MATH1030 Product of determinants.

1. Lemma (1).
Let H, B be (n x n)-square matrices. Suppose H is a row-operation matrix. Then det(HB) = det(H) det(B).
Proof of Lemma (1).
Let H, B be (n x n)-square matrices. Suppose H is a row-operation matrix. There are three possibilities:

e H is the row operation matrix corresponding to the row operation aR; + Ry, for some distinct ¢, k and for some
real number a.

e H is the row operation matrix corresponding to the row operation SR; for some non-zero real number 3.

e H is the row operation matrix corresponding to the row operation R; <> Ry for some distinct 4, k.

(a) Suppose H is the row operation matrix corresponding to the row operation aR; + Ry for some distinct ¢, k and
for some real number «.
Then det(H) = 1.

H B is obtained by B by adding a scalar multiple of the i-th row to the k-th row. Then det(H B) = det(B).
Therefore det(HB) = 1 - det(B) = det(H ) det(B).

(b) Suppose H is the row operation matrix corresponding to the row operation SR; for some non-zero real number
8.
Then det(H) = S.
H B is obtained by B by multiplying every entry of the i-th row by 8. Then det(H B) = S det(B).
Therefore det(H B) = Sdet(B) = det(H) det(B).

(c) Suppose H is the row operation matrix corresponding to the row operation R; <> Ry for some distinct , k.
Then det(H) = —1.
H B is obtained by B by interchanging the i-th row and the k-th row. Then det(H B) = — det(B).
Therefore det(HB) = — det(B) = det(H) det(B).

Hence, in any case, det(H B) = det(H) det(B).

2. Corollary to Lemma (1).
Let Hy,Hy,- -+, Hi be (n x n)-matrices. Suppose Hy, Hy,--- , H, are row operation matrices.

Then
det(Hka_1 e HQHl) = det(Hk) det(Hk_l) s det(H2) det(Hl).

Proof of Corollary to Lemma (1).

Let Hy, Hy, -+, Hi be (n X n)-matrices.

Suppose Hi, Hy,--- , Hy are row operation matrices.
Then

det(H}ngfl'-'Hng) = det(Hk)det(Hk,l---Hng)
= det(Hk)det(Hk_l)det(Hk_z~~H2H1)

= det(Hk) det(kal) det(Hg) det(Hng)
= det(Hy)det(Hg_1)---det(Hs)det(Hy).

3. Theorem (2).
Let A, B be (n x n)-square matrices. Suppose A is nonsingular. Then det(AB) = det(A) det(B).
Proof of Theorem (2).
Let A, B be (n x n)-square matrices. Suppose A is nonsingular.

Then there are some k row-operation matrices, say, Hy, Ha, -+ , Hi, so that A= HyHy_1--- HyH;.



Therefore
det(AB) = det(Hka,1 L HQHlB)
det(Hk) det(Hk_l e HQHlB)
det(Hk) det(Hk,1) det(Hk,Q S HQHlB)

det(Hk) det(Hk_l)--~det(H2) (HlB)
det(Hy) det(Hg—_1) - - - det(Hs) det(Hq) det(B)
= det(HpHi_1 - HyH;)det(B) = det(A) det(B)

det
det

Then det(AB) = det(A) det(B).

. Lemma (3).

Let C' be an (n X n)-square matrix. Suppose C' is singular.

Then det(C) = 0.

Proof of Lemma (3).

Let C be an (n x n)-square matrix. Suppose C is singular.

Denote by C’ the reduced row-echelon form which is row-equivalent to C.

Since C' is singular, C” is also singular. (Why?) Then, since C’ is a singular reduced row-echelon form, C’ has at
least one entire row of 0’s. Therefore det(C’) = 0.

Since C' is row-equivalent to C’, there is some non-singular (n x n)-square matrix A such that C = AC".
Then, by Theorem (2),
det(C) = det(AC") = det(A) det(C") = 0.
. Theorem (4).
Let A, B be (n x n)-square matrices. Suppose A is singular. Then det(AB) = 0 = det(A) det(B).
Proof of Theorem (4).
Let A, B be (n x n)-square matrices. Suppose A is singular.
Then by Theorem (3), we have det(A) = 0. Therefore det(A) det(B) = 0.
Since A is singular, AB is also singular. Then by Theorem (3), we have det(AB) = 0.
Therefore det(AB) = 0 = det(A) det(B).

. Combining Theorem (2) and Theorem (4), we obtain the result below:
Theorem (().
Suppose A, B are (n x n)-square matrices. Then det(AB) = det(A) det(B).

Remark. Actually it further follows that det(AB) = det(A) det(B) = det(B) det(A) = det(BA). However, note
that AB and BA are not necessarily the same matrix.

. An immediate consequence of Theorem (¢) is Theorem (7).
Theorem (7).

Suppose A is an (n X n)-square matrix. Then the statements below holds:

(a) For any positive integer p, det(AP) = (det(A))P.
(b) Suppose A is invertible. Then det(A) # 0, and det(A~!) = (det(A4))~!.

. Statement (b) in Theorem (7) tells us that if a square matrix is invertible then its determinant is non-zero.

It is natural to ask whether it is true that if the determinant of a square matrix is non-zero then the matrix concerned
is invertible. The answer is provided by Theorem (5).

Theorem (5).

Let A be an (n x n)-square matrix. Suppose det(A) # 0. Then A is invertible.
Proof of Theorem (5).

Let A be an (n x n)-square matrix. Suppose det(A) # 0.

[We want to deduce that A is non-singular. How? We try to show that A is row-equivalent to I, .]



Denote by A’ the reduced row-echelon form which is row-equivalent to A.

[Ask: Is it true that A’ = I,,? To find the answer, we ask whether det(A’) # 0 or not.]

There exists some non-singular (n x n)-square matrix H such that A’ = HA.

By Theorem (¢), we have det(A’) = det(H) det(A).

Since H is non-singular, we have det(H) # 0. By assumption, det(A) # 0. Then det(A’) # 0.

By assumption A’ is a reduced row-echelon form. Since det(A’) # 0, there is no row of A’ which is a row of 0’s.
Then every row of A’ contains a leading one. Therefore A’ = I,,.

Hence A is row equivalent to I,,. Then A is non-singular.

9. Combining Theorem (1) and Theorem (5), we obtain the result below:
Theorem (6).

Suppose A is an (n X n)-square matrix. Then the statements below are logically equivalent:

(a) A is non-singular.
(b) A is invertible.
(c) det(A) #0.

10. Corollary to Theorem (0).

Suppose A is an (n X n)-square matrix. Then the statements below are logically equivalent:

(a) A is singular.
(b) A is not invertible.
(c) det(A) =0.

11. We now compile and re-organized all the various re-formulations for the notions of non-singularity and invertibility
that we have learnt so far into one single result:

Theorem (¢). (Various re-formulations for the notions of non-singularity and invertibility.)

Let A be an (n x n)-matrix.

(a) The statements below are logically equivalent:
i. A is non-singular.
ii. For any vector v in R™, if Av =0 then v = 0.
iii. The trivial solution is the only solution of the homogeneous system LS(A, 0).
iv. A is row-equivalent to I,,.

v. A is invertible.
vi. There exists some (n X n)-square matrix H such that HA = I,,.

vii. There exists some (n x n)-square matrix G such that AG = I,,.

viii. For any vector b in R™, the system LS(A, b) has one and only one solution, namely, ‘x = A~'b’,
ix. For any vector ¢ in R™, the system LS(A, c¢) has at least one solution.
x. For any vector d in R™, the system LS(A, d) has at most one solution.

(b) The statements below are logically equivalent:
i. A is non-singular.

ii. A? is non-singular.

iii. For any vector v in R", if A'v = 0 then v = 0.
iv. The trivial solution is the only solution of the homogeneous system LS(A!, 0).
v. Al is row-equivalent to I,,.
vi. Al is invertible.

vii. There exists some (n X n)-square matrix J such that JA! = I,,.

viii. There exists some (n x n)-square matrix K such that A'K = I,,.

b

ix. For any vector b in R™, the system LS(A!, b) has one and only one solution, namely, x = (At)_lb.
x. For any vector ¢ in R™, the system LS(A!, c) has at least one solution.

xi. For any vector d in R™, the system LS(At, d) has at most one solution.



(c) Denote the j-th column of A by u; for each j =1,2,--- ,n.
The statements below are logically equivalent:

i. A is non-singular.

ii. Every vector in R™ is a linear combination of uy, ug, -+ , Uy.
iii. ug,ug,--- ,u, are linearly independent.
iv. uy,uy,- - ,u, constitute a basis for R™.

v. The dimension of the column space of A is n.
vi. The dimension of the null space of A is 0.
vii. det(A4) # 0.
(d) Denote the i-th row of A by w; for each i =1,2,--- n.
The statements below are logically equivalent:
i. A is non-singular.
ii. A! is non-singular.
iii. Every vector in R™ is a linear combination of wit, wo?, -, w,’.
t

iv. wit,wal, .-, w,t. are linearly independent.

v. wit,wol, .- w,t. constitute a basis for R™.
vi. The dimension of the row space of A is n.
vii. The dimension of the null space of At is 0.
viii. det(A?) # 0.
(e) Now further suppose A is non-singular, with a sequence of row operations

A201—>CQ—> """ —>Cp_1—>Cp:In,
pP1 P2 Pp—2 Pp—1

and with Hy, being the row-operation matrix corresponding to py for each k. Then [I,|A™!] is the resultant of

the application of the same sequence of row operations p1, p2,- -+ , pp—1 starting from [A|L,]:
[AlIn] = [C1ln] —=[Col ] —[Cs[HoaHn ] — - = Cpa|Hpo - HoHh] =[Gy Hpy - Ha M| = [,]A71).

Moreover, A~ and A are respectively given as products of row-operation matrices by

Al =H, |- HyH, A=H 'Hy ' H, 7"



