1. Lemma (1).
Let H, B be (n X n)-square matrices.

Suppose H is a row-operation matrix.

Then
det(HB) = det(H ) det(B).

Proof of Lemma (1).

Let H, B be (n X n)-square matrices.

Suppose H is a row-operation matrix. There are three possibilities:

« H is the row operation matrix corresponding to the row operation aRR; + Ry for some
distinct ¢, k and for some real number a.

« H is the row operation matrix corresponding to the row operation SR; for some non-zero
real number (.

« H is the row operation matrix corresponding to the row operation R; <+ Ry for some
distinct 7, k.



(a) Suppose H is the row operation matrix corresponding to the row operation aRR; + Ry, for
some distinct ¢, £ and for some real number «.

Then det(H) = 1.

H B is obtained by B by adding a scalar multiple of the ¢-th row to the k-th row.
Then det(HB) = det(B).

Therefore det(HB) = 1 - det(B) = det(H ) det(B).

(b) Suppose H is the row operation matrix corresponding to the row operation S R; for some
non-zero real number .

Then det(H) = .

H B is obtained by B by multiplying every entry of the 2-th row by £.
Then det(H B) = (8 det(B).

Therefore det(H B) = S det(B) = det(H) det(B).

(¢c) Suppose H is the row operation matrix corresponding to the row operation R; <> Ry for
some distinct 7, k.

Then det(H) = —1.

H B is obtained by B by interchanging the ¢-th row and the k-th row.
Then det(HB) = — det(B).

Therefore det(HB) = — det(B) = det(H) det(B).

Hence, in any case, det(H B) = det(H ) det(B).



2. Corollary to Lemma (1).
Let Hy, Ho,- -+ , H; be (n X n)-matrices.

Suppose Hy, Hs, - - - , H}. are row operation matrices.

Then
det(HyHy_1--+- HyHy) = det(Hy) det(Hy_1) - - - det(Hs) det( Hy).

Proof of Corollary to Lemma (1).
Let Hy, Hy, - -+, Hy be (n X n)-matrices.

Suppose Hy, Hy, - -+, H}, are row operation matrices.

Then

det(Hka_l ce Hng) = d@t(Hk) det(Hk_l ce HQHl)
— det(Hk) det(Hk_l) det(Hk_g ce H2H1>

— det(Hk) det(Hk_;[) s det(H?)) det(Hng)
= det(Hy) det(Hy_1) - - - det(Hsy) det(Hy).



2. Corollary to Lemma (1).
Let Hy, Hy,--- , Hi be (n X m)-matrices.
Suppose Hy, Hy, - -+ , H} are row operation matrices.

Lhen | |
det(HpHy_1--- HoHy) = det(Hy) det(Hy—1) - - - det(Ha) det(Hy).

Proof of Corollary to Lemma (1).
Let Hy, Hy,--- , H be (n X n)-matrices.
Suppose Hq, Hy, - -+ , Hj are row operation matrices.

Then

det( HyHy,_1 - - - HyHy) (=) det Hk d t(Hy_y - - - HoHy)
HA 1) det(Hk 2 HQHl)

’R : @ det<Hk> det(Hk_l) = sn det(H;;) det(H2H1>
WW \ = €t<Hk_1) ¥R det(H2> det(H1>

‘/EY Le/W\W\o\/(




3. Theorem (2).
Let A, B be (n X n)-square matrices. Suppose A is nonsingular.

Then
det(AB) = det(A) det(B).

Proof of Theorem (2).
Let A, B be (n x n)-square matrices. Suppose A is nonsingular.

Then there are some k row-operation matrices, say, Hy, Ho, --- , Hj, so that
A=H.H._1---HyH;.
Therefore

det(AB) = det(Hka_l s HQHlB)
= th(Hk) det<Hk—1 s HngB)
= d@t(Hk) det(Hk_l) d@t(Hk_Q s HgﬂlB)

= det(Hk) det(Hy_1) - - - det(Hy) det(H1 B)

= det(Hy)det(Hy_1) - - - det(Hy) det(Hy) det(B)

= det(HyHy_1--- HyHp) det(B) = det(A) det(B)
Then det(AB) = det(A) det(B).



3. Theorem (2).
Let A, B be (n X n)-square matrices. Suppose A is nonsingular.

Then
det(AB) = det(A) det(B).

Proof of Theorem (2).
Let A, B be (n X n)-square matrices. Suppose A is nonsingular.
Then there are some k row-operation matrices, say, Hy, Ho, - -+ , Hy, so that

A=HHy 1- - HyH;.

Therefore
det(AB) (=) det(HyHy—1 - - - HoHB)
| (=) det(Hy) det(Hy_y - - - HyHy B)

Reested © det(Hy) det(Hy_y ) det(Hy_s - - - HoH, B)
Q/Y?\‘CJ“ES 1l
Jy Lommntt), ©) det(Hy) det(Hy,_1) - - - det(Hy) det(H, B)

3 [chlm\% (=) det(Hg) det(Hyg_1) - - - det(Hy) det(H;) det(B)

ij@ LS (P O det(HpHy—y - - HyHy) det(B) = det(A) det(B)
Then det(AB) = det(A) det(B).



4. Lemma (3).
Let C' be an (n x n)-square matrix. Suppose C' is singular.
Then det(C') = 0.

Proof of Lemma (3).

Let C' be an (n X n)-square matrix. Suppose C' is singular.

Denote by C” the reduced row-echelon form which is row-equivalent to C.

Since C' is singular, C" is also singular. (Why?)

Then, since C" is a singular reduced row-echelon form, C’ has at least one entire row of 0’s.

Therefore det(C") = 0.

Since C' is row-equivalent to C”, there is some non-singular (n x n)-square matrix A such

that C' = AC".

Then, by Theorem (2),
det(C) = det(AC") = det(A) det(C") = 0.
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Let C be an (n x n)-square matrix. Suppose C' is singular.
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Denote by C' the reduced row-echelon form which is row-equivalent to C.

Since C is singular, C" is also singular. (Why?)
Then, since C" is a singular reduced row-echelon form, C’ has at least one entire row of 0’s.

Therefore det(C") = 0.

Since C' is row-equivalent to C’. there is some non-singular (n X n)-square matrix A such
) :

that C' = AC".

Then, by Theorem (2),
det(C) = det(AC") = det(A) det(C") = 0.



5. Theorem (4).
Let A, B be (n x n)-square matrices. Suppose A is singular.

Then
det(AB) = 0 = det(A) det(B).

Proof of Theorem (4).
Let A, B be (n X n)-square matrices. Suppose A is singular.

Then by Theorem (3), we have det(A) = 0.
Therefore det(A) det(B) = 0.

Since A is singular, AB is also singular. (Why?)
Then by Theorem (3), we have det(AB) = 0.

Therefore
det(AB) = 0 = det(A) det(B).



6. Combining Theorem (2) and Theorem (4), we obtain the result below:
Theorem ().

Suppose A, B are (n x n)-square matrices.

Then
det(AB) = det(A) det(B).

Remark.
Actually it further follows that

det(AB) = det(A)det(B)
= det(B) det(A)
= det(BA).

However, note that AB and BA are not necessarily the same matrix.



7. An immediate consequence of Theorem () is Theorem (7).

Theorem (7).

Suppose A is an (n X n)-square matrix.

Then the statements below holds:

(a) For any positive integer p,

det(AP) = (det(A))~.
(b) Suppose A is invertible.
Then det(A) # 0, and det(A™!) = (det(A))™ .

8. Statement (b) in Theorem (n) tells us that if a square matrix is invertible then its determi-
nant 1s non-zero.

It is natural to ask whether it is true that if the determinant of a square matrix is non-zero
then the matrix concerned is invertible. The answer is provided by Theorem (5).

Theorem (5).
Let A be an (n x n)-square matrix. Suppose det(A) # 0.

Then A is invertible.
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7. An immediate consequence of Theorem (¢) is Theorem (n).

Theorem (7).
Suppose A is an (n X n)-square matrix.

Then the statements below holds:

(a) For any positive integer p,

sl =

8. Statement (b) in Theorem (n) tells us that if a square matrix is invertible then its determi-
nant is non-zero.

It is natural to ask whether it is true that if the determinant of a square matrix is NON-ZET0
then the matrix concerned is invertible. The answer is provided by Theorem (5).

Theorem (5).
Let A be an (n x n)-square matrix. Suppose det(A) # 0.

Then A is invertible.



Proof of Theorem (5).
Let A be an (n X n)-square matrix. Suppose det(A) # 0.

[We want to deduce that A is non-singular.
How? We try to show that A is row-equivalent to I,,.]

Denote by A’ the reduced row-echelon form which is row-equivalent to A.

[Ask: Is it true that A" = I,,? To find the answer, we ask whether det(A") # 0 or not.]

There exists some non-singular (n X n)-square matrix H such that A" = HA.

By Theorem ((), we have
det(A") = det(H) det(A).
Since H is non-singular, we have det(H) # 0.

By assumption, det(A) # 0. Then det(A’) # 0.

By assumption A’ is a reduced row-echelon form.
Since det(A’) # 0, there is no row of A" which is a row of 0’s.

Then every row of A’ contains a leading one.
Therefore A" = I,,.

Hence A is row equivalent to I,,. Then A is non-singular.
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[We want to deduce that A is non-singular.

There exists some non-singular (n X n)-square matrix H such that A" = HA.

By Theorem (¢), we have
det(A") = det(H) det(A).

Since H is non-singular, we have det(H) # 0.

By assumption, det(A) # 0. Then det(A") # 0.
\NMANMAAA AN

By assumption A’ is a reduced row-echelon form.
Since det(A’) # 0, there is no row of A’ which is a row of 0’s.

Then every row of A’ contains a leading one.
Therefore A’ = I,,.

Hence A is row equivalent to I,,. Then A is non-singular.



9. Combining Theorem (7)) and Theorem (5), we obtain the result below:
Theorem (0).

Suppose A is an (n X n)-square matrix.

Then the statements below are logically equivalent:

(a) A is non-singular.
(b) A is invertible.
(c) det(A) # 0.

10. Corollary to Theorem (6).

Suppose A is an (n X n)-square matrix.

Then the statements below are logically equivalent:

(a) A is singular.
(b) A is not invertible.

(c) det(A) = 0.



11. We now compile and re-organized all the various re-formulations for the notions of non-
singularity and invertibility that we have learnt so far into one single result:

Theorem (¢). (Various re-formulations for the notions of non-singularity
and invertibility.)

Let A be an (n X n)-matrix.

(a) The statements below are logically equivalent:
i. A is non-singular.

ii. For any vector v in R", if Av = 0 then v = 0.
iii. The trivial solution is the only solution of the homogeneous system LS(A, 0).
iv. A is row-equivalent to I,,.
v. A is invertible.
vi. There exists some (n X n)-square matrix H such that HA = I,,.

vii. There exists some (n X n)-square matrix G such that AG = I,,.

viil. For any vector b in R", the system LS(A, b) has one and only one solution, namely,

x=A"1b’

ix. For any vector ¢ in R", the system LS(A, c) has at least one solution.
x. For any vector d in R", the system LS(A, d) has at most one solution.



(b) The statements below are logically equivalent:

1

11
111
v
v
V1
Vil
Viil
1X

X
X1

. A is non-singular.

. A' is non-singular.

. For any vector v in R", if A'v = 0 then v = 0.

. The trivial solution is the only solution of the homogeneous system LS(A', 0).

. Al is row-equivalent to I,,.

. Al is invertible.

. There exists some (n X n)-square matrix J such that JA' = I,,.

. There exists some (n X n)-square matrix K such that A'K = I,,.

. For any vector b in R, the system LS(A!, b) has one and only one solution, namely,
x = (AN 'b’

. For any vector ¢ in R", the system LS(A?, ¢) has at least one solution.

. For any vector d in R", the system LS(A!, d) has at most one solution.



(¢) Denote the j-th column of A by u; for each j =1,2,--- ,n.
The statements below are logically equivalent:

1.
11.
111.
V.
V.
V1.
VilL.

A is non-singular.

Every vector in R" is a linear combination of uy, s, - - - , W,
ui, Uo, - - - , U, are linearly independent.
up, Uy, - - -, u, constitute a basis for R".

The dimension of the column space of A is n.

The dimension of the null space of A is 0.
det(A) # 0.

(d) Denote the i-th row of A by w; for eachi =1,2,--+ n.
The statements below are logically equivalent:

1
11
111

: t ¢
IV. W1, Wy, -+ , Wy

. A is non-singular.
. A! is non-singular.

. Every vector in R" is a linear combination of wi', wy!,--- , w,’.

t are linearly independent.

t

v. wil, wol, - -+, w,!. constitute a basis for R".
vi. The dimension of the row space of A is n.
vii. The dimension of the null space of A® is 0.

viil. det(A?) £ 0.



(e) Now further suppose A is non-singular, with a sequence of row operations

A=C > Oy P —)Cp_1—>0p: s

P1 P2 Pp—2 Pp—1

and with H} being the row-operation matrix corresponding to p;. for each k.

Then [I,|A™Y is the resultant of the application of the same sequence of row operations
P1, P2, -+, Pp—1 Starting from [A|I,]:

[Aun] — [Cl|[n] ?[C2|Hl]
—)[C3|H2H1]

P2
—
P3

—|Cp1|Hp—2 - - HaH|

Pp—2

—Cy|Hpor - HoHy| = [L,| A7),

Pp—1
Moreover, A= and A are respectively given as products of row-operation matrices by

At'=H, - HH, A=H"'Hy - H, "



