
MATH1030 Multilinearity and alternating property of determinants.

1. Theorem (β). (Multilinearity of determinants in columns.)
Let A,B,C be (n× n)-square matrix, whose j-th columns are denoted by aj ,bj , cj respectively for each j.
Suppose β, γ are real numbers, and there is some q = 1, 2, · · · , n so that:

(a) aq = βbq + γcq, and
(b) aj = bj = cj whenever j ̸= q.

Then det(A) = β det(B) + γ det(C).
Remark. Presented in symbols, what happens is:

det([ a1 · · · aq−1 βbq + γcq aq+1 · · · an ])

= β · det([ a1 · · · aq−1 bq aq+1 · · · an ]) + γ · det([ a1 · · · aq−1 cq aq+1 · · · an ])

In particular,

det([ a1 · · · aq−1 βbq aq+1 · · · an ]) = β · det([ a1 · · · aq−1 bq aq+1 · · · an ])

2. Proof of Theorem (β).
For each i, denote the i-th entry of bq by biq, and the i-th entry of cq, by ciq.
Then the i-th entry of aq is given by aiq = βbiq + γciq.
By definition, A(i|q) = B(i|q) = C(i|q) for each i.
Expand det(A) along the q-th column:

det(A)

= (−1)1+qa1q det(A(1|q)) + (−1)2+qa2q det(A(2|q)) + (−1)3+qa3q det(A(3|q)) + · · ·+ (−1)n+qanq det(A(n|q))

= (−1)1+q(βb1q + γc1q) det(A(1|q)) + (−1)2+q(βb2q + γc2q) det(A(2|q)) + (−1)3+q(βb3q + γc3q) det(A(3|q))

+ · · ·+ (−1)n+q(βbnq + γcnq) det(A(n|q))

= β[(−1)1+qb1q det(A(1|q)) + (−1)2+qb2q det(A(2|q)) + (−1)3+qb3q det(A(3|q)) + · · ·+ (−1)n+qbnq det(A(n|q))]

+γ[(−1)1+qc1q det(A(1|q)) + (−1)2+qc2q det(A(2|q)) + (−1)3+qc3q det(A(3|q)) + · · ·+ (−1)n+qcnq det(A(n|q))]

= β[(−1)1+qb1q det(B(1|q)) + (−1)2+qb2q det(B(2|q)) + (−1)3+qb3q det(B(3|q)) + · · ·+ (−1)n+qbnq det(B(n|q))]

+γ[(−1)1+qc1q det(C(1|q)) + (−1)2+qc2q det(C(2|q)) + (−1)3+qc3q det(C(3|q)) + · · ·+ (−1)n+qcnq det(C(n|q))]
= β det(B) + γ det(C)

3. Recall Theorem (α) from the handout Determinants:

Suppose A be a square matrix. Then det(At) = det(A).

Combined with Theorem (β), this gives the result below:
Corollary to Theorem (β). (Multilinearity of determinants in rows.)
Let R,S, T be (n× n)-square matrix, whose i-th rows are denoted by ri, si, ti respectively for each i.
Suppose σ, τ are real numbers, and there is some p = 1, 2, · · · , n so that:

(a) rp = σsp + τtp, and
(b) ri = si = ti whenever i ̸= p.

Then det(R) = σ det(S) + τ det(T ).
Remark. What we have obtained is:

det(



r1
...

rp−1
σsp + τtp

rp+1

...
rn

) = σ det(



r1
...

rp−1
sp

rp+1

...
rn

) + τ det(



r1
...

rp−1
tp

rp+1

...
rn

)
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In particular,

det(



r1
...

rp−1
σsp
rp+1

...
rn

) = σ det(



r1
...

rp−1
sp

rp+1

...
rn

)

4. Lemma (1).
Let A,B be (n× n)-square matrix, whose j-th columns are denoted by aj ,bj respectively for each j.
Suppose there is some q = 1, 2, · · · , n so that:

(a) bq = aq+1,
(b) bq+1 = aq, and
(c) bj = aj whenever j < q or j > q + 1.

Then det(B) = −det(A).
Remark. Presented in symbols, what happens is:

det([ a1 · · · aq−1 aq+1 aq aq+2 · · · an ]) = −det([ a1 · · · aq−1 aq aq+1 aq+2 · · · an ])

In plain words, this results says that the determinant of two square matrices differ by a multiple of −1 when it
happens that one of them is resultant from the other by interchanging two neighbouring columns.

5. Proof of Lemma (1).
For each i, denote the i-th entry of aq by aiq. Then the i-th entry of bq+1 is given by bi,q+1 = aiq.
By definition, A(i|q) = B(i|q + 1) for each i.
Expand det(B) along the (q + 1)-th column:

det(B)

= (−1)1+q+1b1,q+1 det(B(1|q + 1)) + (−1)2+q+1b2,q+1 det(B(2|q + 1)) + (−1)3+q+1b3,q+1 det(B(3|q + 1))

+ · · ·+ (−1)n+q+1bn,q+1 det(B(n|q + 1))

= (−1)1+q+1a1,q det(A(1|q)) + (−1)2+q+1a2,q det(A(2|q)) + (−1)3+q+1a3,q det(A(3|q))

+ · · ·+ (−1)n+q+1an,q det(A(n|q))

= −[(−1)1+qa1,q det(A(1|q)) + (−1)2+qa2,q det(A(2|q)) + (−1)3+qa3,q det(A(3|q)) + · · ·+ (−1)n+qan,q det(A(n|q))]
= −det(A)

6. Theorem (γ).
Let A,C be (n× n)-square matrices, whose j-th columns are denoted by aj , cj respectively for each j.
Suppose there are some distinct p, q amongst 1, 2, · · · , n so that:

(a) cq = ap,
(b) cp = aq, and
(c) cj = aj whenever j ̸= p and j ̸= q.

Then det(C) = −det(A).
Remark. Presented in symbols, what happens is:

det([ · · · ap−1 ap ap+1 · · · aq−1 aq aq+1 · · · ]) = −det([ · · · ap−1 aq ap+1 · · · aq−1 ap aq+1 · · · ])

In plain words, this results says that the determinant of two square matrices differ by a multiple of −1 when it
happens that one of them is resultant from the other by interchanging two distinct columns.
Proof of Theorem (γ). Apply Lemma (1) repeatedly. It takes an odd number of steps of interchanging
neighbouring columns to obtain C from A. Each step results in a factor of −1. Hence det(C) = − det(A).
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7. Illustration of the idea in the argument for Theorem (γ).
Suppose a1,a2,a3,a4,a5 ∈ R5.
We verify that

det([ a5 a2 a3 a4 a1 ]) = −det([ a1 a2 a3 a4 a5 ])

by repeatedly applying Lemma (1):

det([ a5 a2 a3 a4 a1 ]) = (−1) · det([ a2 a5 a3 a4 a1 ])

= (−1)2 det([ a2 a3 a5 a4 a1 ])

= (−1)3 det([ a2 a3 a4 a5 a1 ])

= (−1)4 det([ a2 a3 a4 a1 a5 ])

= (−1)5 det([ a2 a3 a1 a4 a5 ])

= (−1)6 det([ a2 a1 a3 a4 a5 ])

= (−1)7 det([ a1 a2 a3 a4 a5 ]) = −det([ a1 a2 a3 a4 a5 ])

8. Two immediate consequences of Theorem (β) and Theorem (γ) are Theorem (δ) and Theorem (ϵ).
Theorem (δ).
The statements below hold:
(a) Let A be an (n× n)-square matrix.

Suppose two distinct columns of A are identical. Then det(A) = 0.
(b) Let A be an (n× n)-square matrix.

Suppose one column of A is a linear combination of the other columns. Then det(A) = 0.

Remark. From the statement (b), we know that in particular, if:

• one column of A is a scalar multiple of another column, or
• one column of A is a sum of two or more of the other column,

then det(A) = 0.

9. Proof of Theorem (δ).

(a) Let A be an (n× n)-square matrix.
Suppose two distinct columns of A, say, the j-th and k-th column, are identical.
Denote by A′ the matrix resultant from interchanging these two columns.
By Theorem (γ), det(A′) = −det(A).
Since the j-th column and the k-th column of A are identical, we have A = A′.
Then det(A′) = det(A).
Since det(A′) = −det(A) and det(A′) = det(A), we have det(A) = 0.

(b) Let A be an (n× n)-square matrix, whose j-th column is denoted by aj .
Without loss of generality, suppose a1 is a linear combination of a2,a3, · · · ,an.
Then there exist some β2, β3, · · · , βn ∈ R such that a1 = β2a2 + β3a3 + · · ·+ βnan.
Therefore

det(A) = det([ a1 a2 a3 · · · an ])

= det([ β2a2 + β3a3 + · · ·+ βnan a2 a3 · · · an ])

= β2 · det([ a2 a2 a3 · · · an ]) + β3 · det([ a3 a2 a3 · · · an ])

+ · · ·+ βn · det([ an a2 a3 · · · an ])

= β2 · 0 + β3 · 0 + · · ·+ βn · 0 = 0

10. Theorem (ϵ).
Let A be an (n× n)-square matrix.
Suppose A′ is the (n×n)-square matrix obtained from A by adding a scalar multiple of one column of A to another
column of A.
Then det(A′) = det(A).
Remark. Denote the j-th column of A by aj for each j. What this result says is

det([ a1 · · · ai · · · αai + ak · · · an ]) = det([ a1 · · · ai · · · ak · · · an ])

whenever i ̸= k and α is a real number.
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11. Proof of Theorem (ϵ).
Denote the j-th column of A by aj for each j. Suppose

A′ = [ a1 · · · ai · · · αai + ak · · · an ].

Then

det(A′) = det([ a1 · · · ai · · · αai + ak · · · an ])

= α · det([ a1 · · · ai · · · ai · · · an ]) + 1 · det([ a1 · · · ai · · · ak · · · an ])

= α · 0 + det(A) = det(A)

12. Again recall Theorem (α) from the handout Determinants:

Suppose A be a square matrix. Then det(At) = det(A).

13. Corollary to Theorem (γ).
Let R, T be (n× n)-square matrices, whose i-th rows are denoted by ri, ti respectively for each i.
Suppose there are some distinct p, q amongst 1, 2, · · · , n so that:

(a) tq = rp,
(b) tp = rq, and
(c) tj = rj whenever j ̸= p and j ̸= q.

Then det(T ) = −det(R).
Remark. In plain words, this results says that the determinant of two square matrices differ by a multiple of −1
when it happens that one of them is resultant from the other by interchanging two distinct rows:

det(



...
rp−1
rp
...

rq−1
rq

rq+1

...


) = det(



...
rp−1
rq
...

rq−1
rp
rq+1

...


)

14. Corollary to Theorem (δ).
The statements below hold:

(a) Let B be an (n× n)-square matrix.
Suppose two distinct rows of B are identical. Then det(B) = 0.

(b) Let B be an (n× n)-square matrix.
Suppose one row of B is a linear combination of the other rows, in the sense that the transpose of that row is
a linear combination of the transposes of the other rows. Then det(B) = 0.

Remark. From the statement (b), we know that in particular, if:

• one row of B is a scalar multiple of another row, or
• one row of B is a sum of two or more of the other rows,

then det(B) = 0.

15. Corollary to Theorem (ϵ).
Let B be an (n× n)-square matrix.
Suppose B′ is the (n × n)-square matrix obtained from A by adding a scalar multiple of one row of B to another
row of B.
Then det(B′) = det(B).

4



Remark. Denote the i-th row of B by bi for each i. What this result says is

det(



b1
...
bj

...
βbj + bk

...
bn


) = det(



b1
...
bj

...
bk
...
bn


)

whenever j ̸= k and β is a real number.
In terms of the language of row operations, that says, when it happens that if B′ is obtained from B by the
application of the row operation αRi +Rk, then det(B′) = det(B).

16. Examples on the applications of Theorem (γ), Theorem (δ), Theorem (ϵ).
Preparation. We imitate the notations for row operations on matrices to set up notations for column operations on
matrices:

• αCi + Ck reads as ‘adding to the k-th column the scalar multiple of the i-th column by α’,
• βCi reads as ‘multiplying the i-th column by the (non-zero) number β’,
• Ci ←→ Ck reads as ‘interchanging the i-th column with the k-th column’.

A recurrent theme in these examples is that we always try to apply row/column operations in such a way that more
and more 0’s will appear in the resultant matrices of the successive applications of the row/column operations.

(a) We have the sequence of row operations[
1 7 0
6 9 8
0 1 5

]
−6R2+R3−−−−−−→

[
1 7 0
0 −33 8
0 1 5

]
−33R3+R2−−−−−−−→

[
1 7 0
0 0 173
0 1 5

]
R2↔R3−−−−−→

[
1 7 0
0 1 5
0 0 173

]
Correspondingly, we have the equalities

det(

[
1 7 0
6 9 8
0 1 5

]
) = det(

[
1 7 0
0 −33 8
0 1 5

]
) = det(

[
1 7 0
0 0 173
0 1 5

]
) = −det(

[
1 7 0
0 1 5
0 0 173

]
) = −1·1·173 = −173.

(b) We have the sequence of row operations and column operations[
3 2 −1
4 1 6
−3 −1 2

]
1R1+R3−−−−−→

[
3 2 −1
4 1 6
0 1 1

]
−1R3+R2−−−−−−→

[
3 2 −1
4 0 5
0 1 1

]
−2R3+R1−−−−−−→

[
3 0 −3
4 0 5
0 1 1

]
1C1+C3−−−−−→

[
3 0 0
4 0 9
0 1 1

]
C2↔C3−−−−−→

[
3 0 0
4 9 0
0 1 1

]
Correspondingly, we have the equalities

det(

[
3 2 −1
4 1 6
−3 −1 2

]
) = det(

[
3 2 −1
4 1 6
0 1 1

]
) = det(

[
3 2 −1
4 0 5
0 1 1

]
) = det(

[
3 0 −3
4 0 5
0 1 1

]
)

= det(

[
3 0 0
4 0 9
0 1 1

]
) = − det(

[
3 0 0
4 9 0
0 1 1

]
) = −3 · 9 · 1 = −27

(c) We have the sequence of row operations 1 9 7 7
0 5 2 5
1 9 8 0
1 9 8 3

 −1R3+R4−−−−−−→

 1 9 7 7
0 5 2 5
1 9 8 0
0 0 0 3

 −1R1+R3−−−−−−→

 1 9 7 7
0 5 2 5
0 0 1 −7
0 0 0 3


Correspondingly, we have the equalities

det(

 1 9 7 7
0 5 2 5
1 9 8 0
1 9 8 3

) = det(

 1 9 7 7
0 5 2 5
1 9 8 0
0 0 0 3

) = det(

 1 9 7 7
0 5 2 5
0 0 1 −7
0 0 0 3

) = 1 · 5 · 1 · 3 = 15

Alternative method.
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We have the sequence of column operations 1 9 7 7
0 5 2 5
1 9 8 0
1 9 8 3

 −9C1+C2−−−−−−→

 1 0 7 7
0 5 2 5
1 0 8 0
1 0 8 3

 −8C1+C3−−−−−−→

 1 0 −1 7
0 5 2 5
1 0 0 0
1 0 0 3


Hence we have the equalities below due to the above ‘column operations’ and further due to ‘expansion’ along
third row:

det(

 1 9 7 7
0 5 2 5
1 9 8 0
1 9 8 3

) = det(

 1 0 7 7
0 5 2 5
1 0 8 0
1 0 8 3

) = det(

 1 0 −1 7
0 5 2 5
1 0 0 0
1 0 0 3

)
= 1 · det(

[
0 −1 7
5 2 5
0 0 3

]
) = −det(

[
5 2 5
0 −1 7
0 0 3

]
) = −5 · (−1) · 3 = 15

(d) We have the sequence of row operations and column operations 1 1 1 1 1
2 2 1 2 2
1 2 1 2 3
1 1 1 3 2
1 1 1 1 4

 −1R1+R5−−−−−−→

 1 1 1 1 1
2 2 1 2 2
1 2 1 2 3
1 1 1 3 2
0 0 0 0 3

 −1R1+R4−−−−−−→

 1 1 1 1 1
2 2 1 2 2
1 2 1 2 3
0 0 0 2 1
0 0 0 0 3


−1R1+R3−−−−−−→

 1 1 1 1 1
2 2 1 2 2
0 1 0 1 2
0 0 0 2 1
0 0 0 0 3

 −1R1+R2−−−−−−→

 1 1 1 1 1
1 1 0 1 1
0 1 0 1 2
0 0 0 2 1
0 0 0 0 3

 C1↔C3−−−−−→

 1 1 1 1 1
0 1 1 1 1
0 1 0 1 2
0 0 0 2 1
0 0 0 0 3


C2↔C3−−−−−→

 1 1 1 1 1
0 1 1 1 1
0 0 1 1 2
0 0 0 2 1
0 0 0 0 3


Correspondingly, we have the equalities

det(

 1 1 1 1 1
2 2 1 2 2
1 2 1 2 3
1 1 1 3 2
1 1 1 1 4

) = det(

 1 1 1 1 1
2 2 1 2 2
1 2 1 2 3
1 1 1 3 2
0 0 0 0 3

) = det(

 1 1 1 1 1
2 2 1 2 2
1 2 1 2 3
0 0 0 2 1
0 0 0 0 3

)

= det(

 1 1 1 1 1
2 2 1 2 2
0 1 0 1 2
0 0 0 2 1
0 0 0 0 3

) = det(

 1 1 1 1 1
1 1 0 1 1
0 1 0 1 2
0 0 0 2 1
0 0 0 0 3

) = −det(

 1 1 1 1 1
0 1 1 1 1
0 1 0 1 2
0 0 0 2 1
0 0 0 0 3

)

= det(

 1 1 1 1 1
0 1 1 1 1
0 0 1 1 2
0 0 0 2 1
0 0 0 0 3

) = 1 · 1 · 1 · 2 · 3 = 6

(e) We have the sequence of row operations and column operations −2 3 0 1
9 −2 0 1
1 3 −2 −1
4 1 2 6

 1R3+R4−−−−−→

 −2 3 0 1
9 −2 0 1
1 3 −2 −1
5 4 0 5

 −1R1+R2−−−−−−→

 −2 3 0 1
11 −5 0 0
1 3 −2 −1
5 4 0 5


−5R1+R4−−−−−−→

 −2 3 0 1
11 −5 0 0
1 3 −2 −1
15 −11 0 0

 −3C4+C2−−−−−−→

 −2 0 0 1
11 −5 0 0
1 6 −2 −1
15 −11 0 0

 −2R2+R4−−−−−−→

 −2 0 0 1
11 −5 0 0
1 6 −2 −1
−7 −1 0 0


−5R4+R2−−−−−−→

 −2 0 0 1
46 0 0 0
1 6 −2 −1
−7 −1 0 0


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Hence we have the equalities

det(

 −2 3 0 1
9 −2 0 1
1 3 −2 −1
4 1 2 6

) = det(

 −2 3 0 1
9 −2 0 1
1 3 −2 −1
5 4 0 5

) = det(

 −2 3 0 1
11 −5 0 0
1 3 −2 −1
5 4 0 5

)
= det(

 −2 3 0 1
11 −5 0 0
1 3 −2 −1
15 −11 0 0

) = det(

 −2 0 0 1
11 −5 0 0
1 6 −2 −1
15 −11 0 0

) = det(

 −2 0 0 1
11 −5 0 0
1 6 −2 −1
−7 −1 0 0

)
= det(

 −2 0 0 1
46 0 0 0
1 6 −2 −1
−7 −1 0 0

) = −46 det([ 0 0 1
6 −2 −1
−1 0 0

]
) = (−46)(−2) det(

[
0 1
−1 0

]
) = 92

(f) We have the sequence of row operations and column operations 2 0 2 3
1 3 −1 1
−1 1 −1 2
3 5 4 0

 −1C1+C3−−−−−−→

 2 0 0 3
1 3 −2 1
−1 1 0 2
3 5 1 0

 −3R3+R2−−−−−−→

 2 0 0 3
4 0 −2 −5
−1 1 0 2
3 5 1 0


2C3+C1−−−−−→

 2 0 0 3
0 0 −2 −11
−1 1 0 2
3 5 1 0

 1C2+C1−−−−−→

 2 0 0 3
0 0 −2 −11
0 1 0 2
8 5 1 0

 −4R1+R4−−−−−−→

 2 0 0 3
0 0 −2 −11
0 1 0 2
0 5 1 −12


−5R3+R4−−−−−−→

 2 0 0 3
0 0 −2 −11
0 1 0 2
0 0 1 −22

 2R4+R2−−−−−→

 2 0 0 3
0 0 0 −55
0 1 0 2
0 0 1 −22


Hence we have the equalities

det(

 2 0 2 3
1 3 −1 1
−1 1 −1 2
3 5 4 0

) = det(

 2 0 0 3
1 3 −2 1
−1 1 0 2
3 5 1 0

) = det(

 2 0 0 3
4 0 −2 −5
−1 1 0 2
3 5 1 0

)
= det(

 2 0 0 3
0 0 −2 −11
−1 1 0 2
3 5 1 0

) = det(

 2 0 0 3
0 0 −2 −11
0 1 0 2
8 5 1 0

) = det(

 2 0 0 3
0 0 −2 −11
0 1 0 2
0 5 1 −12

)
= det(

 2 0 0 3
0 0 −2 −11
0 1 0 2
0 0 1 −22

) = det(

 2 0 0 3
0 0 0 −55
0 1 0 2
0 0 1 −22

)
= 2 det(

[
0 0 −55
1 0 2
0 1 −22

]
) = 2(−55) det(

[
1 0
0 1

]
) = −110
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