1. Recall the definition for the notion of orthogonal matrix from the handout Miscellanies on matrices:

Suppose A is an $(n \times n)$ -square matrix. Then A is said to be orthogonal if $AA^t = I_n$ and $A^tA = I_n$.

2. Theorem (1) follows from the basic properties of matrix transpose and the basic properties of invertibility. Theorem (1).

Suppose A is an $(n \times n)$ -square matrix. Then the statements hold:

- (a) If A is an orthogonal matrix, then A is invertible with matrix inverse given by A^t .
- (b) A is an orthogonal matrix if and only if A^t is an orthogonal matrix.
- 3. Orthogonal matrices and orthonormal bases are linked up by Theorem (1).

Theorem (2).

Suppose A is an $(n \times n)$ -square matrix, whose j-th column is denoted \mathbf{u}_j for each $j = 1, 2, \dots, n$. Then the statements below is are logically equivalent:

- (a) A is an orthogonal matrix.
- (b) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ constitute an orthonormal basis for \mathbb{R}^n .

Proof of Theorem (2).

Suppose A is an $(n \times n)$ -square matrix, whose j-th column is denoted \mathbf{u}_j for each $j = 1, 2, \dots, n$, and whose i-th row is denoted by \mathbf{v}_i for each $i = 1, 2, \dots, n$.

For each $i, j = 1, 2, \cdots, n$, the (i, j)-the entry of $A^t A$ is $\mathbf{u}_i^t \mathbf{u}_j$.

• Suppose A is an orthogonal matrix. Then $A^t A = I_n$.

Therefore $\langle \mathbf{u}_i, u_j \rangle = \mathbf{u}_i^{t} \mathbf{u}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

Hence $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ constitute an orthonormal basis for \mathbb{R}^n .

• Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ constitute an orthonormal basis for \mathbb{R}^n .

Then
$$\mathbf{u}_i^t \mathbf{u}_j = \langle \mathbf{u}_i, u_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Therefore $A^t A = I_n$.

Then A is invertible with matrix inverse A^t . Hence $AA^t = I_n$ also.

4. Combining Theorem (1) and Theorem (2), we obtain Theorem (3).

Theorem (3).

Suppose A is an $(n \times n)$ -square matrix, whose *i*-th row is denoted by \mathbf{v}_i for each $i = 1, 2, \dots, n$. Then the statements below is are logically equivalent:

- (a) A is an orthogonal matrix.
- (b) $\mathbf{v}_1^t, \mathbf{v}_2^t, \cdots, \mathbf{v}_n^t$ constitute an orthonormal basis for \mathbb{R}^n .

5. Theorem (4).

Let A be an $(n \times n)$ -square matrix. Suppose A is an orthogonal matrix. Then for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\langle \mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$.

Proof of Theorem (4).

Let A be an $(n \times n)$ -square matrix. Suppose A is an orthogonal matrix.

Pick any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

 $\langle A\mathbf{x}, A\mathbf{y} \rangle = (A\mathbf{x})^t (A\mathbf{y}) = \mathbf{y}^t (A^t A) \mathbf{x} = \mathbf{x}^t I_n \mathbf{y} = \mathbf{x}^t \mathbf{y} = \langle \mathbf{x}, \mathbf{y} \rangle.$

6. Theorem (5).

Suppose A is an $(n \times n)$ -square matrix.

Then the statements are logically equivalent:

- (a) A is an orthogonal matrix.
- (b) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\langle \mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$.
- (c) For any $\mathbf{z} \in \mathbb{R}^n$, $||A\mathbf{z}|| = ||\mathbf{z}||$.

Proof of Theorem (5).

Suppose A is an $(n \times n)$ -square matrix.

- Suppose A is an orthogonal matrix. Then for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\langle \mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$.
- Suppose that for any x, y ∈ ℝⁿ, ⟨Ax, Ay⟩ = ⟨x, y⟩. Pick any z ∈ ℝⁿ. Then ||Az||² = ⟨Az, Az⟩ = ⟨z, z⟩ = ||z||². Therefore ||Az|| = ||z||.
- Suppose that for any z ∈ ℝⁿ, ||Az|| = ||z||.
 We deduce that for any x, y ∈ ℝⁿ, ⟨Ax, Ay⟩ = ⟨x, y⟩.

In particular for each $i, j = 1, 2, \cdots, n$, $\left\langle \mathbf{Ae}_{\mathbf{i}}^{(\mathbf{n})}, \mathbf{Ae}_{\mathbf{j}}^{(\mathbf{n})} \right\rangle = \left\langle \mathbf{e}_{i}^{(n)}, \mathbf{e}_{j}^{(n)} \right\rangle = \left\{ \begin{array}{cc} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{array} \right.$

Then the *n* columns of *A*, namely, $A\mathbf{e}_1^{(n)}, A\mathbf{e}_2^{(n)}, \cdots, \mathbf{e}_n^{(n)}$ constitute an orthonormal basis for \mathbb{R}^n . It follows that *A* is an orthogonal matrix.

7. Theorem (6).

Let A, B be $(n \times n)$ -square matrices. Suppose A, B are orthogonal matrices. Then AB is an orthogonal matrix. **Proof of Theorem (6).**

Let A, B be $(n \times n)$ -square matrices. Suppose A, B are orthogonal matrices.

Then $A^t A = I_n = AA^t$ and $B^t B = I_n = BB^t$. We have $(AB)^t (AB) = (B^t A^t) (AB) = B^t (AA^t)B = B^t I_n B = B^t B = I_n$.

Also $(AB)(AB)^{t} = (AB)(B^{t}A^{t}) = A(BB^{t})A^{t} = AI_{n}A^{t} = AA^{t} = I_{n}.$

Therefore AB is an orthogonal matrix.

8. Theorem (7).

Let A be an $(n \times n)$ -square matrix, and $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ be vectors in \mathbb{R}^n .

Suppose A is an orthogonal matrix, and $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ constitute an orthonormal basis for \mathbb{R}^n .

Then $A\mathbf{v}_1, A\mathbf{v}_2, \cdots, A\mathbf{v}_n$ constitute a basis for \mathbb{R}^n .

Proof of Theorem (7).

Let A be an $(n \times n)$ -square matrix, and $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ be vectors in \mathbb{R}^n .

Suppose A is an orthogonal matrix, and $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ constitute an orthonormal basis for \mathbb{R}^n .

Define $B = [\mathbf{v}_1 | \mathbf{v}_2 | \cdots | \mathbf{v}_n]$. By assumption, B is an orthogonal matrix.

Then by Theorem (6), AB is an orthogonal matrix. Its columns are $A\mathbf{v}_1, A\mathbf{v}_2, \dots, A\mathbf{v}_n$. By Theorem (2), they constitute an orthonormal basis for \mathbb{R}^n .

9. Theorem (8).

Let A be an $(n \times n)$ -square matrix. Suppose A is an orthogonal matrix. Then det(A) = 1 or det(A) = -1.

Proof of Theorem (8).

Let A be an $(n \times n)$ -square matrix. Suppose A is an orthogonal matrix.

Then $A^t A = I_n$

Therefore $1 = \det(A^t A) = \det(A^t) \det(A) = \det(A) \cdot \det(A) = (\det(A))^2$.

Hence det(A) = 1 or det(A) = -1.