
1. Definition. (Characteristic polynomial of a matrix.)
Let A be an (n× n)-square matrix.
The (algebraic) expression

det(A− xIn)

(with indeterminate x) is called the characteristic polynomial of the matrix A, and is denoted
by pA(x).

2. Examples.

(a) Suppose A =

[
13 30
−6 −14

]
. Then

pA(x) = det(A− xI2) = det(

[
13− x 30
−6 −14− x

]
)

= (13− x)(−14− x)− (−6) · 30 = x2 + x− 2.

Observations:
• pA(x) is a degree-2 polynomial with leading coefficient 1 and constant term det(A).

• pA(x) can be factorized as pA(x) = (x− 1)(x + 2).
Coincidentally, the real roots of pA(x) are the eigenvalues of A.

We have Au = 1 · u, and Av = −2v, where u =

[
5
−2

]
, v =

[
2
−1

]
.
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(b) Suppose A =

 1 1 1
0 2 2
0 0 3

. Then

pA(x) = det(A− xI3) = det(

 1− x 1 1
0 2− x 2
0 0 3− x

)
= (1− x)(2− x)(3− x)

= −(x− 1)(x− 2)(x− 3) = −x3 + 6x2 − 11x + 6.

Observations:
• pA(x) is a degree-3 polynomial with leading coefficient −1 and constant term det(A).

• pA(x) can be factorized as
pA(x) = −(x− 1)(x− 2)(x− 3).

Coincidentally, the real roots of pA(x) are the eigenvalues of A.

We have Au = 1 · u, Av = 2v and Aw = 3w, where u =

10
0

, v =

11
0

, w =

34
2

.
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(c) Suppose A =

 2 1 1

1 2 1

1 1 2

. Then

pA(x) = det(A− xI3) = det(

 2− x 1 1

1 2− x 1

1 1 2− x

) = det(

 2− x 1 1

1 2− x 1

0 −1 + x 1− x

)
= det(

 2− x 2 1

1 3− x 1

0 0 1− x

)
= (1− x)det(

[
2− x 2

1 3− x

]
) = (1− x)det(

[
2− x 2

−1 + x 1− x

]
) = (1− x)det(

[
4− x 2

0 1− x

]
)

= (1− x)2(4− x) = −(x− 1)2(x− 4) = −x3 + 6x2 − 9x + 4.

Observations:
• pA(x) is a degree-3 polynomial with leading coefficient −1 and constant term det(A).

• pA(x) can be factorized as
pA(x) = −(x− 1)2(x− 4).

Coincidentally, the real roots of pA(x) are the eigenvalues of A.

We have Au = 4u, Av1 = 1 · v and Av2 = 1 · v2, where u =

11
1

, v1 =

 1

−1

0

, v2 =

 1

0

−1

.
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(d) Suppose A =


0 0 1 0
0 0 0 1
2 1 1 1
−5 2 5 −1

.

Then
pA(x) = det(A− xI4) = · · · = (x + 3)(x + 1)(x− 1)(x− 3).

(Fill in the calculations.)

Observations:
• pA(x) is a degree-4 polynomial with leading coefficient 1 and constant term det(A).

• pA(x) can be factorized as
pA(x) = (x + 3)(x + 1)(x− 1)(x− 3).

Coincidentally, the real roots of pA(x) are the eigenvalues of A.

We have At = 1 · t, Au = −1 · u, Av = 3 · v, Aw = −3 ·w, where

t =


1
−1
1
−1

 , u =


1
5
−1
−5

 , v =


1
1
3
3

 , w =


1
−5
−3
15

 .
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(e) Let b be a real number. Suppose A =

 b 1 0
0 b 1
0 0 b

. Then

pA(x) = det(A− xI3) = det(

 b− x 1 0
0 b− x 1
0 0 b− x

)
= (b− x)3

= −x3 + 3bx2 − 3b2x + b3

Observations:
• pA(x) is a degree-3 polynomial with leading coefficient −1 and constant term det(A).

• pA(x) can be factorized as
pA(x) = −(x− b)3.

The only (real) root of pA(x) is the only eigenvalue of A.

We have Au = bu, where u =

10
0

.
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(f) Suppose A =


1 0 0 −1
1 1 0 0
0 1 1 0
0 0 1 1

. Then

pA(x) = det(A− xI4) = det(


1− x 0 0 −1
1 1− x 0 0
0 1 1− x 0
0 0 1 1− x

)
= (1− x)det(

 1− x 0 0
1 1− x 0
0 1 1− x

)− det(

 0 0 −1
1 1− x 0
0 1 1− x

)
= (1− x)4 + (1− x)det(

[
0 −1
1 1− x

]
)

= (1− x)4 + 1 = x4 − 4x3 + 6x2 − 4x + 2

Observations:
• pA(x) is a degree-4 polynomial with leading coefficient −1 and constant term det(A).

• pA(x) has no real roots.

Coincidentally, A has no eigenvalues.
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3. Theorem (1).
Suppose A is an (n× n)-square matrix.

Then pA(x) is a degree-n polynomial with indeterminate x, with leading coefficient (−1)n,
and with constant coefficient det(A).

Remark.
The multiple of (−1)n−1 with the coefficient of the degree-(n − 1) term in the polynomial
pA(x) is called the trace of A, and is denoted by tr(A).

Proof of Theorem (1). Omitted. (This is an exercise in mathematical induction.)
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4. Recall that a square matrix is singular if and only if its determinant is zero. As a consequence
of this logical equivalence, we have the result below:
Theorem (E).
Suppose A is an (n× n)-square matrix, and λ is a real number.
Then the statements below are logically equivalent:

(a) λ is an eigenvalue of A.
(b) A− λIn is singular.

(c) det(A− λIn) = 0.
(d) λ is a real root of pA(x).

Remark.
Now suppose λ is indeed an eigenvalue of A. So λ is a real root of pA(x) indeed.

According to the Factor Theorem,
pA(x) = (x− λ)f (x)

for some polynomial with real coefficients f (x).

Repeatedly applying the Factor Theorem, we can show that there is some uniquely determined positive integer
mλ for which

pA(x) = (x− λ)mλg(x)

for some polynomial with real coefficients g(x) and for which pA(x) is not divisible by (x− λ)mλ+1.

Such an integer mλ is called the algebraic multiplicity of the eigenvalue λ of A.
It can be shown that dim(EA (λ)) ≤ mλ.
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5. Note that
every polynomial of odd degree and with real coefficients has at least one real root.

Then we have the result below:

Theorem (2).
Let A be an (n× n)-square matrix.
Suppose n is odd.

Then A has at least one eigenvalue.

6. Theorem (3).
Suppose A is a symmetric (2× 2)-square matrix.

Then A is diagonalizable.
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Proof of Theorem (3).
Suppose A is a symmetric (2× 2)-square matrix.

Then A =

[
a1 c

c a2

]
for some real numbers a1, a2, c.

Write α =
a1 + a2

2
, and β =

a1 − a2
2

. Note that α2 − β2 = a1a2.

We have

pA(x) = det(A− xI2) = (a1 − x)(a2 − x)− c2

= x2 − (a1 + a2)x + a1a2 − c2 = x2 − 2αx + α2 − β2 − c2 = (x− α)2 − (β2 + c2)

=
(
x− α−

√
β2 + c2

)(
x− α +

√
β2 + c2

)
.

Then pA(x) has two (not necessarily) distinct real roots, namely α +
√
β2 + c2, α−

√
β2 + c2.

• (Case 1.) Suppose the two real roots of pA(x) are distinct.
Then A is diagonalizable by Theorem (C).

• (Case 2.) Suppose the two real roots of pA(x) are the same number. Then β2 + c2 = 0.

Therefore β = c = 0. Hence A =

[
a1 0

0 a2

]
.

So A is a diagonal matrix. It is trivially diagonalizable.

Hence, in any case, A is diagonalizable.
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7. Theorem (3) is a special case of Theorem (F), whose proof is beyond the scope of this course.
(The easiest argument is given through complex numbers.)
Theorem (F).
Suppose A is a symmetric (n× n)-square matrix. Then A is diagonalizable.
Illustrations.

(a) Let A =

 2 1 1

1 2 1

1 1 2

. Note that A is symmetric. Then we expect A to be diagonalizable by Theorem (E).

In fact, a diagonalization for A given by

U−1AU = diag(4, 1, 1),

with U =
[
u1 u2 u3

]
, and u1 =

11
1

, u2 =

 1

−1

0

, u3 =

 1

0

−1

.

(b) Let A =

 0 1 1

1 0 1

1 1 0

. Note that A is symmetric. Then we expect A to be diagonalizable by Theorem (E).

In fact, a diagonalization for A given by

U−1AU = diag(2,−1,−1),

with U =
[
u1 u2 u3

]
, and u1 =

11
1

, u2 =

10
1

, u3 =

 0

1

−1

.
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8. Theorem (4).
Suppose A is a diagonalizable (n× n)-square matrix, with a diagonalization given by

U−1AU = diag(λ1, λ2, · · · , λn),

in which U is some non-singular (n× n)-square matrix.
Then pA(x) = (−1)n(x− λ1)(x− λ2) · ... · (x− λn) as polynomials.

Proof of Theorem (4).
Suppose A is a diagonalizable (n× n)-square matrix, with a diagonalization given by

U−1AU = diag(λ1, λ2, · · · , λn),

in which U is some non-singular (n× n)-square matrix.
Write D = diag(λ1, λ2, · · · , λn).
Note that A− xIn = UDU−1 − U(xIn)U

−1 = U(D − xIn)U
−1.

Also note that D − xIn = diag(λ1 − x, λ2 − x, · · · , λn − x).
Then, as polynomials,

pA(x) = det(A− xIn) = det(U(D − xIn)U
−1)

= det(U) · det(D − xIn) · det(U−1)

= det(U) · det(D − xIn) · (det(U))−1

= (λ1 − x)(λ2 − x) · ... · (λn − x) = (−1)n(x− λ1)(x− λ2) · ... · (x− λn)
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9. Theorem (5). (A special case of the Cayley-Hamilton Theorem.)
Suppose A is a diagonalizable (n× n)-square matrix.
For each j, denote the coefficient of the j-th power term of pA(x) is cj.
(So pA(x) = c0 + c1x + c2x

2 + · · · + cn−1x
n−1 + cnx

n as polynomials.)

Then
c0In + c1A + c2A

2 + · · · + cn−1A
n−1 + cnA

n = On×n.

Remark.
The conclusion in Theorem (5) is often presented as pA(A) = On×n.

10. Theorem (5) is a special case of the result below, whose proof is beyond the scope of this
course:
Cayley-Hamilton Theorem.
Suppose A is an (n× n)-square matrix.
For each j, denote the coefficient of the j-th power term of pA(x) is cj.
(So pA(x) = c0 + c1x + c2x

2 + · · · + cn−1x
n−1 + cnx

n as polynomials.)

Then
c0In + c1A + c2A

2 + · · · + cn−1A
n−1 + cnA

n = On×n.
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11. Proof of Theorem (5).
Suppose A is a diagaonalizable (n× n)-square matrix.
Then there are some non-singular (n× n)-square matrix U and
some real numbers λ1, λ2, · · · , λn such that U−1AU = diag(λ1, λ2, · · · , λn).

For each k = 1, 2, · · · , n, the number λk are eigenvalues of A. Then pA(λk) = 0.

Note that for each positive integer p,
U−1ApU = (U−1AU)p = (diag(λ1, λ2, · · · , λn))

p = diag(λ1
p, λ2

p, · · · , λn
p).

For each j, denote the coefficient of the j-th power term of pA(x) is cj.
(So pA(x) = c0 + c1x + c2x

2 + · · · + cn−1x
n−1 + cnx

n as polynomials.)

We have
U−1(c0In + c1A + c2A

2 + · · · + cn−1A
n−1 + cnA

n)U

= c0In + c1U
−1AU + c2U

−1A2U + · · · + cn−1U
−1An−1U + cnU

−1AnU

= c0In + c1 diag(λ1, λ2, · · · , λn) + c2 diag(λ1
2, λ2

2, · · · , λn
2)

+ · · · + cn−1 diag(λ1
n−1, λ2

n−1, · · · , λn
n−1) + cn diag(λ1

n, λ2
n, · · · , λn

n)

= diag(pA(λ1), pA(λ2), · · · , pA(λn)) = diag(0, 0, · · · , 0) = On×n

Then c0In + c1A + c2A
2 + · · · + cn−1A

n−1 + cnA
n = UOn×nU

−1 = On×n.

14


