1. Recall the definition for the notion of orthogonality from the handout Inner product, norm,

and orthogonality:

Let u,v € R".

We say u is orthogonal to v, and write u L v, if and only if (u,v) = 0.

Also recall these basic properties of orthogonality:
(a) Suppose u,v € R".
Thenu | v if and only if v 1 u.

(b) Suppose u € R".
Then u L u if and only if u = 0,

(¢) Suppose u € R".
Then (u L v for any v € R") if and only if u = 0,,.

(d) Suppose u, v € R".
Then ||u+ v||* = ||u||* + ||v||* if and only ifu L v.



. Theorem (A).

Let uy,us, - - - ,u; be non-zero vectors in R".

Suppose uy, Uy, - - - , Uy are pairwise orthogonal (in the sense that u; L u; wheneveri # j.)

Then the statements below hold:

(a) uy,uy, - - - ,uy are linearly independent.
(b) For any v € R", if v is a linear combination of uy,ug, - - - ,u; then
<V7 111> <V7 U_2> <V7 u/‘&>
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2. Theorem (A). .

Let uy,uo, - -+ ,u; be non-zero vectors in R"*.
Supposc uy, Uy, - - - , Uy, are pairwise orthogonal (in the sense that u; 1 u; wheneveri # j.)
Then the statements below hold: % T wll W/\;' K Wy, W
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3. Proof of Theorem (A).

Let uy, us, - - - , u; be non-zero vectors in R".
Suppose uj, Uy, - - - , U are pairwise orthogonal.
(a) Pick any o, ag, - -+, o € R.

Suppose aju; + asug + - - - + auy = 0.
For each y =1,2,--- , k., we have

ajllull® = o (uy,uy) + ag (ug, wy) + - + g (g, uy)

= (aju; + agug + - - - + Uy, u,)

= <0, 11j> =0
Since u; is not the zero vector, ||u,|| # 0.
Then a; = 0.
It follows that uy, ug, - - -, u; are linearly independent.

(b) Exercise. (Imitate what has been done above.)



3. Proof of Theorem (A).

Let uy, uo, - - - , ug be non-zero vectors in R".

Suppose uy, Uy, - - - , Ui are pairwise orthogonal.

(a) Pick any aq, ag, -+ ,ap € R |
Suppose aquy + aguy + - - - + apuy = 0. [-}wﬁ& ’ T '\t ‘ch t{\;k OS_‘—O ](NMJ 7]
For each j =1,2,--- .k, we have

ajllwll? = au (uy, uy) + ag (ug, uy) + -+ + o (g, uy)

= <061111 = Qg -« » apur, 11j>

= (0,u;) =0
Since u; is not the zero vector, ||u,|| # 0.
Then a; = 0.
It follows that uy, uy, - - - , uy are linearly independent. BQ/& s ~6L\b VR
N "
(b) Exercise. (Imitate what has been done above.) g;;ﬁmm\? ,\Vf ﬁ‘\w Corbindhiion
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4. Definition. (Orthonormal set and orthonormal basis.)
Let up,ug, - -+ ,u; € R"™.
(a) We say that
up, Uy, - - - , U constitute an orthonormal set in R"
if and only if
uy, Uy, - - -, Uy are pairwise orthogonal and ||u,|| = 1 for each j = 1,2--- | k.

(b) Suppose V' is a subspace of R".
Then we say that

up, U, - - - , U constitute an orthonormal basis for V'
if and only if
up, U, - - - , U constitute a basis for V' and constitute an orthonormal set.
Remark.
When uy, us, - - - , u; constitute an orthonormal set in R”, they constitute an orthonormal

basis for Span ({ug,ug, - ,ug}).



5. Theorem (B).
Let W be a subspace of R".
Suppose uy, Wy, - - - , W constitute an orthonormal basis for W
Suppose s,t € W.
Define ; = (s, u;), v; = (t,u;) foreach j =1,2,--- | k.
Then the statements below hold:

(a) s = fiuy + Poug + - - - + Bruy.
(b) |Is||* = B+ B+ -+ B

(c) (s, 6) = By + Bave + -+ + B



6. Proof of Theorem (B).
Let W be a subspace of R".

Suppose ug, Us, - - - , Uy constitute an orthonormal basis for W,
Suppose s,t € W.
Define 5, = (s, u;), v; = (t,u;) foreach j =1,2,--- | k.

(a) Since s € W and uy,uy, - - - , uy constitute a basis for W, s is a linear combination of
up, ug, -+, Ug.
Then, by Theorem (A),
s = Siug + Soug + - - - + Bruy.
(b) We have
Isl* = (s,s)
= (s, fiug + Boug + - - - + Bruy)
= B (s,u1) + B2 (s, ug) + -+ + B (s, up)
= B+ B+ + B

(c) Exercise.



7. Theorem (C).
Let W be a subspace of R".
Suppose uy, Wy, - - - , W constitute an orthonormal basis for W
Suppose z € R". Define a; = (z,1y), ag = (z,09), ..., ap = (Z, uy).
Definev € W by v=aju; + agug + - - - + aguy. Definey e R" byy =z — v.
Then the statements below hold:

(a)iz=v+Yy.

ii.y L s foranys € W. (In particular, y 1 v.)




7. Theorem (C).
Let W be a subspace of R".
Suppose uy, Uy, - - - , Uy, constitute an orthonormal basis for W.
Suppose z € R". Define oy = (z, 1), ag = (z,Uy), ..., ax = (z, Uy).
Definev € W by v =oaqu; + agug + - - - + aguy. Definey € R" byy =z — v. 4/—7
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(b) Suppose s € W.
Then ||z —s|| > ||z — v]||.

Equality holds if and only if s = v.

(¢) The inequality ||z||* > a1? + ao®* + - - - + ay* holds.
Moreover, the statements below are logically equivalent:

i.zeW.
1. Z = ajug + aouy + - - - + apuy.
ii. ||z)> = a1® + a® + -+ - + i’

iv. For any x € R",

<Z7X> — <u17X> T Q2 <u27X> T O <uk7X> :
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(c) The inequality |l2]|* > ar® + ag + - + y® holds. —— =

(b) Suppose s € W. W\/\/ﬁ
Then ||z —s|| = ||lz = v||.

Liquality holds if and only if s = v.

Ml} jMOl"eOVGI", the statements below are logically equivalent:
I“P}me)' i.zeW.

1. Z = ajuy + agug + - - - + aguy.

il ||z]]? = cr® + ag® + - - + o

iv. For any x € R",

(z,x) = a1 (u1,x) + o (Ug, X) + -+ - + ag (U, X) .



8. Illustrations of the construction described in Theorem (C).

_[vap
(a) Let uy = [ 1/

Note that ||uy|| = 1.

Then u;y constitute an orthonormal basis for W.

2
e Suppose z = [ 1] .

] ,and W = Span ({u})

Z9

Define o = (z, uy).

Define v = ayuy. Then

V=(—7—~2+=z2
< 2 ! 2 2> 1/2 \/321/44—22/4

| 3/4 V3/4
V34 14 |

Define y =z — v. Then

21/4 — /324 | 1/4 —V/3/4
— V32 /4 ]+3Z2/4[—\/§/4 3/4 ]Z'

7z is ‘decomposed’ into the sum of v,y which form a pair of vectors orthogonal to each

other, and in which the vector y is orthogonal to every vector in W.



(b) Let uy = e§3), uy = eé?’), and W = Span ({uj, us}).
Note that ||uy|| = [|[ug|| = 1 and (uy,uy) = 0.

Then uy, uy constitute an orthonormal basis for W.

e Suppose z = | 29| .

Define a; = (z,uy), s = (z,uy).

Define v = aquy + asuy. Then

1 0] [z] [100]
v=2z1 |0l +2 1| =12 =[010]z.
10 10 0] 000
Define y =z — v. Then
0] [oo00]
y=|0[=1([000]z.
| 23| 1001

7z is ‘decomposed’ into the sum of v,y which form a pair of vectors orthogonal to each

other, and in which the vector y is orthogonal to every vector in .



1/3 [—2/3
(c) Let uy = [2/3]| ,us = |—1/3|, and W = Span ({uy, uz}).
12/3 2/3

Note that ||uy|| = [|uz|| = 1 and (uy,uy) = 0.
Then uy, uy constitute an orthonormal basis for W.

21

e Suppose z = | 29| .

Z3

Define ag = (z,uy), as = (z,us).

Define v = ajuy + asus.




oo o |13 , .. |2/ [ 5/9 4/9 —2/9
Z Z Z Z Z Z
v= (220 23+ (-2 [ —1y3] == | 4/9 5/9 2/9 |z
33 3 3 33
2/3) | 2/3 | | —2/92/9 8/9 |
Definey =z — v.
Then ) )
4/9 —4/9 2/9
y=---=|—-4/9 4/9 —2/9 |z
| 2/9 —2/9 1/9

z is ‘decomposed’ into the sum of v,y which form a pair of vectors orthogonal to each

other, and in which the vector y is orthogonal to every vector in .



1/2 [ 1/9]
B 1/2 B —1/2 B
(d) Let u; = 1/ Uy = o | and W = Span ({u, us}).
1/2 12

Note that ||uy|| = [|uz|| = 1 and (uy,uy) = 0.

Then u;, uy constitute an orthonormal basis for W,

« Suppose z =

Define o = (z,uy), as = (z,uy).

Define v = ajuy + asus.




Then

1/2 [—1/2] [(1/21/2 0 0 |
R I L 1/2 R -1/2] /2 1/2 0 0
vyt gty 1/2 ey gty ty) 1/2 | 0 0 1/2 1/2
1/2) | 1/2 00 1/21/2
Definey =z — v.
Then i
1/2 —=1/2 0 0
—1/2 1/2 0 0
|2 ]
0 0 1/2 —1/2
0 0 -1/2 1/2

z is ‘decomposed’ into the sum of v,y which form a pair of vectors orthogonal to each

other, and in which the vector y is orthogonal to every vector in WW.



1/3 2/3 0
1/3 ~1/3 —2/3
e) Let u; = , Uy = U3 = ,and W = Span ({uy,uy,us}).
(e) 1 o |7 L as |7 | 1 pan ({uy, up, us})
2/3 0 2/3
Note that ||uy|| = ||uz|| = [|us|| = 1 and (uy,uz) = (uy,u3) = (uy, u3) = 0.

Then uy, uy, uz constitute an orthonormal basis for .

e Suppose z =

Define ap = (z,uy), as = (z,1s), a3 =

Define v = aquy + asuy + aizus.

(z,u3).



Then

1/3] [ 2/3 [0 |
2 2 2/3 2 2 —1/3 2 2 —2/3
v oo (A2 2 280 2 m 2 |3 2 s 2a =2
3 3 3 0 3 3 3 2/3 3 3 37 |—1/3
2/3 0] | 2/3 |

(5/9 0 4/9 2/9
01 0 0
4/9 0 5/9 —2/9
2/9 0 —2/9 8/9 |

Define y =z — v. Then

4/9 0 —4/9 —2/9 ]
0 0 0 0

—4/9 0 4/9 29

22/90 2/9 1/9

7z is ‘decomposed’ into the sum of v,y which form a pair of vectors orthogonal to each

other, and in which the vector y is orthogonal to every vector in W.



9. Proof of Theorem (C).
Let W be a subspace of R".
Suppose ug, Us, - - - , Uy constitute an orthonormal basis for W,
Suppose z € R",
Define o = (z,uy), as = (z, 1), ..., ap = (2, uy).

Define v=aqu; + asug + - -+ apup, and y =z — v.

(a) i. By definition, z = v + y.

ii. Pick any s € W. Define 81 = (s,uy), B = (s, u), ..., B = (s, ug).
Then s = fiuy + Bous + - - - + Bruy.
Note that (v,s) = a161 + asfs + - - - + iy
Also note that

<Z7 S> — <Z7 Blul + 52“2 + e+ Bkuk>
= Bi(z,ur) + B2 (z,u2) + -+ + Bi (2, u) = a181 + afr + -+ - + By

Then (y,s) = (z — v,s) = (z,s) — (v,s) = 0.
Therefore y L s.



(b) Suppose s € W.
Note that ve W. Then v —s € W.

(Recall that y =z —vandy L t for any t € W.) Thereforez — v 1 v —s.
« We have

|z —sl*=llz—v)+(v=s)F=lz-v["+]v—-s|® — ()
Since ||[v — s||* > 0, we have
|z —s|* >[Iz — v
Then ||z —s|| > ||z — v||.
 Suppose s = v. Then ||z —s|| = ||z — Vv||.
» Suppose ||z —s|| = [z — v|.
Then ||v —s||* = 0 by (x).

Therefore v—s = 0. Hence s = v.

(c) Exercise. (Apply the definition of v and y.
The inequality concerned is simply ‘||z|| > ||v|]" in disguise.

Equality holds if and only if y = 0.)



10. Recall the definition for the notion of orthogonal complement of a subspace of R" from

the handout Orthogonal complement.

Suppose W' is a subspace of R".
The perp of W, which as a set is given by

W+={xcR":x_Luforanyue W},

is called the orthogonal complement of W in R".

Also recall the result (x) from the same handout:

Suppose W is a subspace of R".
Then for any z € R",

there exist some uniques € W, t € W+ such that z = s + t.

With the help of the result (x), we can enrich the content of part (a) in Theorem (C) by

appending a ‘uniqueness part’.



11. Theorem (D).
Let W be a subspace of R".
Suppose uy, Wy, - - - , W constitute an orthonormal basis for W
Suppose z € R",
Define aq = (z,uy), @ = (z, ), ..., ap = (Z, Uy).
Definev € W by v =ajuy + asuy + - - - + azuy.
Definey e R" byy =z — v.

Then the statements below hold:
(a)iz=v+Yy.
ii.y L s foranys € W. (In particular, y 1 v.)

(b) Suppose v, y' € R™.
Suppose v € W,z =v' +y' andy L s foranys € W.
Then vV =v andy' =Yy.



Remarks.

- In plain words, statement (b) is saying that z is decomposed in a unique way as a sum

of two vectors, one in W and the other in W’. The two vectors are v and y respectively.

The vector v is determined independent of the choice of orthonormal bases for W:
Suppose that uj, uj, - - - , u}. also constitute an orthonormal basis for W, and
o) = (z,u)), oy = (z,05), ..., o). = (z,u).

Further suppose that v/ = aju] + ajuy + - - -+ up andy' =z — v’

Then it happens that v = v and y’' = y.

« Terminology.
This uniqueness makes sense of naming the vectors v,y with reference to z and W.
The vector v is called the orthogonal projection of the vector z onto W. It is denoted
by pr,.(z).
The vector y is called the orthogonal complement of z with respect to W.

The other parts of Theorem (C) can be re-stated in terms of orthogonal projections.



12. Theorem (E).
Let W be a subspace of R", and z € R".

(a) Suppose s € W.
Then ||z — s|| = ||z — pr, (z)].
Equality holds if and only if s = pr (z).
(b) The inequality ||z|| > ||pr,,(z)|| holds.
Equality holds if and only if z € W.

Remarks.

» Statement (a) says that amongst all vectors in W, it is pr, (z) whose distance with z is
the smallest.
In plain words, pr, (z) is the ‘closest (or best) approximation’ to z amongst all vectors
in W.
This result is the corner stone of the ‘least square method’ for finding approximations.

. Statement (b) says that the ‘length’ of the vector v is no less than that of its projection
onto W, which is pr  (z).

This inequality is known as Bessel’s Inequality:.



13. Theorem (F).
Let W be a subspace of R".

Suppose uy, Us, - - - , Uy, constitute an orthonormal basis for W'.

Define the (n x k)-matrix U by U = {111112"' uk]

Then the statements below hold:

(a) For any z € R", pr, (z) = UU'z.
(b) UU" is symmetric and idempotent.
(c) C(UU") =W.

(A) N(UU) = W



Remarks.

« When sq, 89, -+ ,s; constitute an orthonormal basis for W and S = [sl So |-+ |Sg },

we have
pr,.(z) = SS'z for any z € R".
It follows that UU! = SS*.

This (n x n)-square matrix is independent of the choice of orthonormal bases for W

« Terminology.

This uniqueness makes sense of naming the matrix UU? with reference to W.
The matrix UU! is called the projection matrix from R* onto W.

Multiplication by this matrix from the left to a vector in R* results in the orthogonal

projection of that vector onto W.



14. Proof of Theorem (F).
Let W be a subspace of R".

Suppose ug, Us, - - - , Uy constitute an orthonormal basis for W,

Define the (n x k)-matrix U by U = {111112"' uk]

(a) Pick any z € R". We have

u,! u;'z
t t
U9 Us'Z
UUlz = U|—|z=U :{u1u2---uk]
ukt uktz

= (z,u;)u; + (z, W) us + - - - + (z, uy) uy
= pr,(2)
(b) We have (UU")' = (UNY'U' = UU".
Then UU? is symmetric.
We have (UUY)? = (UUYUUY) =UUO) U =ULU = UU".
Then UU? is idempotent.




(¢) We verify that W = C(UU"):
o [We verify that for any x € R", if x € W then x € C(UU") ]
Pick any x € R". Suppose x € W.
Since x € W, We have x = pr,_(x).
By the result in part (a), we have pr_(x) = UU'x,
Then x = UU'x. Therefore, by definition, x € C(UU").

o [We verify that for any x € R", if x € C(UU?) then x € W]
Pick any x € R". Suppose x € C(UU").
Then there exists some s € R such that x = UU's.
Define p € R¥ by p = U's.
Then x = Up.
Therefore, by definition, x € C(U).
By definition, W = Span ({ug,us,--- ,u;}) = C(U). Hence x € W.

(d) We have verified that C(UU") = W.
By part (b), UU" is symmetric.
Then N((UUY)) = N((UUY) = (C(UUY))*: =W+,



15. Illustrations of the content of Theorem (F).

ﬁ/zl

(a) Let uy = [ o | and W = Span ({u;})

u; constitute an orthonormal basis for W.
Define U = u;.

We have

. 3/4 /3/4
vot= [\/3/4 1/4 ]

UU" is the projection matrix from R* onto W: for any z € R*, pr, (z) = UU'z.



(b) Let u; = eg?’), U = eé?’), and W = Span ({u,us}).
u, Uy constitute an orthonormal basis for W.
Define U = |:111112:|.

We have ) )
100

UU'=1010
1000

UU" is the projection matrix from R* onto W: for any z € R®, pr, (z) = UU'z.



(1/3] —2/3]
(c) Let uy = [2/3] ,us = |—1/3|, and W = Span ({uy, us}).
12/3 2/3

u, Uy constitute an orthonormal basis for W.
Define U = [ulug]

We have

- 5/9 4/9 —2/9 ]
UU' = | 4/9 5/9 2/9

| —2/92/9 8/9

UU! is the projection matrix from R onto W:

for any z € R®, pr (z) = UU'z.



1/2 [ 1/2]
B 1/2 B —1/2 B
(d) Let u; = 1/ Uy = o | and W = Span ({ug, us}).
1/2 12

uy, Uy constitute an orthonormal basis for W.
Define U = [ulug]

We have

(1/21/2 0 0
1/21/2 0 0
0 0 1/21/2
0 0 1/21/2

UU' =

UU! is the projection matrix from R* onto W:

for any z € R*, pr, (z) = UU'z.



1/3
1/3
0
2/3

(e) Let u; =

2/3
~1/3
2/3
0

0

—9/3
1/3
| 2/3

) and W = Span <{u17 Uy, U3}>

Uy, Uy, ug constitute an orthonormal basis for W.

Define U = [u1u2u3]

We have

UU! is the projection matrix from R* onto W:

UU' =

0 1

(5/90 4/9 2/9
0
4/9 0 5/9 —2/9
2/9°0 ~2/9 8/9

0

for any z € R*, pr, (z) = UU'z.





