1. Definition. (Characteristic polynomial of a matrix.)

Let A be an $(n \times n)$ -square matrix.

The (algebraic) expression

$$\det(A - xI_n)$$

(with indeterminate x) is called the characteristic polynomial of the matrix A, and is denoted by $p_A(x)$.

2. Examples.

(a) Suppose
$$A = \begin{bmatrix} 13 & 30 \\ -6 & -14 \end{bmatrix}$$
. Then

$$p_A(x) = \det(A - xI_2) = \det\left(\begin{bmatrix} 13 - x & 30 \\ -6 & -14 - x \end{bmatrix}\right)$$
$$= (13 - x)(-14 - x) - (-6) \cdot 30 = x^2 + x - 2.$$

Observations:

- $p_A(x)$ is a degree-2 polynomial with leading coefficient 1 and constant term $\det(A)$.
- $p_A(x)$ can be factorized as $p_A(x) = (x-1)(x+2)$. Coincidentally, the real roots of $p_A(x)$ are the eigenvalues of A.

We have
$$A\mathbf{u} = 1 \cdot \mathbf{u}$$
, and $A\mathbf{v} = -2\mathbf{v}$, where $\mathbf{u} = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

(b) Suppose
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$
. Then

$$p_A(x) = \det(A - xI_3) = \det\left[\begin{array}{ccc} 1 - x & 1 & 1\\ 0 & 2 - x & 2\\ 0 & 0 & 3 - x \end{array}\right]$$

$$= (1 - x)(2 - x)(3 - x)$$

$$= -(x - 1)(x - 2)(x - 3) = -x^3 + 6x^2 - 11x + 6.$$

- $p_A(x)$ is a degree-3 polynomial with leading coefficient -1 and constant term $\det(A)$.
- $p_A(x)$ can be factorized as

$$p_A(x) = -(x-1)(x-2)(x-3).$$

Coincidentally, the real roots of $p_A(x)$ are the eigenvalues of A.

We have
$$A\mathbf{u} = 1 \cdot \mathbf{u}$$
, $A\mathbf{v} = 2\mathbf{v}$ and $A\mathbf{w} = 3\mathbf{w}$, where $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix}$.

(c) Suppose
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
. Then

$$p_{A}(x) = \det(A - xI_{3}) = \det\begin{pmatrix} 2 - x & 1 & 1 \\ 1 & 2 - x & 1 \\ 1 & 1 & 2 - x \end{pmatrix}) = \det\begin{pmatrix} 2 - x & 1 & 1 \\ 1 & 2 - x & 1 \\ 0 & -1 + x & 1 - x \end{pmatrix}$$

$$= \det\begin{pmatrix} 2 - x & 2 & 1 \\ 1 & 3 - x & 1 \\ 0 & 0 & 1 - x \end{pmatrix}$$

$$= (1 - x)\det\begin{pmatrix} 2 - x & 2 \\ 1 & 3 - x \end{pmatrix}) = (1 - x)\det\begin{pmatrix} 2 - x & 2 \\ -1 + x & 1 - x \end{pmatrix}) = (1 - x)\det\begin{pmatrix} 4 - x & 2 \\ 0 & 1 - x \end{pmatrix}$$

$$= (1 - x)^{2}(4 - x) = -(x - 1)^{2}(x - 4) = -x^{3} + 6x^{2} - 9x + 4.$$

- $p_A(x)$ is a degree-3 polynomial with leading coefficient -1 and constant term $\det(A)$.
- $p_A(x)$ can be factorized as

$$p_A(x) = -(x-1)^2(x-4).$$

Coincidentally, the real roots of $p_A(x)$ are the eigenvalues of A.

We have
$$A\mathbf{u} = 4\mathbf{u}$$
, $A\mathbf{v}_1 = 1 \cdot \mathbf{v}$ and $A\mathbf{v}_2 = 1 \cdot \mathbf{v}_2$, where $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

(d) Suppose
$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 1 & 1 & 1 \\ -5 & 2 & 5 & -1 \end{bmatrix}$$
.

Then

$$p_A(x) = \det(A - xI_4) = \dots = (x+3)(x+1)(x-1)(x-3).$$

(Fill in the calculations.)

Observations:

- $p_A(x)$ is a degree-4 polynomial with leading coefficient 1 and constant term $\det(A)$.
- $p_A(x)$ can be factorized as

$$p_A(x) = (x+3)(x+1)(x-1)(x-3).$$

Coincidentally, the real roots of $p_A(x)$ are the eigenvalues of A.

We have $A\mathbf{t} = 1 \cdot \mathbf{t}$, $A\mathbf{u} = -1 \cdot \mathbf{u}$, $A\mathbf{v} = 3 \cdot \mathbf{v}$, $A\mathbf{w} = -3 \cdot \mathbf{w}$, where

$$\mathbf{t} = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} 1 \\ 5 \\ -1 \\ -5 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 3 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 1 \\ -5 \\ -3 \\ 15 \end{bmatrix}.$$

(e) Let b be a real number. Suppose
$$A = \begin{bmatrix} b & 1 & 0 \\ 0 & b & 1 \\ 0 & 0 & b \end{bmatrix}$$
. Then

$$p_A(x) = \det(A - xI_3) = \det\begin{pmatrix} b - x & 1 & 0 \\ 0 & b - x & 1 \\ 0 & 0 & b - x \end{pmatrix}$$

$$= (b - x)^3$$

$$= -x^3 + 3bx^2 - 3b^2x + b^3$$

- $p_A(x)$ is a degree-3 polynomial with leading coefficient -1 and constant term $\det(A)$.
- $p_A(x)$ can be factorized as

$$p_A(x) = -(x-b)^3.$$

The only (real) root of $p_A(x)$ is the only eigenvalue of A.

We have
$$A\mathbf{u} = b\mathbf{u}$$
, where $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

(f) Suppose
$$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
. Then

$$p_{A}(x) = \det(A - xI_{4}) = \det\begin{pmatrix} 1 - x & 0 & 0 & -1 \\ 1 & 1 - x & 0 & 0 \\ 0 & 1 & 1 - x & 0 \\ 0 & 0 & 1 & 1 - x \end{pmatrix}$$

$$= (1 - x)\det\begin{pmatrix} 1 - x & 0 & 0 \\ 1 & 1 - x & 0 \\ 0 & 1 & 1 - x \end{pmatrix} - \det\begin{pmatrix} 0 & 0 & -1 \\ 1 & 1 - x & 0 \\ 0 & 1 & 1 - x \end{pmatrix}$$

$$= (1 - x)^{4} + (1 - x)\det\begin{pmatrix} 0 & -1 \\ 1 & 1 - x \end{pmatrix}$$

$$= (1 - x)^{4} + 1 = x^{4} - 4x^{3} + 6x^{2} - 4x + 2$$

- $p_A(x)$ is a degree-4 polynomial with leading coefficient -1 and constant term $\det(A)$.
- $p_A(x)$ has no real roots. Coincidentally, A has no eigenvalues.

3. **Theorem** (1).

Suppose A is an $(n \times n)$ -square matrix.

Then $p_A(x)$ is a degree-n polynomial with indeterminate x, with leading coefficient $(-1)^n$, and with constant coefficient $\det(A)$.

Remark.

The multiple of $(-1)^{n-1}$ with the coefficient of the degree-(n-1) term in the polynomial $p_A(x)$ is called the trace of A, and is denoted by tr(A).

Proof of Theorem (1). Omitted. (This is an exercise in mathematical induction.)

3. **Theorem** (1).

Suppose A is an $(n \times n)$ -square matrix.

Then $p_A(x)$ is a degree-n polynomial with indeterminate x, with leading coefficient $(-1)^n$, and with constant coefficient $\det(A)$.

Remark.

$$P_{A}(x) = (-1)^{n} x^{n} + (-1)^{n-1} tr(A) x^{n-1} + \dots + det(A)$$

terms of various powers of x, from x^{n-2} to x' .

The multiple of $(-1)^{n-1}$ with the coefficient of the degree-(n-1) term in the polynomial $p_A(x)$ is called the trace of A, and is denoted by tr(A).

Proof of Theorem (1). Omitted. (This is an exercise in mathematical induction.)

4. Recall that a square matrix is singular if and only if its determinant is zero. As a consequence of this logical equivalence, we have the result below:

Theorem (E).

Suppose A is an $(n \times n)$ -square matrix, and λ is a real number.

Then the statements below are logically equivalent:

(a) λ is an eigenvalue of A.

(c) $\det(A - \lambda I_n) = 0$.

(b) $A - \lambda I_n$ is singular.

(d) λ is a real root of $p_A(x)$.

Remark.

Now suppose λ is indeed an eigenvalue of A. So λ is a real root of $p_A(x)$ indeed.

According to the Factor Theorem,

$$p_A(x) = (x - \lambda)f(x)$$

for some polynomial with real coefficients f(x).

Repeatedly applying the Factor Theorem, we can show that there is some uniquely determined positive integer m_{λ} for which

$$p_A(x) = (x - \lambda)^{m_\lambda} g(x)$$

for some polynomial with real coefficients g(x) and for which $p_A(x)$ is not divisible by $(x - \lambda)^{m_{\lambda}+1}$.

Such an integer m_{λ} is called the algebraic multiplicity of the eigenvalue λ of A.

It can be shown that $\dim(\mathcal{E}_A(\lambda)) \leq m_{\lambda}$.

5. Note that

every polynomial of odd degree and with real coefficients has at least one real root.

Then we have the result below:

Theorem (2).

Let A be an $(n \times n)$ -square matrix.

Suppose n is odd.

Then A has at least one eigenvalue.

6. **Theorem (3).**

Suppose A is a symmetric (2×2) -square matrix.

Then A is diagonalizable.

Proof of Theorem (3).

Suppose A is a symmetric (2×2) -square matrix.

Then $A = \begin{bmatrix} a_1 & c \\ c & a_2 \end{bmatrix}$ for some real numbers a_1, a_2, c .

Write
$$\alpha = \frac{a_1 + a_2}{2}$$
, and $\beta = \frac{a_1 - a_2}{2}$. Note that $\alpha^2 - \beta^2 = a_1 a_2$.

We have

$$p_A(x) = \det(A - xI_2) = (a_1 - x)(a_2 - x) - c^2$$

$$= x^2 - (a_1 + a_2)x + a_1a_2 - c^2 = x^2 - 2\alpha x + \alpha^2 - \beta^2 - c^2 = (x - \alpha)^2 - (\beta^2 + c^2)$$

$$= \left(x - \alpha - \sqrt{\beta^2 + c^2}\right) \left(x - \alpha + \sqrt{\beta^2 + c^2}\right).$$

Then $p_A(x)$ has two (not necessarily) distinct real roots, namely $\alpha + \sqrt{\beta^2 + c^2}$, $\alpha - \sqrt{\beta^2 + c^2}$.

- (Case 1.) Suppose the two real roots of $p_A(x)$ are distinct. Then A is diagonalizable by Theorem (C).
- (Case 2.) Suppose the two real roots of $p_A(x)$ are the same number. Then $\beta^2 + c^2 = 0$. Therefore $\beta = c = 0$. Hence $A = \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix}$.

So A is a diagonal matrix. It is trivially diagonalizable.

Hence, in any case, A is diagonalizable.

7. Theorem (3) is a special case of Theorem (F), whose proof is beyond the scope of this course. (The easiest argument is given through complex numbers.)

Theorem (F).

Suppose A is a symmetric $(n \times n)$ -square matrix. Then A is diagonalizable.

Illustrations.

(a) Let
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
. Note that A is symmetric. Then we expect A to be diagonalizable by Theorem (E).

In fact, a diagonalization for A given by

$$U^{-1}AU = diag(4, 1, 1),$$

with
$$U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

(b) Let
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
. Note that A is symmetric. Then we expect A to be diagonalizable by Theorem (E).

In fact, a diagonalization for A given by

$$U^{-1}AU = \text{diag}(2, -1, -1),$$

with
$$U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$.

8. Theorem (4).

Suppose A is a diagonalizable $(n \times n)$ -square matrix, with a diagonalization given by

$$U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n),$$

in which U is some non-singular $(n \times n)$ -square matrix.

Then
$$p_A(x) = (-1)^n (x - \lambda_1)(x - \lambda_2) \cdot ... \cdot (x - \lambda_n)$$
 as polynomials.

Proof of Theorem (4).

Suppose A is a diagonalizable $(n \times n)$ -square matrix, with a diagonalization given by

$$U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n),$$

in which U is some non-singular $(n \times n)$ -square matrix.

Write $D = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$.

Note that $A - xI_n = UDU^{-1} - U(xI_n)U^{-1} = U(D - xI_n)U^{-1}$.

Also note that $D - xI_n = \operatorname{diag}(\lambda_1 - x, \lambda_2 - x, \dots, \lambda_n - x)$.

Then, as polynomials,

$$p_{A}(x) = \det(A - xI_{n}) = \det(U(D - xI_{n})U^{-1})$$

$$= \det(U) \cdot \det(D - xI_{n}) \cdot \det(U^{-1})$$

$$= \det(U) \cdot \det(D - xI_{n}) \cdot (\det(U))^{-1}$$

$$= (\lambda_{1} - x)(\lambda_{2} - x) \cdot ... \cdot (\lambda_{n} - x) = (-1)^{n}(x - \lambda_{1})(x - \lambda_{2}) \cdot ... \cdot (x - \lambda_{n})$$

9. Theorem (5). (A special case of the Cayley-Hamilton Theorem.)

Suppose A is a diagonalizable $(n \times n)$ -square matrix.

For each j, denote the coefficient of the j-th power term of $p_A(x)$ is c_j .

(So
$$p_A(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1} + c_n x^n$$
 as polynomials.)

Then

$$c_0I_n + c_1A + c_2A^2 + \dots + c_{n-1}A^{n-1} + c_nA^n = \mathcal{O}_{n\times n}.$$

Remark.

The conclusion in Theorem (5) is often presented as $p_A(A) = \mathcal{O}_{n \times n}$.

10. Theorem (5) is a special case of the result below, whose proof is beyond the scope of this course:

Cayley-Hamilton Theorem.

Suppose A is an $(n \times n)$ -square matrix.

For each j, denote the coefficient of the j-th power term of $p_A(x)$ is c_j .

(So
$$p_A(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1} + c_n x^n$$
 as polynomials.)

Then

$$c_0I_n + c_1A + c_2A^2 + \dots + c_{n-1}A^{n-1} + c_nA^n = \mathcal{O}_{n\times n}.$$

11. Proof of Theorem (5).

Suppose A is a diagaonalizable $(n \times n)$ -square matrix.

Then there are some non-singular $(n \times n)$ -square matrix U and some real numbers $\lambda_1, \lambda_2, \dots, \lambda_n$ such that $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$.

For each $k = 1, 2, \dots, n$, the number λ_k are eigenvalues of A. Then $p_A(\lambda_k) = 0$.

Note that for each positive integer p,

$$U^{-1}A^pU = (U^{-1}AU)^p = (\operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n))^p = \operatorname{diag}(\lambda_1^p, \lambda_2^p, \cdots, \lambda_n^p).$$

For each j, denote the coefficient of the j-th power term of $p_A(x)$ is c_j . (So $p_A(x) = c_0 + c_1x + c_2x^2 + \cdots + c_{n-1}x^{n-1} + c_nx^n$ as polynomials.)

We have

$$U^{-1}(c_{0}I_{n} + c_{1}A + c_{2}A^{2} + \dots + c_{n-1}A^{n-1} + c_{n}A^{n})U$$

$$= c_{0}I_{n} + c_{1}U^{-1}AU + c_{2}U^{-1}A^{2}U + \dots + c_{n-1}U^{-1}A^{n-1}U + c_{n}U^{-1}A^{n}U$$

$$= c_{0}I_{n} + c_{1}\operatorname{diag}(\lambda_{1}, \lambda_{2}, \dots, \lambda_{n}) + c_{2}\operatorname{diag}(\lambda_{1}^{2}, \lambda_{2}^{2}, \dots, \lambda_{n}^{2})$$

$$+ \dots + c_{n-1}\operatorname{diag}(\lambda_{1}^{n-1}, \lambda_{2}^{n-1}, \dots, \lambda_{n}^{n-1}) + c_{n}\operatorname{diag}(\lambda_{1}^{n}, \lambda_{2}^{n}, \dots, \lambda_{n}^{n})$$

$$= \operatorname{diag}(p_{A}(\lambda_{1}), p_{A}(\lambda_{2}), \dots, p_{A}(\lambda_{n})) = \operatorname{diag}(0, 0, \dots, 0) = \mathcal{O}_{n \times n}$$
Then $c_{0}I_{n} + c_{1}A + c_{2}A^{2} + \dots + c_{n-1}A^{n-1} + c_{n}A^{n} = U\mathcal{O}_{n \times n}U^{-1} = \mathcal{O}_{n \times n}$.