1. Recall the definition for the notions of orthonormal set and orthonormal basis from the

handout Orthonormal basis and orthogonal projections.

Let uj,ug,--- ,u; € R".
(a) We say that uy, us, - - -, uy constitute an orthonormal set in R" if and only if
uy, Uy, - - -, Uy are pairwise orthogonal and ||u,|| = 1 for each j = 1,2--- | k.

(b) Suppose V' is a subspace of R".

Then we say up, uo, - - - , Uy, constitute an orthonormal basis for V' if and only if

uy, Uy, - - - , Uy constitute a basis for V' and also constitute an orthonormal set.



Also recall the result (%), which is a part of Theorem (C), as stated below:
(x) Let W be a subspace of R".

Suppose ui, Uy, - - - , Uy constitute an orthonormal basis for W,
Suppose z € R".

Definev € W by v = (z,u;) uy + (2, us) us + - - - + (z, uy) uy.
Definey e R" byy =z — v.

Thenz=v+y,andy | s foranys € W.




2. Lemma (G).

Let uy,us, - - - ,ux, z be vectors in R".
Suppose uj, Uy, - - - , U constitute an orthonormal set in R".
Further suppose z Is not a linear combination of uy, Us, -+ - - , Uy.
Define
y =2z — (z,u;)u; — (z,U) Up — - - - — (Z, Uy) Uy.

Then the statements below hold:
(a) [yl # 0.

(b) ug,ug, - -+, uy, y constitute an orthonormal set in R".

1
(C> Span ({u17u27'” ,uk,Z}> :Span ({u17u27”' Up, 7 H || })
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3. Proof of Lemma (G).

Let uy,uy, - - - ,ui, z be vectors in R".
Suppose up, Uy, - - - , U constitute an orthonormal set in R".
Further suppose z is not a linear combination of u;, uy, - - - , ug.
Define
W = Span <{u17 U, - -~ 7uk})

By definition, uy, us, - - - , u; constitutes an orthonormal basis for WW.
Define

y =2z — (z,u;)u; — (z,U) Ugp — - - - — (Z, Uy) Uy.
Define

v ={(z,u;)u; + (z,u) uy + - - - + (z, u;) u.

Then y = z — v by definition.

(a) Since z is not a linear combination of uy, ug, - -+ , uy, we have z # v.

Then y = z — v # 0. Therefore ||y|| # 0.



(b) By the result (x), y L s for any s € W.

Note that uy,ug, -+ ,up € W.
1 1
Then for each 7 =1,2,--- ,n, we have <—y, uj> = —(y,u;) =0.
Iy Iy
1
Hence ——y L u;.
Iy
Also note that ' H HyH = 1.
Iyl”
[t follows that uy, us, - - -, uy, Iy Hy constitute an orthonormal set in R".
1 1
(¢) By definition, we have —y = —z — 2 u1>u1 — 2 u2>u2 — = 2 11k>u
Iy ™yl Iy | Iy [yl

1

Then each of uy,uo, - -+, uy, y is a linear combination of uj, uy, - - - , u;, z.

We also have z = ||y]|| - ( ) (z,up)u; + (z,us) Ug + - - - + (2, uy) uy.

1
Then each of uy, us, - -+ ,u, z is a linear combination of uy, uy, -+ - , U, ——

1
It fOHOWS that Span ({111,112, “ e 7uk’z}> — Span ({Ul,UQ, R U ¥ ey H || })



4. Theorem (H). (Existence of orthonormal basis.)
Suppose W' is a non-zero subspace of R". Then W has an orthonormal basis.
Remark.

The constructive argument in the proot below, generating an orthonormal basis for W from

an (arbitrary) basis for W, is referred to as the Gram-Schmidt orthogonalization process.

5. Proof of Theorem (H).
Suppose W is a non-zero subspace of R". Write dim(W) = k.
By assumption, k is between 1 and n.

Pick some basis for W, which is a collection of & vectors, denoted by z1, zo, - - - , Z}.

For each j =1,2,--- , k., define

W; = Span ({z1,2s,--- ,2;}).
Note that dim(W;) = j, and by definition, z;,; does not belong to W;.

[So now we have a sequence of subspaces of W, namely,
Wla W27 W37 B Wk—Qa Wk—17 Wk7

in which Wy_4 is a ‘proper’ subspace of Wy, in view of z;, ¢ W,_1 and z, € W]



(a) Note that z; # 0. Then ||z]| # 0. (Take y; = z1.)
1

|1

Define u; = z1. We have [|[uy|| = 1.

u; and z; are non-zero scalar multiples of each other.
Then W7 = Span ({z1}) = Span ({u;}).
Therefore u; constitutes an orthonormal basis for 7.
(b) z2 does not belong to Wi. Then z, is not a linear combination of uy.

Define yo = z9 — (29, uy) uy. By Lemma (G), ||y2|| # 0.
1
2|
Since Span ({z1}) = Span ({u1}), we have W5 = Span ({z1,22}) = Span ({uy,z2}).

Define uy, = y2. By Lemma (G), uy, uy constitute an orthonormal set in R”.

Then, again by Lemma (G),
Wy = Span ({uy,22}) = Span ({ug, us}).

Therefore uy, us constitutes an orthonormal basis for W5s.
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(¢) z3 does not belong to W5. Then z3 is not a linear combination of uy, u,.

Define y3 = z3 — (23, u1) u; — (z3, ug) uz. By Lemma (G), [lys]| # 0.
1
Nl

Define ug = V3.

By Lemma (G), uy, ug, ug constitute an orthonormal set in R".

Since Span ({z1,22}) = Span ({uy,us}), we have
W3 = Span <{Z1, Z9, Zg}) — Span ({111, Us, Zg}).
Then, again by Lemma (G),

W3 = Span ({uy, us, z3}) = Span ({uy, us, us}).

Therefore uy, us, us constitutes an orthonormal basis for Wj.
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(d) Let £ be any one of 2,3, --- | k.

Suppose that the vectors y1,ys, -+ ,yr—1 and uy, ug, - - - , uy_1 are successively defined
1
by y1 =21, u; = z1 and
|4
)
Y2 = Zy — (2o, up) Uy,
1
u? — Y2,
y2|
ys = z3 — (z3,u1) u; — (23, U2) Uy,
1
§ U3 = T Y3
[yl
Yi-1 — Zy1 — <Z£—1, 111> u; — <Z£—1, U2> Uy — - — <Z£—1> u£—2> /-2,
1
/-1 = Yi-1,
\ Hy€—1H

and satisfies:

y2H 7& 07 ||Y3H 7é 07 ey Hyg—ln 7é O, and
« foreach j =2,3,--- ,/ — 1,

the vectors uy, up, - -+, u; constitute an orthonormal basis for for W;.
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We now note that z, does not belong to W,_;.

Then z, is not a linear combination of uy, usg, - -+ , uy_1.
Define
Yo = 2¢ — (Z¢, U1) Uy — (Zp, Up) Up — - -+ (Zg, Up—1) Up—1 — (Z¢, Uz) Uo.
By Lemma (G), [ly[| # 0.
1
Define uy = ——yy.
lyel
By Lemma (G), ug, us, - -+ ,us_1, Uy constitute an orthonormal set in R”.
Since Span ({z1,29, -+ ,Z¢_1}) = Span ({ug,us, -+ ,us_1}), we have

W€ — Span ({Zla Zo, " 4y, Zf}) — Span ({u17 ug, -, U1, Zﬁ})-

Then, again by Lemma (G),
Wf — Span ({Zla Zo, " 4y, Zf}) — Span ({ula ug, -, Uy_i, Ug}>

Therefore uy, us, - - - , uy_1, Uy constitutes an orthonormal basis for .

Hence W has an orthonormal basis, namely u;, us, - - - , ug.



. Gram-Schmidt orthogonalization process.

Suppose W is a subspace of R", and

71,79, 73, - - , Zj. constitute a basis for W.

The argument in the proof of Theorem (H) provides an algorithm for
obtaining an orthonormal basis uy, uo, - - - , uy for W,
for which the equality
Span ({uy,ug,---,u,}) =Span ({z1,22, - ,2;})

holds for each 7 =1,2,--- , k:

« Step (1). We define y; = 7.

- Step (2). We define yo,y3, - - - , ¥, inductively by

~(Z,y1) (z,y2) (Zj,¥-1)
V1 Ly —
1] ||

Yi =%

5 yj-1 foreach j =23,



When written out explicitly, y1,yo, -+ , ¥y are given recursively by:

’

Y1 = 71
_ <22,Y1>
Y2 = Z2 — 5 Y1
Y1
_ <Z37YI> <Z37YQ>
y3 = 23 ————Ly] ————hyy
< Y1 Iy
_ (24, y1) (Z4,y2) (Z4,y3)
Y4 = 24 — 5 Y1 — 5 Y2 — 5 Y3
yi 2| (el
2k, Y1 Z, Y2 Zk, Y3 Zks Yk—1
Yi — Zg _< 2>YI _< 2>y2 _< 2>Y3 - e _< 2>yk—1
L HY1H HYQH ||Y3H HYk:—lH
1
- Step (3). Foreach j=1,2,--- Kk, define u; = Wyj.
Y
Foreach ¢ =1,2,--- , k,
the vectors uy, uy, - - - , uy constitute an orthonormal basis for Span ({z1, 22, - - , 2¢}).

In particular, the vectors uy, uo, - - - , Uy constitute an orthonormal basis for .



7. Illustrations on the Gram-Schmidt orthogonalization process.

1 —1 —1
(a)Letzlz 2|, zo = 1 |1,23=|-2].
2 4 1

Take for granted that zi, zo, z3 are linearly independent.

We proceed to find an orthonormal basis for W = Span ({z1, z2, z3}) = R°.

« Takey; =z;. Then y; = [2], and [|y1]|* = 9.

. 1/3
Take u; = w—yi1. Then u; = [2/3].
[y 2/3




(Z2,¥1)

« Take yy = 29 — E y1. We have (zo,y1) = 0.
Y1
—1 0 1 —2
Then Yo = 1 - § 21 = | -1}, and HYQH2 =9.
4 2 2
. —2/3
Take ug = +—=y2. Then up = [ —1/3].
[y2||
2/3
_ (z3,¥1) (z3,y2) _ _
» Take y3 =z3 — 5 Y1 — >-y2. We have (z3,y1) = =3, (z3,y2) = 0.
i _HY1H . HYQH_ i i i
-1 NIEI R P 2/3
Then y3 = | -2 — 5 12| g 7Y T —2/31, and |lys]]* = 1.
1 2 2 1/3
. 2/3
Take uz = y3. Then ug = | —2/3].
y3]|
1/3

Uy, Uy, U3 constitute an orthonormal basis for W.

Also note that, by construction, Span ({u;}) = Span ({z1}) and Span ({u;,us}) = Span ({z1, 22}).



(b) Let Z1 —

-
—_ =
_ = O

0 1 1

Take for granted that z;, zo, z3 are linearly independent.

We proceed to find an orthonormal basis for W = Span ({z1, 22, z3}).

« Take y; = z;.
_1_
0 2
Then yy = ||, and [[y1]* =2
0
_1/\&_
Tak ! Th 0
ake U] — Y. €1l U] — .
Nl 1/v/2
0




Z2,Y1
< 2>YI-
HY1H

We have (zo,y1) = 2.

o Take yo = z9 —

1 1 0
1 0 1
Then — — — =
27 1 1 0
1 0 1




<23, Y1> <Z37 Y2>
5 Y1~ 5
HY1H HY2||

We have (z3,y1) = 1, (z3,y2) = 2.

o Take y3 =23 —

Yo

0 1 o] [-1/2]
1l 10| 2|1 0 1
Then = — — —_ — — : and 2 — _
5= 1 =3 0| 2l 12 ys]
1 0 1 0
vE
Tak ! Th 0
arKe Us = Ys. €Il U3 —
|ysll 1/v/2
0

Uy, Uy, us constitute an orthonormal basis for W,

Also note that, by construction,

Span ({u1}) = Span ({z1}) and Span ({uy, w,}) = Span ({z1,2.}).



(c) Let z1 =

—_ O
N = O
N "

0 1 1

Take for granted that z;, zo, z3 are linearly independent.

We proceed to find an orthonormal basis for W = Span ({z1, 22, z3}).

« Take y; = z;.
_1_
0 2
Then yy = ||, and [[y1]* =2
0
_1/\&_
Tak ! Th 0
ake U] — Y. €1l U] — .
Nl 1/v/2
0




<Z2, Y1>

o Take yo = z9 — 11l V.
We have (zo,y1) = 2.
0] 1] (-1
1 2 10 1
Then yy = — = = . and 2 =4
2= |,| 73|, ) N1l
1 0 1
__1/2_
1 1/2
Take uy = yo. Then uy = /
ly2| 1/2
1/2




73,Y1 73,Y2
( 2>yl { 2>y2.
HY1H HY2||

o Take y3 =23 —

We have (z3,y1) = 2, (z3,y2) = 2.

] 1] 1l [
1| 2100 2|1 1/2
Then y3 = — = — - = . and 2=1.
vs=1. 1 =50 "1l By lysl|
1 0 1 1/2
_ s _
1 1/2
Take ug = y3. Then ug = / .
s —1/2
1/2

Uy, Uy, U3 constitute an orthonormal basis for W,

Also note that, by construction,

Span ({u1}) = Span ({z1}) and Span ({uy, w,}) = Span ({z1,2.}).



1 —2 9 —3
2 —2 —1
d) Let z; =  Zo = 73 = L Zy =
() I S TRV R
4 7 9

Take for granted that zi, zo, z3, z4 are linearly independent.

We proceed to find an orthonormal basis for W = Span ({21, 22, z3, z4}) = R%.
« Take y1 = z;.
0
2 2
Then y; = 5| and ||y1]|® = 25.
4
_1/5_
1 2/5
Take u; = yi. Then u; = / .
[y 2/5
4/5




<Z27YI
2>y1-
[y

We have (z9,y1) = 50.

« Take yo = 79 —

=) 1] [-4
6 50 |2 2
€N y2 9 95 9 _9 , all HYZH 3
4 1
__4/5_
1 2/5
Take ug = yo. Then uy = /
Nl —2/5
1/5




<23, Y1> <Z37 Y2>
5 Y1~ 5
HYH\ HYﬂ|

We have (z3,y1) = 25, (z3,y2) = —25.

o Take y3 =23 —

Yo

9 | 1] 4] [ 4]
—2 25 |2 —25 1 2 —2
Th — — — — — — d 2 = 100.
en ys 4 % |9 5 |9 _3 ;and ||ys|
7 4 1 4
_ s i
1 —1/5
Take ug = y3. Then ug = / .
Nl —4/5
2/5




(24, 1) (24, y2) (Z4,y3)
5 Y1 — 5 Y2 5 Y3
ly]] ly=l] lysl|

We have (z4,y1) = 25, (z4,y2) = 25, (z4,y3) = 50.

o Take yy =24 —

——3— —1_ _—4_ i 4 ] ——2_
—1 25 |2 25 | 2 50 | —2 —4
Th — — — — — — — — d 2 =95
Cll Y4 _3 2% |9 25 | 9 100 | —8 T all Hy4||
9 4 1 4 2
__2/5_
1 —4/5
Take uy = y4. Then uy = / .
| y4ll 1/5
2/5

Uy, Uy, U3, Uy constitute an orthonormal basis for WW.

Also note that, by construction,

Span ({u;}) = Span ({z1}), Span ({u;,us}) = Span ({z1,22})
and  Span ({uy,us,us}) = Span ({21, 22,23} ).



8. Gram-Schmidt orthogonalization, presented as QR-decomposition.

Suppose Z is an (n X k)-matrix, with n > k. For each j = 1,2, --- |k, the j-th column of
Z by z; for.

Suppose z1, o, Z3, - - - , Z;. are linearly independent.
We define
1
Y1 = 7, U = — Yy
y1l]
and define
Y2,¥3, ", Yk
inductively by
)
(2, y1) (z), y2) (z,yj-1)
Yi = Zj oYl T o Y2 T Yij—1;
] “71 (Nl hellk lyj—al* =
e V.
T vl

for each j =2,3,--- , k.



According to the argument for Theorem (H), these vectors yi,y2,y3, - ,yr are well-
defined

Define the (n x k)-matrix Q = [111112"' uy; }

For each 7 =1,2,--- , k, we have

(Zj, y1) (Zj,¥2) (Z;, ;1)
z; = U0y Al Vi1t
Tyl [y2l|? lyjal? !
= (zjw)u + (zj,u) Wy + -+ (zj,u_)uj + ||yl - w; + 0wy -+ 0wy,
i <u17Z]> ]
<112,Z]>
_ Q <uj_17Z]>
Nl
0
- O -




Define the (n x n)-square matrix R, whose (i, j)-th entry is denoted by r;; and given by

.
<u2',Zj> if 1 <y

rig =94 |yl  ifi=
0 if i >

\

(ui, ;)

<112, Zj>

(uj-1,2;) | )

(So, for each j = 1,2,--- ,n, the j-th column of R is Iy
Y

Then Z = QR.
This ‘factorization’ of Z into the product QR is called the ‘QR-decomposition’ for Z.
Note that C(Z) = C(Q) and the columns of @ is an orthonormal basis for C(Z).

The matrix R encodes the Gram-Schmidt orthogonalization process from which we obtain

the orthonormal set uy, uo, - - - , u; from the linearly independent set z1, zo, - - - , Zj.



9. Illustrations of QR-decomposition.
Refer to Illustrations on the Gram-Schmidt orthogonalization process above.

The respective constructions can be displayed as the ‘factorizations’ below:

(11 1| 13 =23 2/3 | [33 -1
@) |2 1 —2|=1]2/3-1/3 =2/3| |03 2
204 1| |2/32/3 13| 00 1
110 1/vV2 0 —1/v2 RN
) 01r1| | 0 1/vV2 0 VY
111 |1/vV2 0 =1/V2 001\@'
o11] | 0o 1/v2 o |t /v2 ]
(101] [1/vV2 =172 —1/2] SR
011 0 1/2 1/2
(c) = 0 2 1
121 1/v/2 1/2 —1/2
0 0 1
o011 | o 12 12 |L |
(1 -2 9 —3] [1/5 —4/5 2/5 —2/5]|[510 5 5]
<d> 2 6 -2 —1| |2/5 2/5 —1/5 —4/5| |0 5 —55
2 2 —4 —3| |2/5 —2/5 —4/5 1/5 00 10 5
49 7 9| |45 15 2/5 2/5 |00 0 5






