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Introduction. There are three main topics in this course, they are: Multivariable calculus, 

Ordinary Differential Equations & Matrices. 

 

We will first talk about Multivariable calculus. 

 

What is it? Before going into that, let’s rethink what calculus is about. 

 

Calculus is about “functions”. Typically one studies (i) derivative of a function, they are 

written symbolically as something such as 
𝑑𝑓

𝑑𝑥
, or 

𝑑𝑓

𝑑𝑥
|

𝑥=𝑎
 or 𝑓′(𝑥) or 𝑓′(𝑎) , (ii) integrals 

of a function. Symbolically, they are ∫ 𝑓(𝑥)𝑑𝑥 or ∫ 𝑓(𝑥)𝑑𝑥.
𝑏

𝑎
 

Remarks.  

 Meaning of 𝑓′(𝑎) is as follows – this number is the “slope” of the “tangent” line to 

the curve 𝑦 = 𝑓(𝑥) at the point given by 𝑥 = 𝑎, 𝑦 = 𝑓(𝑎). 

 One important point is this: For a straight line e.g. 𝑦 = 𝑓(𝑥) = 𝑚𝑥 + 𝑐, we have one 

and only one slope. This slope is given by rise/run and mathematically by the formula 

𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
 which is equal to 𝑚. (Conclusion: For straight line, the choice of the 

numbers 𝑎 and ℎ are irrelevant. No matter what 𝑎, ℎ are, the slope is still the same 

number 𝑚). 

 If 𝑓(𝑥) has any other form than the form 𝑚𝑥 + 𝑐, then the ratio 
𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
 will 

depend on (i) 𝑎 and also on (ii) ℎ. (Conclusion: there are many such ratios; we have 

to find a good “representative” out of these ratios. One way to do it is to consider the 

limit of such ratios, written as lim
ℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
) If such a limit exists (it may 

sometimes not exist!) then we denote this limit by the symbol 𝑓′(𝑎). Hence we get 

the formula 𝑓′(𝑎) = lim
ℎ→0

𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
. 

 The above number is the “slope of the tangent line to the curve 𝑦 = 𝑓(𝑥) as the 

point 𝑥 = 𝑎, 𝑦 = 𝑓(𝑎)). 
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An Example. Consider the function given by 𝑓(𝑥) = 𝑥2 and a point 𝑥 = 𝑎 (𝑓(𝑎) =

𝑎2), then following our recipe, we have 𝑓′(𝑎) = lim
ℎ→0

(𝑎+ℎ)2−𝑎2

ℎ
 

  = lim
ℎ→0

𝑎2+2𝑎ℎ+ℎ2−𝑎2

ℎ
= lim

ℎ→0

2𝑎ℎ+ℎ2

ℎ
= lim

ℎ→0
(2𝑎 + ℎ) = lim

ℎ→0
 2𝑎 + lim

ℎ→0
 ℎ = 2𝑎 + 0 = 2𝑎. 

 

 

Now we can define “partial derivative” of a function of 2 variables 𝑥 and 𝑦. Suppose 

we have a function depending on 𝑥 & 𝑦, written in the form 𝑓(𝑥, 𝑦) or 𝑧 = 𝑓(𝑥, 𝑦). 

 

Copying the idea from before, we can define the “parital derivative” of 𝑓(𝑥, 𝑦) with 

respect to the variable 𝑥 (at the point 𝑥 = 𝑎, 𝑦 = 𝑏, 𝑧 = 𝑓(𝑎, 𝑏)) by  

lim
ℎ→0

𝑓(𝑎+ℎ,𝑦)−𝑓(𝑎,𝑏)

ℎ
 and give it the symbol 𝑓𝑥(𝑎, 𝑏). 

 

Other notations. One can also write it as 
𝜕𝑓

𝜕𝑥
|

𝑥=𝑎,𝑦=𝑏
 or 

𝜕𝑓

𝜕𝑥
|

(𝑎,𝑏)
 

 

 

Similarly, one can define 
𝜕𝑓

𝜕𝑦
|

𝑥=𝑎,𝑦=𝑏
 by lim

𝑘→0

𝑓(𝑎,𝑦+𝑘)−𝑓(𝑎,𝑏)

𝑘
  

 

 

How to compute 𝑓𝑥(𝑎, 𝑏), 𝑓𝑦(𝑎, 𝑏). 

You just imagine one of the variables is constant and differentiate w.r.t. 𝑥 or 𝑦. 

 

Example. 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 + 1, 𝑥 = 𝑎, 𝑦 = 𝑏. Then 𝑓𝑥(𝑎, 𝑏) = 2𝑎, 𝑓𝑦(𝑎, 𝑏) = 2𝑏 

Example. 𝑓(𝑥, 𝑦) = 2𝑥2 + 3𝑦2 + 1, 𝑥 = 𝑎, 𝑦 = 𝑏. Then 𝑓𝑥(𝑎, 𝑏) = 4𝑎, 𝑓𝑦(𝑎, 𝑏) = 6𝑏 

Example. 𝑓(𝑥, 𝑦) = 𝑒𝑥𝑦 sin(𝑥𝑦) and we ignore writing 𝑎, 𝑏 for simplicity. Then 𝑓𝑥 =

𝜕𝑒𝑥𝑦⏞
𝑢

𝜕𝑢
⋅ sin(𝑥𝑦) + 𝑒𝑥𝑦 𝜕 sin(𝑥𝑦)

𝜕𝑥
=

𝑑𝑒𝑢

𝑑𝑢
⋅

𝜕𝑢

𝜕𝑥
⋅ sin(𝑥𝑦) + 𝑒𝑥𝑦 𝜕 sin(𝑥𝑦)

𝜕𝑥
  

= 𝑒𝑥𝑦 ⋅ 𝑦 ⋅ sin(𝑥𝑦) + 𝑒𝑥𝑦 cos(𝑥𝑦) 𝑦 

 

Remark. For simplicity, we have ignored the variables 𝑥, 𝑦  when we wrote 𝑓𝑥 (i.e. we 

could have written 𝑓𝑥(𝑥, 𝑦) but this is too complicated!) 

 

Higher partial derivatives 

Having computed 𝑓𝑥 , 𝑓𝑦 we can go on to differentiate their partial derivatives w.r.t. 



𝑥 or 𝑦 and get 
𝜕𝑓𝑥

𝜕𝑥
 or 

𝜕𝑓𝑦

𝜕𝑥
 or 

𝜕𝑓𝑥

𝜕𝑦
 

Notations.  We write 
𝜕𝑓𝑥

𝜕𝑥
 as 

𝜕

𝜕𝑥
(

𝜕𝑓

𝜕𝑥
), 

𝜕2𝑓

𝜕𝑥2 or 𝑓𝑥𝑥 

Similarly we have 
𝜕𝑓𝑦

𝜕𝑦
=

𝜕

𝜕𝑦
(

𝜕𝑓

𝜕𝑦
) =

𝜕2𝑓

𝜕𝑦2 = 𝑓𝑦𝑦  

Finally we have 
𝜕𝑓𝑦

𝜕𝑥
=

𝜕

𝜕𝑥
(

𝜕𝑓

𝜕𝑦
) =

𝜕2𝑓

𝜕𝑥𝜕𝑦
= 𝑓𝑥𝑦 

 

Remark. One an show that for “nice” functions, it holds that 𝑓𝑥𝑦 = 𝑓𝑦𝑥. 

  

Example. Let 𝑓(𝑥, 𝑦) = ln √𝑥2 + 𝑦2, then 𝑓𝑥𝑥 + 𝑓𝑦𝑦 = 0 if (𝑥, 𝑦) ≠ (0,0). 

 

Geometric Meaning of 𝑓𝑥(𝑎, 𝑏), 𝑓𝑦(𝑎, 𝑏). 

 

 First of all, 𝑧 = 𝑓(𝑥, 𝑦) represents a “surface” in the 3D space (like 𝑦 = 𝑓(𝑥) 

represents a curve in the 2D plane); 

 Given the point 𝑥 = 𝑎, 𝑦 = 𝑏,  we can erect a vertical plane (parallel to the 

𝑥𝑧 −plane) containing this point; 

 This vertical plane cuts the surface 𝑧 = 𝑓(𝑥, 𝑦) along a curve; 

 This curve has a tangent line above the point 𝑥 = 𝑎, 𝑦 = 𝑏; 

 The slope of this tangent line is 𝑓𝑥(𝑎, 𝑏) 

 

 If we change the plane in bullet point 2 to a vertical plane (parallel to the 𝑦𝑧 −plane), 

we get another curve. The slope to this curve above the point 𝑥 = 𝑎, 𝑦 = 𝑏 is the 

number 𝑓𝑦(𝑎, 𝑏). 

 

 



Gradient Opertor/Vector 

Example (from School Math). We need the following thing: (*) A curve 

“represented” in the form 𝑓(𝑥, 𝑦) = 𝑐. A good example is this: 

𝑥2 + 𝑦2 = 𝑅2 

It is a circle centered at the origin with radius 𝑅. 

 

Then we can (ii) compute the following vector (**) 𝑖̂ 𝑓𝑥 + 𝑗̂ 𝑓𝑦, (for simplicity, we 

have written 𝑓𝑥 instead of 𝑓𝑥(𝑥, 𝑦), but the meaning is the same). Here the 

expression 𝑖 ̂ means “going 1 unit in the direction of the 𝑥 −axis”. More 

mathematically, one can say 𝑖̂ = (1,0). Similarly, 𝑗̂ = (0,1) (i.e. going 1 unit along 

the 𝑦 − axis direction). 

 

Notation/Terminology. We give the name “gradient operator” to the object  

𝑖̂  
𝜕

𝜕𝑥
+ 𝑗̂  

𝜕

𝜕𝑦
 

(A commonly used notation for this is ∇, i.e. ∇= 𝑖̂  
𝜕

𝜕𝑥
+ 𝑗̂  

𝜕

𝜕𝑦
) 

This operator, when it encounters a function (of 2 variables), yields the result 

𝑖̂  
𝜕𝑓

𝜕𝑥
+ 𝑗̂  

𝜕𝑓

𝜕𝑦
 

(known as “gradient vector”) 

Or more concisely, 𝑖 ̂𝑓𝑥 + 𝑗̂ 𝑓𝑦 (or if you prefer using “coordinates”, the expression 

(𝑓𝑥 , 𝑓𝑦). 

 

Important Remark. 

The “gradient vector” points in a direction perpendicular to the curve 𝑓(𝑥, 𝑦) = 𝑐. 

 

Let’s see that this is correct via our example. 

 

In our example, 𝑓𝑥 = 2𝑥, 𝑓𝑦 = 2𝑦 and so the gradient vector is ∇𝑓 = 𝑖 ̂(2𝑥) +

𝑗̂ (2𝑦)   (or you can write 2𝑥, 2𝑦 to the left hand side of 𝑖,̂ 𝑗̂). 

 

 

The 3D case. 

For the 3D case, the phenomenon is the same. Now you have a function of 3 

variables, say 𝑥, 𝑦, 𝑧 and you consider a “surface” given by the following form 

𝑓(𝑥, 𝑦, 𝑧) = 𝑐 

 



Then the gradient operator is ∇= 𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ �̂�

𝜕

𝜕𝑧
 

where 𝑖̂ = (1,0,0), 𝑗̂ = (0,1,0), �̂� = (0,0,1). 

 

Applying this operator to a function, e.g. 𝑓, gives a vector perpendicular to the 

surface. 

 

Example. 

Consider the sphere of radius 𝑅 centered at the origin, in the form 

𝑥2 + 𝑦2 + 𝑧2 = 𝑅2 

 

Then ∇𝑓 = 𝑖̂
𝜕𝑓

𝜕𝑥
+ 𝑗̂

𝜕𝑓

𝜕𝑦
+ �̂�

𝜕𝑓

𝜕𝑧
= 2𝑥𝑖̂ + 2𝑦 𝑗̂ + 2𝑧 �̂� 

is a vector perpendicular to this sphere (Note that this vector starts at the point 

(𝑥, 𝑦, 𝑧) on the sphere!) 

 

 

 


