MATH1030 Gram-Schmidt orthogonalization process.

1. Recall the definition for the notions of orthonormal set and orthonormal basis from the handout Orthonormal basis
and orthogonal projections.

Let uy,ug,--- ,u; € R™.

(a) We say that uj,us, -+ ,uy constitute an orthonormal set in R™ if and only if uj,ug, - - ,uy are pairwise

orthogonal and ||u;|| =1 for each j =1,2--- | k.
(b) Suppose V is a subspace of R™ and . Then we say that uj,us,--- ,uy constitute an orthonormal basis for
V if and only if uy,us, -+ ,uy constitute a basis for V and also constitute an orthonormal set.

Also recall the result (x), which is a part of Theorem (C), as stated below:

(x) Let W be a subspace of R™.
Suppose uy, ug, -+ ,uy constitute an orthonormal basis for W .
Suppose z € R™.
Definev € W by v = (z,u1) u; + (z,uz) ug + - - - + (z, uy) uy.
Definey e R" by y =z — v.
Thenz=v+y,andy L s foranys e W.
2. Lemma (G).

Let uj,us, -+ ,ug,z be vectors in R™.

Suppose uj,us, - - ,uy constitute an orthonormal set in R™.

Further suppose z is not a linear combination of uy,us, - -- , uy.

Definey =z — (z,u1)u; — (z,uz) ug — - - - — (2, uy) .

Then the statements below hold:
(a) llyll # 0.

1
(b) uy,ug, - ,ug, —y constitute an orthonormal set in R™.

Iyl
1
<C> Span ({U]_, uz, - ,Uk,Z}) = Span <{ula uz, -, Uk, y”y}) .

3. Proof of Lemma (G).

Let uj,us, -+ ,ug,z be vectors in R™.

Suppose uj, us,- - ,u; constitute an orthonormal set in R™.

Further suppose z is not a linear combination of uy, us,--- , uy.

Define W = Span ({uy,ug, -+ ,u;}). By definition, uy, us, - -+ ,u; constitutes an orthonormal basis for W.

Definey =z — (z,u;) u; — (z,uz) ug — - -+ — (z, uy) uy.

Define v = (z,u;) u; + (z,u2) us + - - - + (z, uy) ug.

Then y = z — v by definition.
(a) Since z is not a linear combination of uy,us, - ,ug, we have z # v. Then y = z — v # 0. Therefore |y| # 0.
(b) By the result (x),y L s for any s € W.

Note that ui,us, - ,u € W.

1 1 1
Then for each j = 1,2, - ,n, we have <y,uj> = — (y,u;) = 0. Hence —y 1 u;.
Il Iyl lyll

1
= eyl =1
H Iy

It follows that uy, us, - -+ ,ug, —y constitute an orthonormal set in R™.

Iyl

1
Also note that Hy
Iyl



1 (z,u1) (z,uz) (z,ug)

1
(c) By definition, we have —y = ——z — u; — up — - — uy.
Iyll™  llyll Iyl Iyl Iyl
1
Then each of uy,ug, -+ ,ux, ——y is a linear combination of uy, us, -+, ug,z.
Il
1
We also have z = ||y]| - (my) + (z,u1) us + (z,u2) us + - - - + (z, uy) uy.
. . . 1
Then each of uy,ug, -+ ,u,z is a linear combination of uy,us, -+, ug, Wy.
y

1
It follows that Span ({uj,us,- - ,ux,z}) = Span <{u1,u2, cee Uy, ”yHy})

4. Theorem (H). (Existence of orthonormal basis.)
Suppose W' is a non-zero subspace of R™. Then W has an orthonormal basis.

Remark. The constructive argument in the proof below, generating an orthonormal basis for W from an (arbi-
trary) basis for W, is referred to as the Gram-Schmidt orthogonalization process.

5. Proof of Theorem (H).
Suppose W is a non-zero subspace of R™. Write dim(W) = k. By assumption, k is between 1 and n.
Pick some basis for W, which is a collection of k vectors, denoted by z1,zo, - - - , zg.
For each j = 1,2,--- , k, define W; = Span ({z1,22,--- ,2;}). Note that dim(W}) = j, and by definition, z;41 does
not belong to W;.

[So now we have a sequence of subspaces of W, namely,
Wi, Wa, Ws, -+, Wiy—o, Wi—1, W,
in which Wy_1 is a ‘proper’ subspace of Wy, in view of zy ¢ Wy_; and 2z, € W]
(a) Note that z; # 0. Then ||z;|| # 0. (Take y; = z1.)
Define u; = Lz1.
11 |

We have ||uy|| = 1.
u; and z; are non-zero scalar multiples of each other.
Then Wy = Span ({z1}) = Span ({u1}).
Therefore u; constitutes an orthonormal basis for Wj.
(b) z2 does not belong to Wi. Then z, is not a linear combination of uy.
Define yo = zo — (22, u;) uy.
By Lemma (G), ||yz]| # 0.
Define ugy = Ly2.
ly2]l
By Lemma (G), uy, uy constitute an orthonormal set in R™.
Since Span ({z1}) = Span ({u;}), we have W5 = Span ({z1,22}) = Span ({u1,2z2}).
Then, again by Lemma (G), W2 = Span ({uy,22}) = Span ({uy, uz}).
Therefore uy, us constitutes an orthonormal basis for Ws.
(¢) z3 does not belong to Wa. Then z3 is not a linear combination of uy, us.
Define y3 = z3 — (z3,u1) u; — (23, uz) us.
By Lemma (G), lyl| # 0.
Define uz = Ly3.
lys]|
By Lemma (G), uj, ug, us constitute an orthonormal set in R™.
Since Span ({z1,22}) = Span ({uj,us}), we have W5 = Span ({21, 22,23}) = Span ({u;,us,z3}).
Then, again by Lemma (G),

W5 = Span ({u1,u2,23}) = Span ({uz, uz,us}).

Therefore uy, us, us constitutes an orthonormal basis for Wj.



(d) Let ¢ be any one of 2,3, --- , k. Suppose that the vectors y1,yo, -

1
defined by y; =21, uy = ——2z; and

y2

U2

y3

us

Y-

Uy—1

and satisfies:

- ,y¢—1 and ug,us, - - - ,Uy_1 are successively
|z ]|
Z - <Z27u1> uj,
1
T Y2
[[y=|l
z3  —(z3,u1) u; — (23, u2) Uz,
1
Mo Y3
vsll
Zp—1 — <Zz71, 111> u; — <sz1,u2> ug — -+ — (zz,l, ug,2> uy_o,
1
o Ye-1
[ye1ll

° ||y2|| 7& 07 ||y3H 7£ 05 () ||y€—1|| 7é Ov and

o for each j =2,3,---,¢ — 1, the vectors uy, us,--- ,u; constitute an orthonormal basis for for Wj.
We now note that z, does not belong to W,_;. Then z; is not a linear combination of uy,ug, -+ ,up_1.
Define y; = zy — (z¢, u1) Wy — (2, uz) uz — - -+ (¢, Up_1) Up—1 — (Z¢, U2) Us.

By Lemma (G), |ly¢|| # 0.

1
Define uy = —”yg.

llye

By Lemma (G), uj,usg, - -

Since Span ({z1,z2," -

Span ({uy,ug, -+ ,wp_1,2z¢}).

Then, again by Lemma (G), W, = Span ({21, 22, - -

Therefore uy, us, - - -

Hence W has an orthonormal basis, namely uy, us, -+, ug.

6. Gram-Schmidt orthogonalization process.

Suppose W is a subspace of R", and z1, z2, 23, - - -

,Uy_1, uy constitute an orthonormal set in R™.

aszl}) = Span ({u17u27"' 7u€71})7 we have WZ = Span ({Z17Z27”' 7ZZ717Z€}) =

,Ze—l,ze}) = Span ({111,1127"' ;u€—17ué})-

,uy_1,uy constitutes an orthonormal basis for W,.

, 7 constitute a basis for W.

The argument in the proof of Theorem (H) provides an algorithm for obtaining an orthonormal basis uy, ug, - - , ug

for W, for which the equality Span ({ui,us,---

« Step (1).
We define y; = z;.
« Step (2).

We define ys,y3,- -

Yi

When written out

Y1
y2

y3

Y4

Y&

:Zj_

» Yk

<Zj7 Y1>

inductively by

<Zj7 YQ>

explicitly, y1,¥y2, -

= Z2

= Z4

yi—
ly1l)? lly2]

(z2,y1)

lyll?
<Z3ay1>

Nellis
Z4,Y1

ly1]]?

1

Y1

yi

_<Zk7YI> .
[lyll?

<Zj7Yj—1>

Y2 — - — 5 Yj—1 foreach j =23, k.

7uJ}) = Span ({Zlaz27"'

-1l

-, yi are given recursively by:

<Z3aYQ>
- 2 Y2
lly2ll
o Z4aY2>y2 _<Z47Y3>y3
[[y2[]? llys|?
_<Zk7}’2>y2 _(Zk,Y3>y3
[ly2[]? [lys]?

,z;}) holds for each j =1,2,---  k:

<Zk»Yk71>yk
— 5 Yk-1
lyr-1l?



« Step (3).

1
For each j =1,2,--- ,k, define u; = myj.
J

For each ¢ =1,2,--- ,k, the vectors uj, us,- -, uy constitute an orthonormal basis for Span ({z1,22, - ,Z¢}).

In particular, the vectors up, us, - -+ , uy constitute an orthonormal basis for W.

7. Illustrations on the Gram-Schmidt orthogonalization process.

1 -1 -1
(a) Letz1 = (2], 2z2=| 1 |,2z3=|—-2].
2 4 1

Take for granted that z, zo, z3 are linearly independent.

We proceed to find an orthonormal basis for W = Span ({z1,z2,23}) = R®.

1
o Takey; =2;. Theny; = |2/, and [ly:1]]* = 9.
2

1 1/3
Take uy = ——y;. Then u; = |2/3].
lly1ll 2/3
o Take yy = 2y — <Z2’y;> 1.
[yl
We have (z2,y1) = 9.
-1 9 1 -2
Theny, = | 1| — 9 2| = [-1], and ||y2]|* = 9.
4 2 2
1 -2/3
Take ug = ——ys. Then us = |—1/3].
lly=|l 2/3
<Z3ay1> <Z37y2>

P Takeys = - AR YT e Y

We have (z3,y1) = —3, (z3,y2) = 6.
1 1 -2 2/3

-3 6
Then y3 = | —-2| — o 2| - 9 —1| = |-2/3|, and ||y3H2 =L
1 2 2 1/3
1 2/3
Take u3 = ——ys3. Then ug = |—-2/3].
||Y3H 1/3

up, us, uz constitute an orthonormal basis for W.
Also note that, by construction, Span ({u;}) = Span ({z1}) and Span ({u;,u2}) = Span ({z1,2z2}).

0
(b) Let Z] —

|

— =
|

— ==

Take for granted that z, zo, z3 are linearly independent.

We proceed to find an orthonormal basis for W = Span ({z1, z2,23}).

1
o Take y; = z;. Then y; = (1) ,and ||y = 2.
0
1/v2
Taki 1 Th 0
ake u; = ——Yyi1. en u; = .
[[y1ll 1/v2
0
o Take yy = 2y — <Z2’y;>
[yl



We have (z2,y1) = 2.

1 1 0
1 2101 |1 2 _
Then y5 = 1l 732 1] T lo| and [|y2|| 2
1 0 1
0
Take uy = y2. Then uy = V2 .
[[y2|l 0
1/v2
o Take y3 =z3 — <Z3’y;> - <Z3’y3>y2'
[yl [yl
We have (z3,y1) = 1, (2z3,y2) = 2.
0 1 0 —-1/2
e 110 201 0 2 _
Then y3 = 1 *5 1 *5 ol = 1/2 , and ||Y3H 5
1 0 1 0
~1/V2
Take u y3. Then u ’
3= T+ y3. 3 =
lysl 1/v2
0

uy, us, uz constitute an orthonormal basis for W.
Also note that, by construction, Span ({u;}) = Span ({z1}) and Span ({u;,uz}) = Span ({z1,22}).

0
1
2 )
1

1 1
0 1
(c) Let zy = 1 22= z3= ||
0 1

Take for granted that z, zo, z3 are linearly independent.

We proceed to find an orthonormal basis for W = Span ({z1, z2, z3}).

1
e Take y; =2z1. Then y; = ? , and ||Y1||2 =2.
0
1/4/2
Tak L .. Th 0
ake u; = —yi1. en u; = :
Iy 1/v2
0
o Take y; = 2zy — <Z2’y;>}’1~
[yl
We have (z2,y1) = 2.
0 1 —1]
1 210 |1 2 _
Then yo = ol 73 (1] T | 1 , and [lyo]|® = 4.
1 0 I
[—1/2
1/2
Take uy = ——y5. Then uy =
[y 1/2
i 1/2
« Take ys = 25 — <Z3,Y;>y1 _ <Z3,y§>y2.
llyll lly=l
We have <23,}’1> =2, <Z:‘>a}’2> =2.
1 1 —1 1/2
1 210 211 1/2 9
Thenygf 1 *5 1 *Z 1 _1/2 vand”}’BH =1
1 0 1 1/2




1/2

1 1/2

Take u3 = ——y3. Then uz = .
Vel —1//2
1/2

uj, Ug, U3 constitute an orthonormal basis for W.
Also note that, by construction, Span ({u1}) = Span ({z1}) and Span ({u;,us}) = Span ({z1,22}).

1 -2 9 -3
2 6 -2 -1

(d) Let zq = ol Z2= | o |28 = | _4| %= | _3|
4 9 7 9

Take for granted that z, zo, z3, z4 are linearly independent.

We proceed to find an orthonormal basis for W = Span ({z1, z2,23,24}) = R*.

1
o Take y; = z;. Then y; = ; , and [|y1? = 25.
4
1/5
1 2/5
Take uy = ——y;. Then u; = .
[yl 2/5
4/5
o Take yo = 7o — <Z2’y;>
[yl
We have (z3,y1) = 50.
—2 1 —4
|6 50 12| | 2 9
Then y, = o | T35 2] T -2 , and [lyal]* = 25.
9 4 1
—4/5
1 2/5
Take uy = ——y2. Then uy = .
[y —2/5
1/5
<Z3ay1> <Z:37Y2>

e Take Y3 =23 — Yo.

y1—
[[yal]? [ly2[[?
We have <Z3,Y1> = 257 <Z37y2> = —25.

9 1 —4 4
-2 25 12 =25 2|  [-2 9
Then y3 = 4| Tas 2] T2 | 2] T s and |lys||* = 100.
7 4 1 4
2/5
1 ~1/5
Take u3 = ——y3. Then us = .
> Tyall ™ 37|45
2/5
<Z47y1> <Z47y2> <Z47y3>

e Take yy =24 — Y1 — Yo — y3.
Tl el sl Y

We have (z4,y1) = 25, (z4,y2) = 25, (24,y3) = 50.

-3 1 —4 4 -2
-1 25 12 25 | 2 50 | -2 |4 9
Then Y4 = _3 — % 2 - % _9 - m -8 - 1 ’ and ||y4H = 25.
9 4 1 4 2
—2/5
1 —4/5
Take uy = ——y4. Then uy =
[yl 1/5
2/5

uy, Ug, Uz, uy constitute an orthonormal basis for W.
Also note that, by construction, Span ({u;}) = Span ({z1}), Span ({u1,u2}) = Span ({z1,22})and Span ({u;, uz,us}) =
Span ({z1,22,23}).



8. Gram-Schmidt orthogonalization, presented as QR-decomposition.

Suppose Z is an (n x k)-matrix, with n > k. For each j =1,2,--- , k, the j-th column of Z by z; for.

Suppose 71,722,723, -

We define y; = z1, u; =

According to the argument for Theorem (H), these vectors y1,y2,ys3, -

Yi =172

(zj,y1)

[y

<Zj7 Y2>

[y l?

Y1

- y2
[y2]l?

AAT) and define Y2,yY3,

,Zj are linearly independent.

Zj,¥j—1
v,

lyj-1l

Define the (n x k)-matrix @ = [ uy | uz |-+ | uy |.

For each j =1,2,--

Zj

-, k, we have
Z;, Z;,
<Jy;>Y1 <JY3>y2+_._+
[yl 2]l

(zj,ur) ur + (zj,ug) ug + - + (25, 0 ) w1+ lyill-w + 0w+ + 0w = Q

<Zj7Yj—1>

1]

B Yi-1tY;j

, y& inductively by

1
u; = ——y; foreachj=23,--- k.
INAl

-,y are well-defined

Define the (n x n)-square matrix R, whose (7, j)-th entry is denoted by r;; and given by

T'ij =

(So, for each j =1,2,--- ,n, the j-th column of R is

Then Z = QR.
This ‘factorization’ of Z into the product QR is called the ‘QR-decomposition’ for Z.
Note that C(Z) = C(Q) and the columns of @ is an orthonormal basis for C(Z).

The matrix R encodes the Gram-Schmidt orthogonalization process from which we obtain the orthonormal set

ug,uz,- -

9. Illustrations of QR-decomposition.

Refer to Illustrations on the Gram-Schmidt orthogonalization process above. The respective constructions can be

displayed as the ‘factorizations’ below:

(a)

1
2

[\

O = O =

-1
1 =2

-1

4 1

— = =

=)

0

0

1/3 —2/3 2/3
2/3 —1/3 -2/3
2/3 2/3 1/3

1/v2 0

_1/\/5

1/vV2 0

1/v2 0

-1/v2

1/V2 0

<lli,Zj> if 1<y
ly;ll - if i=3j
0 if i>3j
[ <u17Zj> 1
<u27zj>
(w125
[yl
0
- 0 -

O O W
O W W

V2
0
0

,uy from the linearly independent set zy,zo, - - - , Zg.

N

V2
VG
0

[\
—
~

—_
~

S

ISR

[ <u17zj> 1

(u2,z;)

(uj_1,2;)
ly;ll
0




T 1
o= O R

r 1
=N DN

0 1 1/v2 —1/2 —1/2

11| 0 /2 1/2 \f \f \f
2 1\ | 1/v2 1/2 -1)2 o o 1 |
11 0 /2 1/2

-2 9 -3 1/5 —4/5 2/5 —2/57[5 10
6 -2 —1| |2/5 2/5 —1/5 —4/5 |0 5
2 —4 -3 |~ |2/5 —2/5 —4/5 1/5 0 0
9 7 9 4/5 1/5 2/5  2/5 0 0



