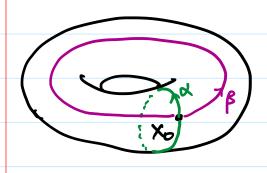
Rigorous proof uses Van Kampen Theorem and induction Sn, 5n-1, 5n-2, ..., 51

Proposition. $\pi_i(X \times Y) = \pi_i(X) \times \pi_i(Y)$

direct product

Example.
$$\pi_i(Torus) = (\mathbb{Z} \oplus \mathbb{Z}, +)$$

$$\Pi_i = \Pi_i(S^i \times S^i) = \pi_i(S^i) \times \pi_i(S^i)$$



$$\pi_{i}(S^{i}\times S^{i}) \longrightarrow \mathbb{Z} \oplus \mathbb{Z}$$

$$[\alpha] \longmapsto (i, 0)$$

$$[\beta] \longmapsto (0, 1)$$

Similarly, π(5'x ... x5') = (Z0...0Z,+)

Apr 17, Tuesday, 2018 9:35 AM

