
MATH1030 Orthogonal complement.

1. Recall the definition for the notion of orthogonality from the handout Inner product, norm, and orthogonality:

Let u,v ∈ Rn. We say u is orthogonal to v, and write u ⊥ v, if and only if ⟨u,v⟩ = 0.

Also reacll these basic properties of orthogonality:

(a) Suppose u,v ∈ Rn. Then u ⊥ v if and only if v ⊥ u.
(b) Suppose u ∈ Rn. Then u ⊥ u if and only if u = 0n.
(c) Suppose u ∈ Rn. Then (u ⊥ v for any v ∈ Rn) if and only if u = 0n.
(d) Suppose u,v ∈ Rn. Then ∥u+ v∥2 = ∥u∥2 + ∥v∥2 if and only if u ⊥ v.

2. Definition. (Perp of of a subset of Rn.)
Let S be a set of vectors in Rn.
The perp of S, denoted by S⊥, is defined to be {x ∈ Rn : x ⊥ u for any u ∈ S}.
Remarks.

(a) In plain words, S⊥ is the collection of those and only those vectors in Rn which are orthogonal to every vector
in S.

(b) i. (Rn)
⊥ is the zero subspace of Rn.

ii. ({0n})⊥ is Rn itself.
iii. By logic, ∅⊥ is Rn itself.

3. Theorem (1).

Suppose S is a set of vectors in Rn. Then S⊥ is a subspace of Rn.

4. Proof of Theorem (1).
Suppose S is a set of vectors in Rn.

• [We want to check ‘0n ∈ S⊥’. This amounts to checking ‘for any u ∈ S, 0n ⊥ u’.]
For any u ∈ S, we have ⟨0n,u⟩ = 0. Then 0n ⊥ u.
It follows that 0n ∈ S⊥.

• [We want to check ‘for any x,y ∈ Rn, if x ∈ S⊥ and y ∈ S⊥ then x+ y ∈ S⊥’.]
Pick any x,y ∈ Rn. Suppose x ∈ S and y ∈ S.
[We try to deduce ‘x+ y ∈ S⊥’.]
We verify that for any u ∈ S, x+ y ⊥ u’:

Pick any u ∈ S.
Since x ∈ S⊥, we have x ⊥ u. Then ⟨x,u⟩ = 0.
Similarly, since, y ∈ S⊥, we have ⟨y,u⟩ = 0.
Then ⟨x+ y,u⟩ = ⟨x,u⟩+ ⟨y,u⟩ = 0.
Therefore x+ y ⊥ u.

It follows that x+ y ∈ S⊥.

• As an exercise, verify that ‘for any x ∈ Rn, for any α ∈ R, if x ∈ S⊥ then αx ∈ S⊥’.

5. Theorem (2).

Suppose S is a set of vectors in Rn. Then S is a subset of (S⊥)⊥.

6. Proof of Theorem (2).
Suppose S is a set of vectors in Rn.

[We want to verify that for any y ∈ Rn, if y ∈ S then y ∈ (S⊥)⊥.]
Pick any y ∈ Rn. Suppose y ∈ S.

[Reminder: We want to deduce that y ∈ (S⊥)⊥.

We now remind ourselves: according to definition, (S⊥)⊥ = {z ∈ Rn : z ⊥ v for any v ∈ S⊥}.
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So to verify ‘y ∈ (S⊥)⊥’ is the same as to verify ‘y ⊥ v for any v ∈ S⊥’.

So we now proceed to verify that y ⊥ v for any v ∈ S⊥.]

Pick any v ∈ S⊥. By assumption, y ∈ S. Then v ⊥ y by the definition of S⊥. Therefore y ⊥ v.

(We have verified that y ⊥ v for any v ∈ S⊥.)

Hence y ∈ (S⊥)⊥.

It follows that S is a subset of (S⊥)⊥.

7. Theorem (3).
Suppose A is an (m× n)-matrix. Then the statements below hold:

(a) N (A) = (R(A))⊥. (b) N (At) = (C(A))⊥.

8. Proof of Theorem (3).
Suppose A is an (m× n)-matrix.

(a) • [We verify that ‘for any x ∈ Rn, if x ∈ N (A)’ then x ∈ (R(A))⊥.]
Pick any x ∈ Rn. Suppose x ∈ N (A). [We want to deduce ‘x ∈ (R(A))⊥’. This amounts to checking ‘for
any u ∈ (R(A)), x ⊥ u.’]
We verify that for any u ∈ (R(A)), x ⊥ u:

Pick any u ∈ R(A). [Ask: is it true that x ⊥ u?]
Since u ∈ R(A) and R(A) = C(At), there exists some s ∈ Rm such that u = Ats.
Since x ∈ N (A), we have Ax = 0m.
Now we have ⟨x,u⟩ = xtu = xtAts = (Ax)ts = 0m

tx = 0.
Then x ⊥ u.

Hence x ∈ (R(A))⊥.
• [We verify that ‘for any x ∈ Rn, if x ∈ (R(A))⊥ then x ∈ N (A)’.]

Pick any x ∈ Rn. Suppose x ∈ (R(A))⊥. [We want to deduce ‘x ∈ N (A)’. This amounts to checking
‘Ax = 0m’.]
We verify that Ax = 0m:

Since x ∈ (R(A))⊥, we have x ⊥ u for any u ∈ R(A).
Denote the columns of At by u1,u2, · · · ,um. By definition, u1,u2, · · · ,um ∈ R(A).
Then uj

tx = ⟨uj ,x⟩ = 0 for each j = 1, 2, · · · ,m.

We have Ax =


u1

tx
u2

tx
...

um
tx

 = 0m.

It follows that x ∈ N (A).
It follows that N (A) = (R(A))⊥.

(b) We have R(At) = C(A) by definition. Then N (At) = (R(At))⊥ = (C(A))⊥.

9. Theorem (4).
Let V be a subspace of Rn. The statements below hold:

(a) V ∩ V ⊥ = {0n}. (The only vector which belongs to both V and V ⊥ is the zero vector in Rn.)

(b) dim(V ) + dim(V ⊥) = Rn.

10. Proof of Theorem (4).
Let V be a subspace of Rn.

(a) Pick any x ∈ Rn. Suppose x ∈ V ∩ V ⊥. Then x ∈ V and x ∈ V ⊥.
Since x ∈ V ⊥, we have x ⊥ u for any u ∈ V . In particular, x ⊥ x (because x ∈ V ).
Then x = 0.
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(b) When V is the zero subspace of Rn, V ⊥ is Rn and dim(V ) + dim(V ⊥) = n. From now on we suppose V is not
the zero subspace of Rn.
Write dim(V ) = p. We have p ≥ 1.
There is some basis for V , with p vectors in Rn, say, u1,u2, · · · ,up.
Define the (n× p)-matrix U by U =

[
u1 u2 · · · up

]
.

We have V = C(U).
By Theorem (3), we have N (U t) = (C(U))⊥ = V ⊥.
Note that U t is a (p× n)-matrix.
By the Rank-Nullity Formula, we have dim(N (U t)) + dim(C(U t)) = n.
By definition, R(U) = C(U t).
Also recall that dim(C(U)) = dim(R(U)), which the number of the leading ones in the reduced row-echelon
form which is row-equivalent to U .
Then dim(V ⊥) = dim(N (U t)) = n− dim(C(U t)) = n− dim(R(U)) = n− dim(C(U)) = n− dim(V ).
Therefore dim(V ) + dim(V ⊥) = n.

11. Recall the result (†) from the handout Inequalities on dimension:

(†) Let W be a subspace of Rm. Suppose t1, t2, · · · , tk be vectors in W .
Then the statements below are logically equivalent:
(♯) t1, t2, · · · , tk constitute a basis for W .
(♮) dim(W ) = k, and t1, t2, · · · , tk are linearly independent.

12. Theorem (5).
Let V be a subspace of Rn, and u1,u2, · · · ,up,w1,w2, · · · ,wn−p be vectors in Rn.

Suppose u1,u2, · · · ,up constitute a basis for V , and w1,w2, · · · ,wn−p constitute a basis for V ⊥.

Then u1,u2, · · · ,up,w1,w2, · · · ,wn−p constitute a basis for Rn.

13. Proof of Theorem (5).
Let V be a subspace of Rn, and u1,u2, · · · ,up,w1,w2, · · · ,wn−p be vectors in Rn.

Suppose u1,u2, · · · ,up constitute a basis for V , and w1,w2, · · · ,wn−p constitute a basis for V ⊥.

• [We verify that u1,u2, · · · ,up,w1,w2, · · · ,wn−p are linearly independent.]
Pick any α1, α2, · · · , αp, β1, β2, · · · , βn−p ∈ R.
Suppose α1u1 + α2u2 + · · ·+ αpup + β1w1 + β2w2 + · · ·+ βn−pwn−p = 0.
Write u = α1u1 + α2u2 + · · ·+ αpup, w = β1w1 + β2w2 + · · ·+ βn−pwn−p. Then u+w = 0n.
By definition, u ∈ V . Then w = −u ∈ V .
By definition, w ∈ V ⊥. Then u = −w ∈ V ⊥.
Therefore u ∈ V and u ∈ V ⊥. Hence u ∈ V ∩ V ⊥.
Then α1u1 + α2u2 + · · ·+ αpup = u = 0n.
Recall that u1,u2, · · · ,up are linearly independent. Then α1 = α2 = · · · = αp = 0.
Similarly, w ∈ V and w ∈ V ⊥. Then w ∈ V ∩ V ⊥. Therefore β1w1 + β2w2 + · · ·+ βn−pwn−p = w = 0n.
Recall that w1,w2, · · · ,wn−p are linearly independent. Then β1 = β2 = · · · = βn−p = 0.

• We have now proved that u1,u2, · · · ,up,w1,w2, · · · ,wn−p are n linearly independent vectors in Rn, which is
an n-dimensional subspace of Rn.
It follows from the result (†) that u1,u2, · · · ,up,w1,w2, · · · ,wn−p constitute a basis for Rn.

14. Definition. (Orthogonal complement of a subspace of Rn.)

Suppose V is a subspace of Rn. Then V ⊥ is called the orthogonal complement of V in Rn.

15. Theorem (6).

Suppose V is a subspace of Rn. Then for any x ∈ Rn, there exist some unique u ∈ V , w ∈ V ⊥ such that v = u+w.
Remarks.
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(a) What the conclusion in this statement is saying is that both statements below are true:

(E) For any x ∈ Rn, there exist some unique u ∈ V , w ∈ V ⊥ such that v = u+w.
(U) For any x ∈ Rn, for any u,u′ ∈ V , w,w′ ∈ V ⊥ if v = u+w and v = u′ +w′ then u = u′ and w = w′.

(b) The statement (E) is called the ‘existence part’ (of the conclusion) in Theorem (6). In plain words, it says that
every vector in Rn ‘admits’ at least one ‘decomposition’ as a sum of two of vectors, one from V and the other
from V ⊥.

(c) The statement (U) is called the ‘uniqueness part’ (of the conclusion) in Theorem (6). In plain words, it says
that every vector in Rn ‘admits’ at most one ‘decomposition’ as a sum of two of vectors, one from V and the
other from V ⊥.

16. Proof of Theorem (6).
Suppose V is a subspace of Rn. Write dim(V ) = p.

Note that V ⊥ is a subspace of Rn, and dim(V ⊥) = n− p.
Pick any x ∈ Rn.

• Pick some basis for V , say, u1,u2, · · · ,up.
Pick some basis for V ⊥, say, w1,w2, · · · ,wn−p.
By Theorem (5), u1,u2, · · · ,up,w1,w2, · · · ,wn−p constitute a basis for Rn.
There exist some α1, α2, · · · , αp, β1, β2, · · · , βn−p ∈ R such that

v = α1u1 + α2u2 + · · ·+ αpup + β1w1 + β2w2 + · · ·+ βn−pwn−p.

Define u = α1u1 + α2u2 + · · ·+ αpup, w = β1w1 + β2w2 + · · ·+ βn−pwn−p.
By definition, u ∈ V , w ∈ V ⊥, and v = u+w.

• Pick any u,u′ ∈ V , w,w′ ∈ V ⊥. Suppose v = u+w and v = u′ +w′.
Then u+w = v = u′ +w′.
Therefore u− u′ = w′ −w.
Since u,u′ ∈ V , we have u− u′ ∈ V .
Since w,w′ ∈ V ⊥, we have w′ −w ∈ V ⊥.
We have u − u′ ∈ V and u − u′ ∈ V ⊥. Therefore u − u′ ∈ V ∩ V ⊥. By Theorem (4), we have u − u′ = 0n.
Hence u = u′.
Now we have w′ −w = u− u′ = 0n also. Then w = w′.

17. Recall the result (‡) from the handout Inequalities on dimension:

(‡) Let W1,W2 be subspaces of Rm. Suppose W1 is a subspace of W2.
Then dim(W1) ≤ dim(W2). Equality holds if and only if W1 = W2.

18. Theorem (7).

Suppose V is a subspace of Rn. Then (V ⊥)⊥ = V .

Proof of Theorem (7).
Suppose V is a subspace of Rn.

By Theorem (2), V is a subspace of (V ⊥)⊥.

By Theorem (4), dim(V ) + dim(V ⊥) = n. Also, dim(V ⊥) + dim((V ⊥)⊥) = n.

Then dim(V ) = n− dim(V ⊥) = dim((V ⊥)⊥).

It follows that V = (V ⊥)⊥.

19. With the help of Theorem (7), we may extend Theorem (3) into the result below:

Theorem (8).
Suppose A is an (m× n)-matrix. Then the statements below hold:
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(a) N (A) = (R(A))⊥. (b) N (At) = (C(A))⊥. (c) (N (A))⊥ = R(A). (d) (N (At))⊥ = C(A).

Proof of Theorem (8).
Suppose A is an (m× n)-matrix.

By Theorem (3), we have N (A) = (R(A))⊥ and N (At) = (C(A))⊥.

By Theorem (7), we have (N (A))⊥ = ((R(A))⊥)⊥ = R(A).

We also have (N (At))⊥ = ((C(A))⊥)⊥ = C(A).

Remark. The set equality (N (At))⊥ = C(A) is logically equivalent to the statement below:

For any b ∈ Rm, b ∈ C(A) if and only if b ∈ (N (At))⊥.

This set equality is usually re-formulated as a result known as Fredholm’s Alternatives.

20. Theorem (9). (Fredholhm’s Alternatives.)
Suppose A is an (m× n)-matrix.
Then, for any b ∈ Rm, exactly one of the statements below is true:

(a) b ∈ C(A). (b) b /∈ (N (At))⊥.

Remarks.

• ‘b ∈ C(A)’ is logically equivalent to the statement ‘LS(A, b) is consistent’.

• ‘b ∈ (N (At))⊥’ is logically equivalent to the statement ‘every vector in the null space of At is orthogonal to b’.
Recall that the null space of At is the solution set of LS(At, 0n).
So ‘b ∈ (N (At))⊥’ is logically equivalent to the statement ‘every solution of the system LS(At, P0m) is
orthogonal to b’.

This allows the re-formulation of Fredholhm’s Alternatives in terms of systems of linear equations.

21. Corollary to Theorem (9). (Fredholm’s Alternatives, in terms of systems of linear equations.)
Suppose A is an (m× n)-matrix, and b is a vector in Rm.
Then exactly one of the statements below is true:

(a) LS(A, b) is consistent.

(b) Some non-trivial solution of the homogeneous system LS(At, 0n) is not orthogonal to b.

22. Recall the result below from the handout Duality between spanning and linear independence:

Let A be an (m× n)-matrix. Suppose K is a non-singular (m×m)-square matrix. Then the equalities below
hold:

(a) N (A) = N (KA). (b) R(A) = R(KA).

This result can be re-formulated as:

(⋆) Let A,B be (m× n)-matrices. Suppose A is row-equivalent to B. Then N (A) = N (B) and R(A) = R(B).

It turns out that the converse of this result is also true.

23. For the moment, we take for granted the validity of Lemma (10), which will be proved later.

Lemma (10).
Let P,Q be (m×n)-square matrices. Suppose P,Q are reduced row-echelon forms, and R(P ) = R(Q). Then P = Q.

24. Lemma (11).
Let A,B be (m× n)-matrices. Suppose R(A) = R(B). Then A is row-equivalent to B.

Proof of Lemma (11).
Let A,B be (m× n)-matrices. Suppose R(A) = R(B).

Denote by A′ the reduced row-echelon form which is row-equivalent to A.
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Denote by B′ the reduced row-echelon form which is row-equivalent to B.
We have R(A) = R(A′) and R(B) = R(B′).
Now, by assumption, we have R(A′) = R(A) = R(B) = R(B′).
Then, by Lemma (10), we have A′ = B′. It follows that A is row-equivalent to B.

25. Lemma (12).
Let A,B be (m× n)-matrices. Suppose N (A) = N (B). Then A is row-equivalent to B.
Proof of Lemma (12).
Let A,B be (m× n)-matrices. Suppose N (A) = N (B).

Then (R(A))⊥ = N (A) = N (B) = (R(B))⊥.

Therefore R(A) = ((R(A))⊥)⊥ = ((R(B))⊥)⊥ = R(B).

26. We combine Lemma (11), Lemma (12) and the result (⋆) into the result below:
Theorem (13).
Let A,B be (m× n)-matrices. The statements below are logically equivalent:

(a) A is row-equivalent to B. (b) N (A) = N (B). (c) R(A) = R(B).

27. Corollary to Theorem (13).
Let A,B be (m× n)-matrices. The statements below are logically equivalent:

(a) A is row-equivalent to B.
(b) LS(A, 0) is equivalent to LS(B, 0) (in the sense that their solution sets are equal to each other as sets).

28. Proof of Lemma (10).
Let P,Q be (m× n)-square matrices. Suppose P,Q are reduced row-echelon forms, and R(P ) = R(Q).
Write k = dim(R(P )).

(a) The respective numbers of non-zero rows of R(P ) and of R(Q) are the same: it is k.
Suppose the pivot columns of P , from left to right, are the c1-th, c2-th, ..., ck-th columns.
Suppose the pivot columns of Q, from left to right, are the d1-th, d2-th, ..., dk-th columns.

(b) i. Denote the non-zero columns of P t, from left to right, by p1,p2, · · · ,pk.
• By definition, for each j = 1, 2, · · · , k, the cj-th entry of pj is 1. Whenever i ̸= j, the ci-th entry of pj

is 0. Whenever ℓ < cj , the ℓ-th entry of pj is 0.
ii. Denote the non-zero columns of Qt, from left to right, by q1,q2, · · · ,qk.

• By definition, for each j = 1, 2, · · · , k, the dj-th entry of qj is 1. Whenever i ̸= j, the di-th entry of qj

is 0. Whenever ℓ < dj , the ℓ-th entry of qj is 0.

(c) i. We have Span ({u1,u2, · · · ,uk}) = R(C) = R(D) = Span ({v1,v2, · · · ,vk}). Then c1 = d1. (Why?)
Each of u1,u2, · · · ,uk is a linear combination of v1,v2, · · · ,vk.
For each j = 1, 2, · · · , k, there exist some αj1, αj2, · · · , αjk ∈ R such that uj = αj1v1+αj2v2+ · · ·+αjkvk.
We have αk1 = 0; otherwise, we would have d1 < dk ≤ c1, which is impossible.
Similarly, we deduce α21 = α31 = · · · = αk−1,1 = 0.
Then u2,u3, · · · ,uk ∈ Span ({v2,v3, · · · ,vk}).

ii. Repeating the above argument, we also deduce that v2,v3, · · · ,vk ∈ Span ({u2,u3, · · · ,uk}).
Then Span ({u2,u3, · · · ,uk}) = Span ({v2,v3, · · · ,vk}). It follows that c2 = d2.

iii. Repeating this argument again and again, we deduce that for each j = 1, 2, · · · , k, cj = dj , and
Span ({uj ,uj+1, · · · ,uk}) = Span ({vj ,vj+1, · · · ,vk}).

(d) i. Now we have Span ({uk}) = Span ({vk}). The first non-zero entries of uk, vk are 1. Then uk = vk.
ii. We have uk−1 = αk−1,k−1vk−1+αk−1,kvk. The first non-zero entries of uk−1, vk−1 are 1. Then αk−1,k−1 =

1. The ck-th entries of uk−1, vk−1, vk are 0, 0, 1 respectively. Then αk−1,k = 0. Therefore uk−1 = vk−1.
iii. Repeating this argument, we deduce in succession that uk−2 = vk−2, ..., u2 = v2, u1 = v1.

It follows that P = Q.
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