
MATH1030 Orthonormal bases and orthogonal projections.

1. Recall the definition for the notion of orthogonality from the handout Inner product, norm, and orthogonality:

Let u,v ∈ Rn. We say u is orthogonal to v, and write u ⊥ v, if and only if ⟨u,v⟩ = 0.

Also recall these basic properties of orthogonality:

(a) Suppose u,v ∈ Rn. Then u ⊥ v if and only if v ⊥ u.
(b) Suppose u ∈ Rn. Then u ⊥ u if and only if u = 0n.
(c) Suppose u ∈ Rn. Then (u ⊥ v for any v ∈ Rn) if and only if u = 0n.
(d) Suppose u,v ∈ Rn. Then ∥u+ v∥2 = ∥u∥2 + ∥v∥2 if and only if u ⊥ v.

2. Theorem (A).

Let u1,u2, · · · ,uk be non-zero vectors in Rn. Suppose u1,u2, · · · ,uk are pairwise orthogonal (in the sense that
ui ⊥ uj whenever i ̸= j.)

Then the statements below hold:

(a) u1,u2, · · · ,uk are linearly independent.

(b) For any v ∈ Rn, if v is a linear combination of u1,u2, · · · ,uk then v =
⟨v,u1⟩
∥u1∥2

u1+
⟨v,u2⟩
∥u2∥2

u2+ · · ·+ ⟨v,uk⟩
∥uk∥2

uk.

3. Proof of Theorem (A).
Let u1,u2, · · · ,uk be non-zero vectors in Rn. Suppose u1,u2, · · · ,uk are pairwise orthogonal.

(a) Pick any α1, α2, · · · , αk ∈ R. Suppose α1u1 + α2u2 + · · ·+ αkuk = 0.
For each j = 1, 2, · · · , k, we have

αj∥uj∥2 = α1 ⟨u1,uj⟩+ α2 ⟨u2,uj⟩+ · · ·+ αk ⟨uk,uj⟩

= ⟨α1u1 + α2u2 + · · ·+ αkuk,uj⟩

= ⟨0,uj⟩ = 0

Since uj is not the zero vector, ∥uj∥ ̸= 0. Then αj = 0.
It follows that u1,u2, · · · ,uk are linearly independent.

(b) Exercise. (Imitate what has been done above.)

4. Definition. (Orthonormal set and orthonormal basis.)
Let u1,u2, · · · ,uk ∈ Rn.

(a) We say that u1,u2, · · · ,uk constitute an orthonormal set in Rn if and only if u1,u2, · · · ,uk are pairwise
orthogonal and ∥uj∥ = 1 for each j = 1, 2 · · · , k.

(b) Suppose V is a subspace of Rn. Then we say that u1,u2, · · · ,uk constitute an orthonormal basis for V if and
only if u1,u2, · · · ,uk constitute a basis for V and also constitute an orthonormal set.

Remark. When u1,u2, · · · ,uk constitute an orthonormal set in Rn, they constitute an orthonormal basis for
Span ({u1,u2, · · · ,uk}).

5. Theorem (B).
Let W be a subspace of Rn.
Suppose u1,u2, · · · ,uk constitute an orthonormal basis for W .
Suppose s, t ∈ W . Define βj = ⟨s,uj⟩, γj = ⟨t,uj⟩ for each j = 1, 2, · · · , k.

Then the statements below hold:

(a) s = β1u1 + β2u2 + · · ·+ βkuk.

(b) ∥s∥2 = β1
2 + β2

2 + · · ·+ βk
2.

(c) ⟨s, t⟩ = β1γ1 + β2γ2 + · · ·+ βkγk.
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6. Proof of Theorem (B).
Let W be a subspace of Rn.
Suppose u1,u2, · · · ,uk constitute an orthonormal basis for W .
Suppose s, t ∈ W . Define βj = ⟨s,uj⟩, γj = ⟨t,uj⟩ for each j = 1, 2, · · · , k.

(a) Since s ∈ W and u1,u2, · · · ,uk constitute a basis for W , s is a linear combination of u1,u2, · · · ,uk.
Then, by Theorem (A), s = β1u1 + β2u2 + · · ·+ βkuk.

(b) We have

∥s∥2 = ⟨s, s⟩ = ⟨s, β1u1 + β2u2 + · · ·+ βkuk⟩ = β1 ⟨s,u1⟩+ β2 ⟨s,u2⟩+ · · ·+ βk ⟨s,uk⟩

= β1
2 + β2

2 + · · ·+ βk
2.

(c) Exercise.

7. Theorem (C).
Let W be a subspace of Rn.
Suppose u1,u2, · · · ,uk constitute an orthonormal basis for W .
Suppose z ∈ Rn.
Define α1 = ⟨z,u1⟩, α2 = ⟨z,u2⟩, ..., αk = ⟨z,uk⟩.
Define v ∈ W by v = α1u1 + α2u2 + · · ·+ αkuk.
Define y ∈ Rn by y = z− v.
Then the statements below hold:

(a) i. z = v + y.
ii. y ⊥ s for any s ∈ W . (In particular, y ⊥ v.)

(b) Suppose s ∈ W . Then ∥z− s∥ ≥ ∥z− v∥. Equality holds if and only if s = v.

(c) The inequality ∥z∥2 ≥ α1
2 + α2

2 + · · ·+ αk
2 holds.

Moreover, the statements below are logically equivalent:
i. z ∈ W .
ii. z = α1u1 + α2u2 + · · ·+ αkuk.
iii. ∥z∥2 = α1

2 + α2
2 + · · ·+ αk

2.

iv. For any x ∈ Rn, ⟨z,x⟩ = α1 ⟨u1,x⟩+ α2 ⟨u2,x⟩+ · · ·+ αk ⟨uk,x⟩.

8. Illustrations of the construction described in Theorem (C).

(a) Let u1 =

[√
3/2
1/2

]
, and W = Span ({u1})

Note that ∥u1∥ = 1.
Then u1 constitute an orthonormal basis for W .

• Suppose z =

[
z1
z2

]
.

Define α1 = ⟨z,u1⟩.
Define v = α1u1.

Then v = (

√
3

2
z1 +

1

2
z2)

[√
3/2
1/2

]
=

[
3z1/4 +

√
3z2/4√

3z1/4 + z2/4

]
=

[
3/4

√
3/4√

3/4 1/4

]
z.

Define y = z− v.

Then y =

[
z1/4−

√
3z2/4

−
√
3z1/4

]
+ 3z2/4 =

[
1/4 −

√
3/4

−
√
3/4 3/4

]
z.

z is ‘decomposed’ into the sum of v,y which form a pair of vectors orthogonal to each other, and in which the
vector y is orthogonal to every vector in W .

(b) Let u1 = e
(3)
1 , u2 = e

(3)
2 , and W = Span ({u1,u2}).

Note that ∥u1∥ = ∥u2∥ = 1 and ⟨u1,u2⟩ = 0.
Then u1,u2 constitute an orthonormal basis for W .
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• Suppose z =

z1z2
z3

.

Define α1 = ⟨z,u1⟩, α2 = ⟨z,u2⟩.
Define v = α1u1 + α2u2.

Then v = z1

10
0

+ z2

01
0

 =

z1z2
0

 =

 1 0 0
0 1 0
0 0 0

z.

Define y = z− v.

Then y =

 0
0
z3

 =

 0 0 0
0 0 0
0 0 1

z.

z is ‘decomposed’ into the sum of v,y which form a pair of vectors orthogonal to each other, and in which the
vector y is orthogonal to every vector in W .

(c) Let u1 =

1/32/3
2/3

 ,u2 =

−2/3
−1/3
2/3

, and W = Span ({u1,u2}).

Note that ∥u1∥ = ∥u2∥ = 1 and ⟨u1,u2⟩ = 0.
Then u1,u2 constitute an orthonormal basis for W .

• Suppose z =

z1z2
z3

.

Define α1 = ⟨z,u1⟩, α2 = ⟨z,u2⟩.
Define v = α1u1 + α2u2.

Then v = (
z1
3

+
2z2
3

+
2z3
3

)

1/32/3
2/3

+ (−2z1
3

− z2
3

+
2z3
3

)

−2/3
−1/3
2/3

 = · · · =

 5/9 4/9 −2/9
4/9 5/9 2/9
−2/9 2/9 8/9

z.

Define y = z− v.

Then y = · · · =

 4/9 −4/9 2/9
−4/9 4/9 −2/9
2/9 −2/9 1/9

z.

z is ‘decomposed’ into the sum of v,y which form a pair of vectors orthogonal to each other, and in which the
vector y is orthogonal to every vector in W .

(d) Let u1 =


1/2
1/2
1/2
1/2

 ,u2 =


−1/2
−1/2
1/2
1/2

, and W = Span ({u1,u2}).

Note that ∥u1∥ = ∥u2∥ = 1 and ⟨u1,u2⟩ = 0.
Then u1,u2 constitute an orthonormal basis for W .

• Suppose z =


z1
z2
z3
z4

.

Define α1 = ⟨z,u1⟩, α2 = ⟨z,u2⟩.
Define v = α1u1 + α2u2.

Then v = (
z1
2
+

z2
2
+

z3
2
+

z4
2
)


1/2
1/2
1/2
1/2

+(−z1
2
− z2

2
+

z3
2
+

z4
2
)


−1/2
−1/2
1/2
1/2

 = · · · =


1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

z.

Define y = z− v.

Then y = · · · =


1/2 −1/2 0 0
−1/2 1/2 0 0
0 0 1/2 −1/2
0 0 −1/2 1/2

z.

z is ‘decomposed’ into the sum of v,y which form a pair of vectors orthogonal to each other, and in which the
vector y is orthogonal to every vector in W .
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(e) Let u1 =


1/3
1/3
0
2/3

 ,u2 =


2/3
−1/3
2/3
0

 ,u3 =


0

−2/3
1/3
2/3

, and W = Span ({u1,u2,u3}).

Note that ∥u1∥ = ∥u2∥ = ∥u3∥ = 1 and ⟨u1,u2⟩ = ⟨u1,u3⟩ = ⟨u2,u3⟩ = 0.
Then u1,u2,u3 constitute an orthonormal basis for W .

• Suppose z =


z1
z2
z3
z4

.

Define α1 = ⟨z,u1⟩, α2 = ⟨z,u2⟩, α3 = ⟨z,u3⟩.
Define v = α1u1 + α2u2 + α3u3.
Then

v = (
z1
3

+
2z2
3

+
2z4
3

)


1/3
2/3
0
2/3

+ (
2z1
3

− z2
3

+
2z3
3

)


2/3
−1/3
2/3
0

+ (−2z2
3

− z3
3

+
2z4
3

)


0

−2/3
−1/3
2/3



= · · · =


5/9 0 4/9 2/9
0 1 0 0

4/9 0 5/9 −2/9
2/9 0 −2/9 8/9

z.
Define y = z− v.

Then y = · · · =


4/9 0 −4/9 −2/9
0 0 0 0

−4/9 0 4/9 2/9
−2/9 0 2/9 1/9

z.

z is ‘decomposed’ into the sum of v,y which form a pair of vectors orthogonal to each other, and in which the
vector y is orthogonal to every vector in W .

9. Proof of Theorem (C).
Let W be a subspace of Rn.
Suppose u1,u2, · · · ,uk constitute an orthonormal basis for W .
Suppose z ∈ Rn.
Define α1 = ⟨z,u1⟩, α2 = ⟨z,u2⟩, ..., αk = ⟨z,uk⟩.
Define v = α1u1 + α2u2 + · · ·+ αkuk, and y = z− v.

(a) i. By definition, z = v + y.
ii. Pick any s ∈ W . Define β1 = ⟨s,u1⟩, β2 = ⟨s,u2⟩, ..., βk = ⟨s,uk⟩. Then s = β1u1 + β2u2 + · · ·+ βkuk.

Note that ⟨v, s⟩ = α1β1 + α2β2 + · · ·+ αkβk.
Also note that

⟨z, s⟩ = ⟨z, β1u1 + β2u2 + · · ·+ βkuk⟩ = β1 ⟨z,u1⟩+β2 ⟨z,u2⟩+ · · ·+βk ⟨z,uk⟩ = α1β1+α2β2+ · · ·+αkβk.

Then ⟨y, s⟩ = ⟨z− v, s⟩ = ⟨z, s⟩ − ⟨v, s⟩ = 0.
Therefore y ⊥ s.

(b) Suppose s ∈ W .
Note that v ∈ W . Then v − s ∈ W .
(Recall that y = z− v and y ⊥ t for any t ∈ W .)
Therefore z− v ⊥ v − s.

• We have ∥z− s∥2 = ∥(z− v) + (v − s)∥2 = ∥z− v∥2 + ∥v − s∥2.——(⋆)

Since ∥v − s∥2 ≥ 0, we have ∥z− s∥2 ≥ ∥z− v∥2.
Then ∥z− s∥ ≥ ∥z− v∥.

• Suppose s = v. Then ∥z− s∥ = ∥z− v∥.
• Suppose ∥z− s∥ = ∥z− v∥. Then ∥v − s∥2 = 0 by (⋆). Therefore v − s = 0. Hence s = v.
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(c) Exercise. (Apply the definition of v and y. The inequality concerned is simply ‘∥z∥ ≥ ∥v∥’ in disguise. Equality
holds if and only if y = 0.)

10. Recall the definition for the notion of orthogonal complement of a subspace of Rn from the handout Orthogonal
complement.

Suppose W is a subspace of Rn.
The perp of W , which as a set is given by W⊥ = {x ∈ Rn : x ⊥ u for any u ∈ W}, is called the orthogonal
complement of W in Rn.

Also recall the result (⋆) from the same handout:

Suppose W is a subspace of Rn. Then for any z ∈ Rn, there exist some unique s ∈ W , t ∈ W⊥ such that
z = s+ t.

With the help of the result (⋆), we can enrich the content of part (a) in Theorem (C) by appending a ‘uniqueness
part’.

11. Theorem (D).
Let W be a subspace of Rn.
Suppose u1,u2, · · · ,uk constitute an orthonormal basis for W .
Suppose z ∈ Rn.
Define α1 = ⟨z,u1⟩, α2 = ⟨z,u2⟩, ..., αk = ⟨z,uk⟩.
Define v ∈ W by v = α1u1 + α2u2 + · · ·+ αkuk.
Define y ∈ Rn by y = z− v.
Then the statements below hold:

(a) i. z = v + y.
ii. y ⊥ s for any s ∈ W . (In particular, y ⊥ v.)

(b) Suppose v′,y′ ∈ Rn.
Suppose v′ ∈ W , z = v′ + y′, and y ⊥ s for any s ∈ W . Then v′ = v and y′ = y.

Remarks.

• In plain words, statement (b) is saying that z is decomposed in a unique way as a sum of two vectors, one in
W and the other in W ′. The two vectors are v and y respectively.
The vector v is determined independent of the choice of orthonormal bases for W :

Suppose that u′
1,u

′
2, · · · ,u′

k also constitute an orthonormal basis for W , and α′
1 = ⟨z,u′

1⟩, α′
2 = ⟨z,u′

2⟩,
..., α′

k = ⟨z,u′
k⟩.

Further suppose that v′ = α′
1u

′
1 + α′

2u
′
2 + · · ·+ α′

ku
′
k and y′ = z− v′.

Then it happens that v′ = v and y′ = y.
• Terminology. This uniqueness makes sense of naming the vectors v,y with reference to z and W .

The vector v is called the orthogonal projection of the vector z onto W . It is denoted by pr
W
(z).

The vector y is called the orthogonal complement of z with respect to W .

The other parts of Theorem (C) can be re-stated in terms of orthogonal projections.

12. Theorem (E).
Let W be a subspace of Rn, and z ∈ Rn.

(a) Suppose s ∈ W . Then ∥z− s∥ ≥ ∥z− pr
W
(z)∥. Equality holds if and only if s = pr

W
(z).

(b) The inequality ∥z∥ ≥ ∥pr
W
(z)∥ holds. Equality holds if and only if z ∈ W .

Remarks.

• Statement (a) says that amongst all vectors in W , it is pr
W
(z) whose distance with z is the smallest. In plain

words, pr
W
(z) is the ‘closest (or best) approximation’ to z amongst all vectors in W .

This result is the corner stone of the ‘least square method’ for finding approximations.
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• Statement (b) says that the ‘length’ of the vector v is no less than that of its projection onto W , which is
pr

W
(z).

This inequality is known as Bessel’s Inequality.

13. Theorem (F).
Let W be a subspace of Rn.
Suppose u1,u2, · · · ,uk constitute an orthonormal basis for W .

Define the (n× k)-matrix U by U =
[
u1 u2 · · · uk

]
.

Then the statements below hold:

(a) For any z ∈ Rn, pr
W
(z) = UU tz.

(b) UU t is symmetric and idempotent.

(c) C(UU t) = W .

(d) N (UU t) = W⊥.

Remarks.

• When s1, s2, · · · , sk constitute an orthonormal basis for W and S =
[
s1 s2 · · · sk

]
, we have pr

W
(z) =

SStz for any z ∈ Rn. It follows that UU t = SSt.
This (n× n)-square matrix is independent of the choice of orthonormal bases for W .

• Terminology. This uniqueness makes sense of naming the matrix UU t with reference to W . The matrix UU t

is called the projection matrix from R4 onto W . Multiplication by this matrix from the left to a vector in R4

results in the orthogonal projection of that vector onto W .

14. Proof of Theorem (F).
Let W be a subspace of Rn.
Suppose u1,u2, · · · ,uk constitute an orthonormal basis for W .

Define the (n× k)-matrix U by U =
[
u1 u2 · · · uk

]
.

(a) Pick any z ∈ Rn. We have

UU tz = U


u1

t

u2
t

...
uk

t

z = U


u1

tz
u2

tz
...

uk
tz

 =
[
u1 u2 · · · uk

]


⟨z,u1⟩
⟨z,u2⟩

...
⟨z,uk⟩


= ⟨z,u1⟩u1 + ⟨z,u2⟩u2 + · · ·+ ⟨z,uk⟩uk = pr

W
(z)

(b) We have (UU t)t = (U t)tU t = UU t. Then UU t is symmetric.
We have (UU t)2 = (UU t)(UU t) = U(U tU)U t = UIkU

t = UU t. Then UU t is idempotent.

(c) We verify that W = C(UU t):

• [We verify that for any x ∈ Rn, if x ∈ W then x ∈ C(UU t).]
Pick any x ∈ Rn. Suppose x ∈ W .
Since x ∈ W , We have x = pr

W
(x).

By the result in part (a), we have pr
W
(x) = UU tx.

Then x = UU tx. Therefore, by definition, x ∈ C(UU t).
• [We verify that for any x ∈ Rn, if x ∈ C(UU t) then x ∈ W .]

Pick any x ∈ Rn. Suppose x ∈ C(UU t).
Then there exists some s ∈ R such that x = UU ts.
Define p ∈ Rk by p = U ts.
Then x = Up.
Therefore, by definition, x ∈ C(U).
By definition, W = Span ({u1,u2, · · · ,uk}) = C(U). Hence x ∈ W .
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(d) We have verified that C(UU t) = W .
By part (b), UU t is symmetric.
Then N ((UU t)) = N ((UU t)t) = (C(UU t))⊥ = W⊥.

15. Illustrations of the content of Theorem (F).

(a) Let u1 =

[√
3/2
1/2

]
, and W = Span ({u1})

u1 constitute an orthonormal basis for W .
Define U = u1.

We have UU t =

[
3/4

√
3/4√

3/4 1/4

]
.

UU t is the projection matrix from R2 onto W : for any z ∈ R2, pr
W
(z) = UU tz.

(b) Let u1 = e
(3)
1 , u2 = e

(3)
2 , and W = Span ({u1,u2}).

u1,u2 constitute an orthonormal basis for W .
Define U =

[
u1 u2

]
.

We have UU t =

 1 0 0
0 1 0
0 0 0

.

UU t is the projection matrix from R3 onto W : for any z ∈ R3, pr
W
(z) = UU tz.

(c) Let u1 =

1/32/3
2/3

 ,u2 =

−2/3
−1/3
2/3

, and W = Span ({u1,u2}).

u1,u2 constitute an orthonormal basis for W .
Define U =

[
u1 u2

]
.

We have UU t =

 5/9 4/9 −2/9
4/9 5/9 2/9
−2/9 2/9 8/9

.

UU t is the projection matrix from R3 onto W : for any z ∈ R3, pr
W
(z) = UU tz.

(d) Let u1 =


1/2
1/2
1/2
1/2

 ,u2 =


−1/2
−1/2
1/2
1/2

, and W = Span ({u1,u2}).

u1,u2 constitute an orthonormal basis for W .
Define U =

[
u1 u2

]
.

We have UU t =


1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2

.

UU t is the projection matrix from R4 onto W : for any z ∈ R4, pr
W
(z) = UU tz.

(e) Let u1 =


1/3
1/3
0
2/3

 ,u2 =


2/3
−1/3
2/3
0

 ,u3 =


0

−2/3
1/3
2/3

, and W = Span ({u1,u2,u3}).

u1,u2,u3 constitute an orthonormal basis for W .
Define U =

[
u1 u2 u3

]
.

We have UU t =


5/9 0 4/9 2/9
0 1 0 0
4/9 0 5/9 −2/9
2/9 0 −2/9 8/9

.

UU t is the projection matrix from R4 onto W : for any z ∈ R4, pr
W
(z) = UU tz.
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