
MATH1030 Characteristic polynomial of a matrix.

1. Definition. (Characteristic polynomial of a matrix.)
Let A be an (n × n)-square matrix. The (algebraic) expression det(A − xIn) (with indeterminate x) is called the
characteristic polynomial of the matrix A, and is denoted by pA(x).

2. Examples.

(a) Suppose A =
[

13 30
−6 −14

]
. Then

pA(x) = det(A− xI2) = det(
[
13− x 30
−6 −14− x

]
)

= (13− x)(−14− x)− (−6) · 30 = x2 + x− 2.

Observations:
• pA(x) is a degree-2 polynomial with leading coefficient 1 and constant term det(A).
• pA(x) can be factorized as pA(x) = (x−1)(x+2). Coincidentally, the real roots of pA(x) are the eigenvalues

of A.
We have Au = 1 · u, and Av = −2v, where u =

[
5
−2

]
, v =

[
2
−1

]
.

(b) Suppose A =

[
1 1 1
0 2 2
0 0 3

]
. Then

pA(x) = det(A− xI3) = det(

[
1− x 1 1
0 2− x 2
0 0 3− x

]
)

= (1− x)(2− x)(3− x) = −(x− 1)(x− 2)(x− 3) = −x3 + 6x2 − 11x+ 6.

Observations:
• pA(x) is a degree-3 polynomial with leading coefficient −1 and constant term det(A).
• pA(x) can be factorized as pA(x) = −(x− 1)(x− 2)(x− 3). Coincidentally, the real roots of pA(x) are the

eigenvalues of A.

We have Au = 1 · u, Av = 2v and Aw = 3w, where u =

[
1
0
0

]
, v =

[
1
1
0

]
, w =

[
3
4
2

]
.

(c) Suppose A =

[
2 1 1
1 2 1
1 1 2

]
. Then

pA(x) = det(A− xI3) = det(

[
2− x 1 1
1 2− x 1
1 1 2− x

]
) = det(

[
2− x 1 1
1 2− x 1
0 −1 + x 1− x

]
)

= det(

[
2− x 2 1
1 3− x 1
0 0 1− x

]
)

= (1− x)det(
[
2− x 2
1 3− x

]
) = (1− x)det(

[
2− x 2
−1 + x 1− x

]
) = (1− x)det(

[
4− x 2
0 1− x

]
)

= (1− x)2(4− x) = −(x− 1)2(x− 4) = −x3 + 6x2 − 9x+ 4.

Observations:
• pA(x) is a degree-3 polynomial with leading coefficient −1 and constant term det(A).
• pA(x) can be factorized as pA(x) = −(x − 1)2(x − 4). Coincidentally, the real roots of pA(x) are the

eigenvalues of A.

We have Au = 4u, Av1 = 1 · v and Av2 = 1 · v2, where u =

[
1
1
1

]
, v1 =

[
1
−1
0

]
, v2 =

[
1
0
−1

]
.

(d) Suppose A =

 0 0 1 0
0 0 0 1
2 1 1 1
−5 2 5 −1

.

Then pA(x) = det(A− xI4) = · · · = (x+ 3)(x+ 1)(x− 1)(x− 3). (Fill in the calculations.)
Observations:
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• pA(x) is a degree-4 polynomial with leading coefficient 1 and constant term det(A).
• pA(x) can be factorized as pA(x) = (x + 3)(x + 1)(x − 1)(x − 3). Coincidentally, the real roots of pA(x)

are the eigenvalues of A.

We have At = 1 · t, Au = −1 · u, Av = 3 · v, Aw = −3 · w, where t =

 1
−1
1
−1

, u =

 1
5
−1
−5

, v =

11
3
3

,

w =

 1
−5
−3
15

.

(e) Let b be a real number. Suppose A =

[
b 1 0
0 b 1
0 0 b

]
. Then

pA(x) = det(A− xI3) = det(

[
b− x 1 0
0 b− x 1
0 0 b− x

]
) = (b− x)3 = −x3 + 3bx2 − 3b2x+ b3

Observations:
• pA(x) is a degree-3 polynomial with leading coefficient −1 and constant term det(A).
• pA(x) can be factorized as pA(x) = −(x− b)3.

The only (real) root of pA(x) is the only eigenvalue of A.

We have Au = bu, where u =

[
1
0
0

]
.

(f) Suppose A =

 1 0 0 −1
1 1 0 0
0 1 1 0
0 0 1 1

. Then

pA(x) = det(A− xI4) = det(

 1− x 0 0 −1
1 1− x 0 0
0 1 1− x 0
0 0 1 1− x

)
= (1− x)det(

[
1− x 0 0
1 1− x 0
0 1 1− x

]
)− det(

[
0 0 −1
1 1− x 0
0 1 1− x

]
)

= (1− x)4 + (1− x)det(
[
0 −1
1 1− x

]
) = (1− x)4 + 1 = x4 − 4x3 + 6x2 − 4x+ 2

Observations:
• pA(x) is a degree-4 polynomial with leading coefficient −1 and constant term det(A).
• pA(x) has no real roots. Coincidentally, A has no eigenvalues.

3. Theorem (1).
Suppose A is an (n× n)-square matrix.
Then pA(x) is a degree-n polynomial with indeterminate x, with leading coefficient (−1)n, and with constant
coefficient det(A).

Remark. The multiple of (−1)n−1 with the coefficient of the degree-(n − 1) term in the polynomial pA(x) is
called the trace of A, and is denoted by tr(A).
Proof of Theorem (1). Omitted. (This is an exercise in mathematical induction.)

4. Recall that a square matrix is singular if and only if its determinant is zero. As a consequence of this logical
equivalence, we have the result below:
Theorem (E).
Suppose A is an (n×n)-square matrix, and λ is a real number. Then the statements below are logically equivalent:

(a) λ is an eigenvalue of A.
(b) A− λIn is singular.
(c) det(A− λIn) = 0.
(d) λ is a real root of pA(x).
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Remark. Now suppose λ is indeed an eigenvalue of A. So λ is a real root of pA(x) indeed. According to the Factor
Theorem, pA(x) = (x − λ)f(x) for some polynomial with real coefficients f(x). Repeatedly applying the Factor
Theorem, we can show that there is some uniquely determined positive integer mλ for which pA(x) = (x−λ)mλg(x)

for some polynomial with real coefficients g(x) and for which pA(x) is not divisible by (x−λ)mλ+1. Such an integer
mλ is called the algebraic multiplicity of the eigenvalue λ of A. It can be shown that dim(EA (λ)) ≤ mλ.

5. Note that

every polynomial of odd degree and with real coefficients has at least one real root.

Then we have the result below:
Theorem (2).
Let A be an (n× n)-square matrix. Suppose n is odd. Then A has at least one eigenvalue.

6. Theorem (3).
Suppose A is a symmetric (2× 2)-square matrix. Then A is diagonalizable.
Proof of Theorem (3).

Suppose A is a symmetric (2× 2)-square matrix. Then A =
[
a1 c
c a2

]
for some real numbers a1, a2, c.

Write α =
a1 + a2

2
, and β =

a1 − a2
2

. Note that α2 − β2 = a1a2.

We have pA(x) = det(A− xI2) = (a1 − x)(a2 − x)− c2 = x2 − (a1 + a2)x+ a1a2 − c2 = x2 − 2αx+ α2 − β2 − c2 =

(x− α)2 − (β2 + c2) = (x− α−
√
β2 + c2)(x− α+

√
β2 + c2).

Then pA(x) has two (not necessarily) distinct real roots, namely α+
√

β2 + c2, α−
√
β2 + c2.

• (Case 1.) Suppose the two real roots of pA(x) are distinct. Then A is diagonalizable by Theorem (C).

• (Case 2.) Suppose the two real roots of pA(x) are the same number. Then β2 + c2 = 0.

Therefore β = c = 0. Hence A =
[
a1 0
0 a2

]
.

So A is a diagonal matrix. It is trivially diagonalizable.

Hence, in any case, A is diagonalizable.

7. Theorem (3) is a special case of Theorem (F), whose proof is beyond the scope of this course. (The easiest argument
is given through complex numbers.)
Theorem (F).
Suppose A is a symmetric (n× n)-square matrix. Then A is diagonalizable.
Illustrations.

(a) Let A =

[
2 1 1
1 2 1
1 1 2

]
.

Note that A is symmetric. Then we expect A to be diagonalizable by Theorem (E).

In fact, a diagonalization for A given by U−1AU = diag(4, 1, 1), with U = [ u1 u2 u3 ], and u1 =

[
1
1
1

]
,

u2 =

[
1
−1
0

]
, u3 =

[
1
0
−1

]
.

(b) Let A =

[
0 1 1
1 0 1
1 1 0

]
.

Note that A is symmetric. Then we expect A to be diagonalizable by Theorem (E).

In fact, a diagonalization for A given by U−1AU = diag(2,−1,−1), with U = [ u1 u2 u3 ], and u1 =

[
1
1
1

]
,

u2 =

[
1
0
1

]
, u3 =

[
0
1
−1

]
.
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8. Theorem (4).
Suppose A is a diagonalizable (n× n)-square matrix, with a diagonalization given by

U−1AU = diag(λ1, λ2, · · · , λn),

in which U is some non-singular (n× n)-square matrix.
Then pA(x) = (−1)n(x− λ1)(x− λ2) · ... · (x− λn) as polynomials.
Proof of Theorem (4).
Suppose A is a diagonalizable (n× n)-square matrix, with a diagonalization given by

U−1AU = diag(λ1, λ2, · · · , λn),

in which U is some non-singular (n× n)-square matrix.
Write D = diag(λ1, λ2, · · · , λn).
Note that A− xIn = UDU−1 − U(xIn)U

−1 = U(D − xIn)U
−1.

Also note that D − xIn = diag(λ1 − x, λ2 − x, · · · , λn − x).
Then, as polynomials,

pA(x) = det(A− xIn) = det(U(D − xIn)U
−1)

= det(U) · det(D − xIn) · det(U−1)

= det(U) · det(D − xIn) · (det(U))−1

= (λ1 − x)(λ2 − x) · ... · (λn − x) = (−1)n(x− λ1)(x− λ2) · ... · (x− λn)

9. Theorem (5). (A special case of the Cayley-Hamilton Theorem.)
Suppose A is a diagonalizable (n× n)-square matrix.
For each j, denote the coefficient of the j-th power term of pA(x) is cj . (So pA(x) = c0+c1x+c2x

2+· · ·+cn−1x
n−1+

cnx
n as polynomials.)

Then c0In + c1A+ c2A
2 + · · ·+ cn−1A

n−1 + cnA
n = On×n.

Remark. The conclusion in Theorem (5) is often presented as pA(A) = On×n.

10. Theorem (5) is a special case of the result below, whose proof is beyond the scope of this course:
Cayley-Hamilton Theorem.
Suppose A is an (n× n)-square matrix.
For each j, denote the coefficient of the j-th power term of pA(x) is cj . (So pA(x) = c0+c1x+c2x

2+· · ·+cn−1x
n−1+

cnx
n as polynomials.)

Then c0In + c1A+ c2A
2 + · · ·+ cn−1A

n−1 + cnA
n = On×n.

11. Proof of Theorem (5).
Suppose A is a diagaonalizable (n× n)-square matrix.
Then there are some non-singular (n×n)-square matrix U and some real numbers λ1, λ2, · · · , λn such that U−1AU =

diag(λ1, λ2, · · · , λn).
For each k = 1, 2, · · · , n, the number λk are eigenvalues of A. Then pA(λk) = 0.
Note that for each positive integer p, U−1ApU = (U−1AU)p = (diag(λ1, λ2, · · · , λn))

p = diag(λ1
p, λ2

p, · · · , λn
p).

For each j, denote the coefficient of the j-th power term of pA(x) is cj . (So pA(x) = c0+c1x+c2x
2+· · ·+cn−1x

n−1+

cnx
n as polynomials.)

We have

U−1(c0In + c1A+ c2A
2 + · · ·+ cn−1A

n−1 + cnA
n)U

= c0In + c1U
−1AU + c2U

−1A2U + · · ·+ cn−1U
−1An−1U + cnU

−1AnU

= c0In + c1 diag(λ1, λ2, · · · , λn) + c2 diag(λ1
2, λ2

2, · · · , λn
2)

+ · · ·+ cn−1 diag(λ1
n−1, λ2

n−1, · · · , λn
n−1) + cn diag(λ1

n, λ2
n, · · · , λn

n)

= diag(pA(λ1), pA(λ2), · · · , pA(λn)) = diag(0, 0, · · · , 0) = On×n

Then c0In + c1A+ c2A
2 + · · ·+ cn−1A

n−1 + cnA
n = UOn×nU

−1 = On×n.
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