
MATH1030 Inner product, norm, and orthogonality.

0. Reminder. Unless otherwise stated, we will deliberately confuse each (1× 1)-matrix with the entry in the matrix.

1. Definition. (Inner product in Rn.)

For any u,v ∈ Rn, write ⟨u,v⟩ = utv.

⟨u,v⟩ is called the inner product of the vector u with the vector v.

⟨·, ·⟩ is called the inner product in Rn.

Remark. Many people refer to ⟨·, ·⟩ as the ‘dot product’. A common alternative notation for ⟨u,v⟩ is u • v. For
this reason, we may, for convenience, read it as ‘u dot v’.

2. Theorem (1). (Basic properties of inner product.)
The statements below hold:

(a) Suppose u,v ∈ Rn. Then ⟨u,v⟩ = ⟨v,u⟩.
(b) Suppose u,v,w ∈ Rn and α, β ∈ R. Then ⟨αu+ βv,w⟩ = α ⟨u,w⟩+ β ⟨v,w⟩.
(c) Suppose u,v,w ∈ Rn and α, β ∈ R. Then ⟨w, αu+ βv⟩ = α ⟨w,u⟩+ β ⟨w,v⟩.
(d) Suppose u ∈ Rn. Then ⟨u,u⟩ ≥ 0. Moreover, equality holds if and only if u = 0n.

3. Proof of Theorem (1).

(a) Suppose u,v ∈ Rn. Denote the j-th entry of u,v as uj , vj respectively.
Then ⟨u,v⟩ = utv = u1v1 + u2v2 + · · ·+ unvn.
Similarly, ⟨v,u⟩ = vtu = v1u1 + v2u2 + · · ·+ vnun.
Therefore ⟨u,v⟩ = ⟨v,u⟩.

(b) Suppose u,v,w ∈ Rn and α, β ∈ R.
Then ⟨αu+ βv,w⟩ = (αu+ βv)tw = (αut + βvt)w = αutw + βvtw = α ⟨u,w⟩+ β ⟨v,w⟩.

(c) Suppose u,v,w ∈ Rn and α, β ∈ R.
Then ⟨w, αu+ βv⟩ = ⟨αu+ βv,w⟩ = α ⟨u,w⟩+ β ⟨v,w⟩ = α ⟨w,u⟩+ β ⟨w,v⟩.

(d) Suppose u ∈ Rn. Denote the j-th entry of u as uj respectively.
Then ⟨u,u⟩ = u1

2 + u2
2 + · · ·+ un

2 ≥ 0.
Hence ⟨u,u⟩ = 0 if and only if uj = 0 for each j = 1, 2, · · · , n. The latter happens exactly when u = 0n.

4. Definition. (Norm.)

For any u ∈ Rn, the number
√
⟨u,u⟩ is called the norm of the vector u, and is denoted by ∥u∥.

Remark. By definition, ∥u∥2 = ⟨u,u⟩. It is often read as ‘norm-square of u’.

5. Theorem (2). (Basic properties of norm.)
The statements below hold:

(a) Suppose u ∈ Rn. Then ∥u∥ ≥ 0. Moreover, equality holds if and only if u = 0n.
(b) Suppose u ∈ Rn and α ∈ R. Then ∥αu∥ = |α| · ∥u∥.

6. Proof of Theorem (2).

(a) Suppose u ∈ Rn.
By definition, ∥u∥2 = ⟨u,u⟩ ≥ 0. Then ∥u∥ ≥ 0.
Moreover, ∥u∥ = 0 if and only if ⟨u,u⟩ = 0. The latter happens exactly when u = 0n.

(b) Suppose u ∈ Rn and α ∈ R.
Then ∥αu∥2 = ⟨αu, αu⟩ = α · α ⟨u,u⟩ = α2 ⟨u,u⟩ = α2∥u∥2.
Therefore ∥αu∥ = |α| · ∥u∥.

7. Theorem (3). (Conversion between inner product and norm.)
The statements below hold:

1



(a) Suppose u,v ∈ Rn. Then ∥u± v∥2 = ∥u∥2 + ∥v∥2 ± 2 ⟨u,v⟩ respectively.

(b) Suppose u,v ∈ Rn. Then ⟨u,v⟩ = ±1

2
(∥u± v∥2 − ∥u∥2 − ∥v∥2) respectively.

(c) Suppose u,v ∈ Rn. Then ∥u+ v∥2 + ∥u− v∥2 = 2∥u∥2 + 2∥v∥2.

Remark. The result described in Item (b) is known as the polarization identity. The result described in Item
(c) is known as the parallelogramic identity.

Proof of Theorem (3). Exercise.

8. Theorem (4). (Cauchy-Schwarz Inequality.)
Suppose u,v ∈ Rn. Then | ⟨u,v⟩ | ≤ ∥u∥ · ∥v∥. Moreover, equality holds if and only if u,v are linearly dependent.

Theorem (5). (Triangle Inequality.)
Suppose u,v ∈ Rn. Then ∥u+ v∥ ≤ ∥u∥+ ∥v∥. Moreover, equality holds if and only if u,v are non-negative scalar
multiples of each other.
Corollary to Theorem (5). (Triangle Inequality also.)

Suppose u,v ∈ Rn. Then ∥u − v∥ ≥
∣∣ ∥u∥ − ∥v∥

∣∣. Moreover, equality holds if and only if u,v are non-negative
scalar multiples of each other.

9. Definition. (Orthogonality.)
Let u,v ∈ Rn. We say u is orthogonal to v, and write u ⊥ v, if and only if ⟨u,v⟩ = 0.

10. Theorem (6). (Basic properties of orthogonality.)
The statements below hold:

(a) Suppose u,v ∈ Rn. Then u ⊥ v if and only if v ⊥ u.
(b) Suppose u ∈ Rn. Then u ⊥ u if and only if u = 0n.
(c) Suppose u ∈ Rn. Then (u ⊥ v for any v ∈ Rn) if and only if u = 0n.

(d) Suppose u,v ∈ Rn. Then ∥u+ v∥2 = ∥u∥2 + ∥v∥2 if and only if u ⊥ v.

Proof of Theorem (6). Exercise (in the matrix/vector algebra).

11. Appendix 1: Proof of the Cauchy-Schwarz Inequality.
Suppose u,v ∈ Rn.

(a) Suppose u = 0 or v = 0. Then | ⟨u,v⟩ | = 0 = ∥u∥ · ∥v∥.
(b) From now on suppose neither of u,v is the zero vector.

Define the quadratic polynomial f(x) by f(x) = ∥u∥2x2 + 2 ⟨u,v⟩x + ∥v∥2. The discriminant ∆ of f(x) is
given by ∆ = 4(⟨u,v⟩)2 − 4∥u∥2∥v∥2.
For each α ∈ R, we have f(α) = ∥u∥2α2 + 2 ⟨u,v⟩α+ ∥v∥2 = · · · = ∥u+ αv∥2 ≥ 0.
Then ∆ ≤ 0.
Therefore 4(⟨u,v⟩)2 ≤ 4∥u∥2∥v∥2.
Hence | ⟨u,v⟩ | ≤ ∥u∥ · ∥v∥.

(c) Suppose | ⟨u,v⟩ | = ∥u∥ · ∥v∥. Then ∆ = 0.
Therefore the quadratic polynomial f(x) has a repeated real root, say, ‘x = ρ’.
By definition 0 = f(ρ) = ∥u∥2ρ2 + 2 ⟨u,v⟩ ρ+ ∥v∥2 = ∥u− ρv∥2.
Then 1 · u− ρv = u− ρv = 0. Therefore u,v are linearly dependent.

(d) Suppose u,v are linearly dependent.
Then there exist some α, β ∈ R such that α, β are not both zero and αu+ βv = 0.
Since neither of u, v is the zero vector, neither of α, β is 0.
Write γ = −β/α. We have u = γv.
Then | ⟨u,v⟩ | = | ⟨u, γu⟩ | = |γ ⟨u,u⟩ | = |γ∥u∥2| = |γ|∥u∥2 = ∥u∥ · ∥v∥.

12. Appendix 2: Proof of the Triangle Inequality.
Suppose u,v ∈ Rn.
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(a) Suppose u = 0 or v = 0.
Without loss of generality, suppose u = 0.
Then ∥u+ v∥ = ∥v∥ = ∥u∥+ ∥v∥.

(b) From now on suppose neither of u,v is the zero vector.
We have

(∥u∥+ ∥v∥)2 − ∥u+ v∥2 = (∥u∥2 + ∥v∥2 + 2∥u∥ · ∥v∥)− (∥u∥2 + ∥v∥2 + 2 ⟨u,v⟩)
= 2(∥u∥ · ∥v∥ − ⟨u,v⟩)

(c) By the Cauchy-Schwarz Inequality, ∥u∥ · ∥v∥ ≥ ⟨u,v⟩.
Then (∥u∥+ ∥v∥)2 − ∥u+ v∥2 ≥ 0.
Therefore ∥u+ v∥2 ≤ (∥u∥+ ∥v∥)2.
Hence ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

(d) Suppose ∥u+ v∥ = ∥u∥+ ∥v∥.
Then 2(∥u∥ · ∥v∥ − ⟨u,v⟩) = ∥u∥+ ∥v∥)2 − ∥u+ v∥2 = 0.
Therefore ∥u∥ · ∥v∥ = ⟨u,v⟩.
By the Cauchy-Schwarz Inequality, we have | ⟨u,v⟩ | ≤ ∥u∥ · ∥v∥ = ⟨u,v⟩.
We also have ⟨u,v⟩ ≤ | ⟨u,v⟩ |.
Then we have | ⟨u,v⟩ | = ∥u∥ · ∥v∥ = ⟨u,v⟩.
By the Cauchy-Schwarz Inequality, u,v are linearly dependent. Then u = γv for some γ ∈ R.
Now |γ|∥u∥2 = ∥u∥ · ∥v∥ = ⟨u,v⟩ = γ∥u∥2. Since u is not the zero vector, |γ| = γ. Then γ ≥ 0.

(e) Suppose u,v are non-negative scalar multiples of each other.
Then there is some non-negative real number ρ so that v = ρu. Note that 1 + ρ ≥ 0.
Then ∥u+ v∥ = ∥(1 + ρ)u∥ = |1 + ρ| · ∥u∥ = (1 + ρ)∥u∥ = ∥u∥+ |ρ| · ∥u∥ = ∥u∥+ ∥v∥.

13. Appendix 3: Geometric interpretation of the inner product, the normal, and orthogonality.

(a) Recall the geometric interpretation of (column) vectors:

We visualize the column vector, say, t =


t1
t2
...
tn

 as an arrow with ‘arrowhead’ at the point (t1, t2, · · · , tn) in

real coordinate n-space and with tail at its origin.
We may then further identify this vector as the point (t1, t2, · · · , tn).

By definition, ∥t∥ =
√
t1

2 + t2
2 + · · ·+ tn

2.
This is the (Euclidean) distance between the origin and the point (t1, t2, · · · , tn) in the coordinate n-space.
Why?

• The origin, the point (t1, 0, 0, · · · , 0) and the point with coordinate (t1, t2, 0, · · · , 0) are the vertices of a
right-angle triangle with right angle at the point (t1, 0, 0, · · · , 0).
Then, by Pythagoras’ Theorem, the distance between the origin and the point with (t1, t2, 0, · · · , 0) is given
by

√
t1

2 + t2
2.

• The origin, the point (t1, t2, 0, 0, · · · , 0) and the point with coordinate (t1, t2, t3, 0, · · · , 0) are the vertices
of a right-angle triangle with right angle at the point (t1, t2, 0, · · · , 0).
Then, by Pythagoras’ Theorem, the distance between the origin and the point with (t1, t2, t3, 0, · · · , 0) is
given by

√
t1

2 + t2
2 + t3

2.
• The origin, the point (t1, t2, t3, 0, 0, · · · , 0) and the point with coordinate (t1, t2, t3, t4, 0, · · · , 0) are the

vertices of a right-angle triangle with right angle at the point (t1, t2, t3, 0, · · · , 0).
Then, by Pythagoras’ Theorem, the distance between the origin and the point with (t1, t2, t3, t4, 0, · · · , 0)

is given by
√

t1
2 + t2

2 + t3
2.

• So forth and so on. We deduce that the distance between the origin and the point with (t1, t2, · · · , tn−1, 0)

is given by
√

t1
2 + t2

2 + · · ·+ tn−1
2.
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• The origin, the point (t1, t2, · · · , tn−1, 0) and the point with coordinate (t1, t2, · · · , tn−1, tn) are the vertices
of a right-angle triangle with right angle at the point (t1, t2, · · · , tn−1, 0).
Then, by Pythagoras’ Theorem, the distance between the origin and the point with (t1, t2, · · · , tn) is given
by

√
t1

2 + t2
2 + · · ·+ tn

2.

(b) Suppose u =


u1

u2

...
un

 and v =


v1
v2
...
vn

. They are respectively identified as the points (u1, u2, · · · , un), (v1, v2, · · · , vn)

in the coordinate n-space.
Then ∥u − v∥ =

√
(u1 − v1)2 + (u2 − v2)2 + · · ·+ (un − vn)2 is the (Euclidean) distance between the points

(u1, u2, · · · , un), (v1, v2, · · · , vn) in the coordinate n-space.

(c) Suppose u =


u1

u2

...
un

 and v =


v1
v2
...
vn

. They are respectively identified as the points (u1, u2, · · · , un), (v1, v2, · · · , vn)

in the coordinate n-space.
Suppose these two points and the origin in the coordinate n-space are three non-collinear points in the coordi-
nate n-space.
Denote by θ the angle at the origin in the triangle whose vertices are these three points.
By the Cosine Law, ∥u− v∥2 = ∥u∥2 + ∥v∥2 − 2∥u∥ · ∥v∥ cos(θ).

Then ∥u∥ · ∥v∥ cos(θ) = 1

2
(∥u− v∥2 − ∥u∥2 − ∥v∥2) = ⟨u,v⟩.

Hence cos(θ) =
⟨u,v⟩

∥u∥ · ∥v∥
.

In this context, the inequality in the result ‘Cauchy-Schwarz Inequality’ | ⟨u,v⟩ | ≤ ∥u∥·∥v∥ is simply re-stating
the ‘fact’ that cos(θ) has magnitude between −1 and 1.
The inequality ∥u∥ ≤ ∥v∥+ ∥u− v∥ (which is a consequence of the ‘Triangle Inequality’) is simply re-stating
the ‘fact’ that the length of the line segment joining the origin to the point (u1, u2, · · · , un) is no greater than
the sum of the lengths of the line segments respectively joining the origin to the point (v1, v2, · · · , vn) and
joining the point (v1, v2, · · · , vn) to the point (u1, u2, · · · , un).
The vector u is orthogonal to the vector v exactly when the line segment joining the origin and the point
(u1, u2, · · · , un) meet the line segment joining the origin with the point (v1, v2, · · · , vn) at right angle.
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