MATH1030 Multilinearity and alternating property of determinants.

1. Theorem (). (Multilinearity of determinants in columns.)
Let A, B,C be (n x n)-square matrix, whose j-th columns are denoted by a;,b;,c; respectively for each j.
Suppose 8,7 are real numbers, and there is some ¢ = 1,2,--- ,n so that:
(a) ag = by + vcq, and
(b) a; = b, = c; whenever j # q.
Then det(A) = Bdet(B) + v det(C).

Remark. Presented in symbols, what happens is:

det([ ar [ -~ | ag-1 | Bbg+7¢q | ag+1 |-+ | an ])
= pB-det([ar |- [ag1|bg[agi|[ - [an])+y-det([ @] [a-1]Cq[agt1 |- [an ])

In particular,

det([ @i |-+ |ag-1 [ Abg [agrs |-~ [an ]) = f-det([ a1 [ - [ag-1[bg[agri |- |an])

2. Proof of Theorem (53).
For each 7, denote the i-th entry of b, by b;,, and the i-th entry of ¢4, by ciq4.
Then the i-th entry of a, is given by a;q = Bbiq + Yciq-
By definition, A(i|q) = B(i|q) = C(i|q) for each i.
Expand det(A) along the ¢g-th column:

det(A)
= (—=1)""aygdet(A(1]g)) + (—1)*Taz, det(A(2]q)) + (—1)*Fas, det(A(3]g)) + -+ + (=1)""ayq det(A(nq))
= (=1)"U(Bb1y +7e14) det(A(1]q)) + (=1)*F9(Bbag + ve2q) det(A(2]g)) + (—1)°+9(Bbsg + yesq) det(A(3]g))
+ o (1) (Bbng + yeng) det(A(nlg))
= Bl(=1)"" i det(A(L]g)) + (—1)* bzq det(A(2q)) + (=1)*F9bsq det(A(3[q)) + -+ + (=1)" by det(A(n]g))]
+[(=1)erg det(A(1]q)) + (—1)* ez det(A(2]g)) + (—1)7 Tesq det(A(3lq)) + - - + (—1)"Tepq det(A(nlq))]
= Bl(=1)"Fbig det(B(1q)) + (=1)*T g det(B(2]q)) + (—1)**9bsq det(B(3]q)) + - -+ + (=1)" by, det(B(nlq))]
Fy[(-1)erq det (C(1]g)) + (=1)*F9ezq det (C(2]q)) + (1) ezq det (C(3]q)) + -+ + (=1)" ey det(C (nlq))]
= [det(B) + ydet(C)

3. Recall Theorem («) from the handout Determinants:

Suppose A be a square matrix. Then det(A") = det(A).

Combined with Theorem (f3), this gives the result below:
Corollary to Theorem (§). (Multilinearity of determinants in rows.)
Let R, S,T be (n x n)-square matrix, whose i-th rows are denoted by r;,s;,t; respectively for each i.
Suppose o, T are real numbers, and there is some p=1,2,--- ,n so that:
(a) rp =osy + Tty and
(b) r; =s; =t; whenever i # p.
Then det(R) = o det(S) + 7 det(T).

Remark. What we have obtained is:
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In particular,
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4. Lemma (1).
Let A, B be (n x n)-square matrix, whose j-th columns are denoted by a;, b, respectively for each j.
Suppose there is some ¢ = 1,2,--- ,n so that:
(a) by =ag41,
(b) bg+1 = ay, and
(¢) b; =a; whenever j < qorj>qg+1.
Then det(B) = —det(A).

Remark. Presented in symbols, what happens is:

det([ a1 |+ [ Ag—1 | Ag41 | 8g [8gr2 | [an ) = —det(| a1 | |8g-1|8g | ags1 |Agy2 | | an )

In plain words, this results says that the determinant of two square matrices differ by a multiple of —1 when it
happens that one of them is resultant from the other by interchanging two neighbouring columns.

5. Proof of Lemma (1).
For each 7, denote the i-th entry of a,; by a;;. Then the i-th entry of b, is given by b; 441 = a4q.
By definition, A(i|q) = B(i|g + 1) for each i.
Expand det(B) along the (¢ + 1)-th column:

det(B)
= (=D e det(B(Lg + 1)) + (—1)F by g1 det(B(2]g + 1)) + (=1)%F7" by 411 det(B(3lg + 1))
oo (=1)" T, 1 det(B(n|g + 1))
= (=)' ay g det(A(1g)) + (=1)*T ag g det(A(2]q)) + (=1)>7 7 az 4 det(A(3]g))
- (=)™ g, det(A(n]g))
= (=114 det(A(1]g)) + (—1)*"9as,q det(A(2]q)) + (—1)*"az 4 det(A(3]q)) + -+ + (—=1)" ay, 4 det(A(n]q))]
= —det(4)

6. Theorem (7).
Let A,C be (n x n)-square matrices, whose j-th columns are denoted by a;, c; respectively for each j.

Suppose there are some distinct p,q amongst 1,2,--- ,n so that:
(a) cq = ay,

(b) ¢ = ay, and

(c) ¢; =a; whenever j # p and j # q.
Then det(C) = —det(A).

Remark. Presented in symbols, what happens is:

det([ - [@p-1 @y |@py1 |- [Ag—1[8q | Ag+1 | - ])=—det([ ~** [@p-1]q |Aps1 | " [Bg—1 | Ap [ Agt1 | "+

In plain words, this results says that the determinant of two square matrices differ by a multiple of —1 when it
happens that one of them is resultant from the other by interchanging two distinct columns.

Proof of Theorem (). Apply Lemma (1) repeatedly. It takes an odd number of steps of interchanging
neighbouring columns to obtain C' from A. Each step results in a factor of —1. Hence det(C) = —det(A).



7. Illustration of the idea in the argument for Theorem (7).
Suppose aj, as,az,a,,as € RO,

We verify that
det([as |az |ag |as | a1 |)=—det([ a1 | a2z | a3 | a4 | a5 |)

by repeatedly applying Lemma (1):

det([ a5 |az |as |as|a; |) = (—1)-det([az|as|asz|as|a;])
= (—1)%det([ @2 | a3 | a5 | as | a1 ])
= (—1)%det([ a2 | a3 | a4 | a5 | a1 ])
= (=1)*det([ az | a3z | a4 | @ | a5 ])
= (=1)°det([ @2 | a3 | a1 | a4 | a5 ])
= (=1)%det([ @z | a1 | a3 | a4 | a5 ])
= (=1)"det([ a1 | a2 | a3 |as | a5 |) = —det([ a1 | a2 | a3 | a4 | a5 ])

8. Two immediate consequences of Theorem () and Theorem () are Theorem (§) and Theorem (e).
Theorem (9).
The statements below hold:
(a) Let A be an (n x n)-square matrix.
Suppose two distinct columns of A are identical. Then det(A) = 0.

(b) Let A be an (n X n)-square matrix.
Suppose one column of A is a linear combination of the other columns. Then det(A) = 0.

Remark. From the statement (b), we know that in particular, if:

e one column of A is a scalar multiple of another column, or

e one column of A is a sum of two or more of the other column,
then det(A4) = 0.
9. Proof of Theorem (4).

(a) Let A be an (n x n)-square matrix.
Suppose two distinct columns of A, say, the j-th and k-th column, are identical.
Denote by A’ the matrix resultant from interchanging these two columns.
By Theorem (), det(A") = — det(A).
Since the j-th column and the k-th column of A are identical, we have A = A'.
Then det(A’) = det(A).
Since det(A’) = — det(A) and det(A’) = det(A), we have det(A) = 0.

(b) Let A be an (n x n)-square matrix, whose j-th column is denoted by a;.

Without loss of generality, suppose a; is a linear combination of as,as, -« ,a,.
Then there exist some (o, 83, , Bn € R such that a; = fsas + fza3 + - -+ + Bpay,.
Therefore
det(A) = det([ar|az|as| - |a])
det([ Beaz + fBzaz + -+ Bra, |az [az |-+ [a, |)
= [y-det([az]az|asz| - |a, |)+LP3-det([az|az|ag| - |a,])
+ o+ Bp-det([an |az |az |- | ap )

= By-0+P3-04-+p,-0=0

10. Theorem (¢).
Let A be an (n x n)-square matrix.
Suppose A’ is the (n x n)-square matrix obtained from A by adding a scalar multiple of one column of A to another
column of A.
Then det(A’) = det(A).
Remark. Denote the j-th column of A by a; for each j. What this result says is

det([a1""‘ai""‘aai—Fak""‘an D — det([al\"'\ai\"'\ak\"'\an ])

whenever i # k and « is a real number.



11. Proof of Theorem (e).
Denote the j-th column of A by a; for each j. Suppose

AI:[al‘ ‘al‘ ‘aal+ak‘ ‘an ]
Then
det(A’) = det([ar |-~ [a; |~ [aa;+ag| - |ay])
a~det([ aj ‘ ‘ai ‘ ‘ai ‘ ‘an ])+1d€t([ a; ‘ ‘ai ‘ ‘ak ‘ ‘an ])

= a-0+det(A) = det(A)

12. Again recall Theorem («) from the handout Determinants:
Suppose A be a square matrix. Then det(A') = det(A).

13. Corollary to Theorem (7).
Let R, T be (n x n)-square matrices, whose i-th rows are denoted by r;,t; respectively for each i.
Suppose there are some distinct p,q amongst 1,2,--- ,n so that:
(a) tq = I';,,,
(b) t, =r,, and
(c) t; =r; whenever j # p and j # q.
Then det(T) = — det(R).

Remark. In plain words, this results says that the determinant of two square matrices differ by a multiple of —1
when it happens that one of them is resultant from the other by interchanging two distinct rows:

I'E;l rg;l
_Ip _Tq
det(| 1 [)=det(| : |)
I'q,1 I'q,1
_Tq _Ip
I'g+]_ I'qul

14. Corollary to Theorem ().
The statements below hold:
(a) Let B be an (n X m)-square matrix.
Suppose two distinct rows of B are identical. Then det(B) = 0.

(b) Let B be an (n x n)-square matrix.

Suppose one row of B is a linear combination of the other rows, in the sense that the transpose of that row is
a linear combination of the transposes of the other rows. Then det(B) = 0.

Remark. From the statement (b), we know that in particular, if:

e one row of B is a scalar multiple of another row, or

e one row of B is a sum of two or more of the other rows,
then det(B) = 0.

15. Corollary to Theorem ().
Let B be an (n X n)-square matrix.

Suppose B’ is the (n x n)-square matrix obtained from A by adding a scalar multiple of one row of B to another
row of B.

Then det(B’) = det(B).



Remark. Denote the i-th row of B by b; for each . What this result says is

© by - F by
b, b,
det( : )=det(| : |)
Bb; + by by
L 5.'"/ - L j’n -

whenever j # k and S is a real number.
In terms of the language of row operations, that says, when it happens that if B’ is obtained from B by the
application of the row operation aR; + Ry, then det(B’) = det(B).

16. Examples on the applications of Theorem (), Theorem (§), Theorem (¢).

Preparation. We imitate the notations for row operations on matrices to set up notations for column operations on
matrices:

e aC; + Cf reads as ‘adding to the k-th column the scalar multiple of the i-th column by o,
o BC; reads as ‘multiplying the i-th column by the (non-zero) number 57,

e (; +— C} reads as ‘interchanging the i-th column with the k-th column’.

A recurrent theme in these examples is that we always try to apply row/column operations in such a way that more
and more 0’s will appear in the resultant matrices of the successive applications of the row/column operations.

a e have the sequence of row operations
We h h f i
1 70 1 7 0 17 0 1 7 0
[6 9 8}4>_6R2+R3 [0 -33 8}—>_33R3+R2 [0 0 173]4>RWR3 [0 1 5 ]
01 5 0 1 5 01 5 0 0 173
Correspondingly, we have the equalities
17

0 1 7 0 17 0 1
det([@‘ 9 8})det([0 -33 8})det({o 0 173])det({0
015 0 1 5 01 5 0

o=

0
5 }) =—1.1.173 = —173.
173

(b) We have the sequence of row operations and column operations

3 2 -1 3 2 -1 3 2 -1
[4 < 6]131“{"3[4% 6]—1R3+R2[3? ?}—2R3+R1{

O w
oo

-3 -1 2 0 1

e [ 8 8] cmos 114 9]
0 1 1 0 1 1

-3
|
1

Correspondingly, we have the equalities

3 2 -1 3 2 -1 3 -1 3 0 =3
det([ 4 1 6 })—det([ll 1 6 })—det([ll 0 5 ])—det([él 0 5 ])
3 - 2 0 1 1 0 0
3 00 3 00
= det([4 0 9})_det([4 9 0})_3-9-1—27
0 1 1 0 1 1
(¢c) We have the sequence of row operations
—1R3+R4 —1R.+R
1980 ) 1 9 8 0 — 00 1 -7
19 8 3 0 0 0 3 0 00 3
Correspondingly, we have the equalities
19 8 3 00 0 3 0 00 3

Alternative method.



We have the sequence of column operations
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Hence we have the equalities below due to the above ‘column operations’ and further due to ‘expansion’ along

third row:
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(d) We have the sequence of row operations and column operations
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Correspondingly, we have the equalities
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(e) We have the sequence of row operations and column operations
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Hence we have the equalities

det(

= det(

= det(

-2

1 I

Sy pP=det(] 1 g 9
6 5 4 0 5
6 T % 8 0
o1 ) =det(| T g S
0 5 —11 0 0

(f) We have the sequence of row operations and column operations

2
1
-1
3
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Hence we have the equalities

2
.| 3
[ 2
| 3
M2
= det( 8
L 0
0
= 2det({ 1
0

Q—ROO O—WOo
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—-1C1+C —_ —3R3+R

—> | 11 0 2| — | 1 1

3 5 1 0 3 5

0 3 T2 0 0 3

—02 —211 1C2+Cq 8 (1) —02 —211 —4R1+R4
1 0 s 5 1 0

0 3 "2 0 0 3

-2 —11 2R4+R-> 0 0 0 =55

0 2 010 2

1 —922 000 1 -22
IR R
1 2 |)=det(| 21 7 g 2 |)=det(|
£ 0 3 5 0 3
% 50 % 4 0
o0 2 )=det(| g 7 o 2 |)=det(|
1 0 85 1 0 0
% 00 0 %

0 2 [D=det(| g 1 0 2 |

1 —92 00 1 —22
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