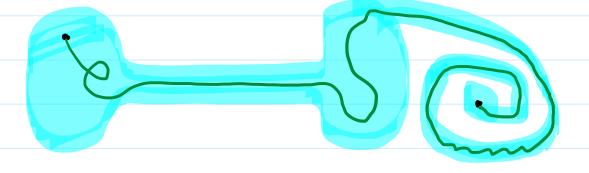
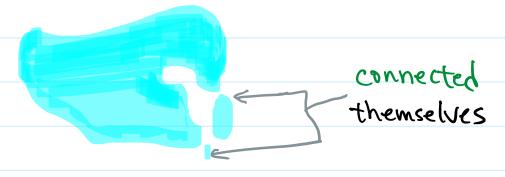
Three other connectedness

Path connected - stronger, more visual



Local connected — 本土意識



Simply connected - different from above

Definition. A space X is path connected if \forall pair $x,y \in X$, \exists continuous mapping $y: [0,1] \longrightarrow X$, y(0)=x, y(1)=y

6:48 PM

Theorem. A path connected space is connected. Proof. By contradiction, assume $\exists \phi \neq U \subsetneq X, U, X \setminus U \in J$

Then pick XEV and yEXIV and

Then we can found a nontrivial both open and closed subset in [0,1].

Contradiction

Exercise. Careful argument of above.

Definition. Let \sim be an equivalence relation on X that $\times \sim y$ if \exists continuous $Y: [0,1] \longrightarrow X$, $Y(0)=\times$, Y(1)=y. For $X \in X$, the equivalence class $[x_0]$ is the path component of X.

Obviously, X is path connected > X has exactly one path component.

Question. While path connected is connected, Is path component = Connected component?

Example. Again, X=YUG formed by sin \$\frac{1}{2}, x>0 一石二鳥

path component # connected component connected #> path connected

Theorem. Let $\phi \neq G \subset \mathbb{R}^n$ be an open set. If G is connected then it is path connected.

Proof. Fix a point XoEG and consider its path component P in G.

First, P is open. Wish. $\forall x \in P$, $\exists ball B$, $x \in B \subset P$

This is easy

5·49 PM

Since G is open, 3 ball B, XEBCG Only need to show BCP

Arbitrary yEB => yEP

B is a ball and xiyeB,

I straight line from x to y

Also, I continuous path from xo to x,

i I continuous path from xo to y

and so y E P.

By similar argument (exercise), XIPEJ.

Thus, by connectedness of G,

 $P = \emptyset$ or P = G

But NOEP, .: P=G is path connected

Exercise. Show that every pair x, y ∈ G can be joined by a finite sequence of straight lines parallel to the coordinate axes.

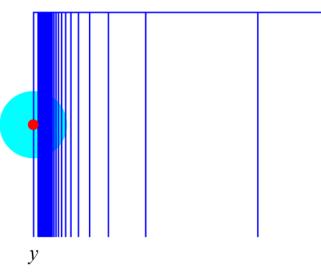
6:07 PM

Definition. A space X is locally connected if $\forall x \in X \exists a local base Ux at x$ consisting of connected neighborhoods.

Clearly, locally connected \Rightarrow connected

Trist (-00,0) U (0,00) is an example.

Example. Let $F = X \cup Y \cup V \subset \mathbb{R}^2$ where $X = \{(x,0) : 0 \le x \in \mathbb{R}^3 \subset x - axis$ $Y = \{(0,y) : y \le 0 \} \subset y - axis$ $V = \bigcup_{n=1}^{\infty} \{(h,y) : y \le 0 \}$



F is clearly path connected, and so it is connected

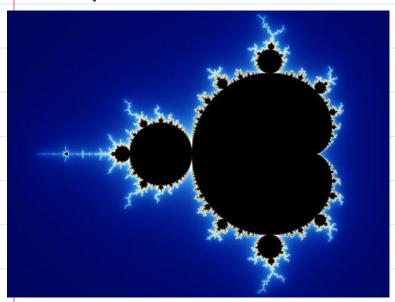
6:50 PM

On the other hand, at any (0,y), $y \neq 0$, take $0 < \varepsilon = \frac{|y|}{2}$ and $U = (-\varepsilon, \varepsilon) \times (-\varepsilon, \varepsilon)$.

Then UNF is a nobled of (0,y) in F But, every sub-nobled of (0,y) in it is disconnected.

Thus, F is not locally connected.

Example. This is called Mandelbrot Set MCC.



SEM if the complex sequence ζ , $\zeta^2+\zeta$, $(\zeta^2+\zeta)^2+\zeta$, ... is bounded.

- · It is connected (in fact, simply connected)
- · Still, den't know if it is locally connected

Yoccoz, Fields Medal 1994

Sunday, 25 March 2018

9:24 AM

Proposition. Let X be locally connected.
Then each connected component is both open and clused.

Not always true known before

Infinitely many components cluster to one component

A is connected

A is also.

Component is maximal

Proof. Let $G \subset X$ be a connected component and $x \in G$ be curbitrary.

Take any ubbd of x, e.g., $x \in X \in J$ By local connectedness,

I connected U, xe U CU

Since D is connected and G is maximal, we have DCG. : xeUCG.

Hence, C must be open.

Sunday, 25 March 2018

10:10 AM

Example. Given R and S', both standard.

How do we know $\mathbb{R} \neq \mathbb{S}'$?

Reason. R is non-compact, S' is compact.

That is, we used

Continuous image of compact space is compact

SIZZETS is connected.

> Why? [0,1] + S'

We need something as below:

Continuous image of connected space is connected

If $f:X \longrightarrow Y$ is a homeomorphism, $f(x_0) = y_0$,

then $f|_{X \setminus \{x_0\}} = X \setminus \{x_0\} \longrightarrow Y \setminus \{y_0\} \in S$ a homeomorphism Exercise

Exercise. Use similar technique to show that $S^2 \neq S' \times S'$, both standard. Sunday, 25 March 2018

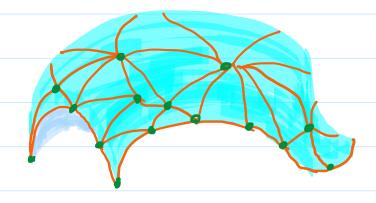
11:23 AM

what's Underneath. For topological spaces k Define $k(X) = \begin{cases} +1 & \text{if } X \text{ is compact} \\ -1 & \text{if } X \text{ is noncompact} \end{cases}$ $k(X) \neq k(Y) \longrightarrow X \xrightarrow{\text{hornes}} Y$

* Define C(X) = number of connected components $C(X) \neq C(Y) \longrightarrow X \xrightarrow{horizon} Y$

Further, define $S(X) = \sup\{C(X \setminus \{x\}) : x \in X\}$ e.g., S(S') = 1, S([0,1]) = 2 $S(X) \neq S(Y) \longrightarrow X \xrightarrow{horizon} Y$

Example. Let I be a surface by intuition



6:51 PM

For any triangulation some adjacent conditions $\chi(x) = \sqrt{-E} + \overline{E}$

Euler Characteristic

Note: independent of triangulation

For higher dimensional object,

 $\chi(\chi) = (-1)^n b_n + \cdots + (-1)^2 b_2 + (-1) b_1 + b_2$

 $\chi(x) \neq \chi(x) \longrightarrow \chi \xrightarrow{\text{horizon}} \chi$

Remarks.

•
$$\chi(\mathbb{R}^n) = \chi(\mathbb{D}^n) = 1$$
, $\mathbb{D}^n = \{x \in \mathbb{R}^n : |x| \leq 1\}$

• $\chi(S^n) = (-1)^n + 1$

Tetrahedron Cube Octahedron Dodeca... Icosa... 4-6+4 6-12+8 8-12+6 12-30+20 20-30+12

•
$$\chi(\mathcal{S}' \times \mathcal{S}') = 0$$
 $\chi(\mathcal{S}' \times \dots \times \mathcal{S}') = 0$

•
$$\chi(RP^2) = 0 = \chi(Klein)$$

Theorem. $\chi(X\times Y) = \chi(X)\cdot\chi(Y)$

Calculation is possible