
MATH1030 Diagonalizability.

1. Definition. (Diagonal matrix.)

Let D be a (n × n)-square matrix, whose (i, j)-th entry is denoted by dij . The matrix D is said to be a diagonal
matrix if and only if dij = 0 whenever i ̸= j.

Remark on notation. When d11 = α1, d22 = α2, · · · , dnn = αn, we may write D = diag(α1, α2, · · · , αn).

2. Definition. (Diagonalizability and diagonalization.)

Let A be an (n× n)-square matrix.

(a) Suppose U is a non-singular (n× n)-square matrix. Then we say that U−1AU is a diagonalization of A if and
only if U−1AU is a diagonal matrix.

(b) A is said to be diagonalizable if and only if there is some non-singular (n × n)-square matrix T such that
T−1AT is a diagonalization of A.

Remark. A diagonalizable matrix may have various diagonalization.

3. Recall the definition for the notions of eigenvalue and eigenvector from the handout Eigenvalues and eigenvectors:

Let A be an (n × n)-square matrix (with real entries). Let λ be a (real) number. Let v be a non-zero vector
with n (real) entries.
We say v is an eigenvector of A with eigenvalue λ (or equivalently, λ is an eigenvalue of A with a corresponding
eigenvector v) if and only if Av = λv.

4. Theorem (C).

Let A is an (n× n)-square matrix. Let u1,u2, · · · ,un be vectors in Rn, and U =
[
u1 u2 · · · un

]
.

Suppose u1,u2, · · · ,un constitute a basis for Rn. (So U is non-singular.)
Then the statements below are logically equivalent:

(a) u1,u2, · · · ,un are eigenvectors of A, with eigenvalues λ1, λ2, · · · , λn respectively.

(b) U−1AU is a diagonal matrix, given by U−1AU = diag(λ1, λ2, · · · , λn).

5. Corollary to Theorem (C).

Let A is an (n× n)-square matrix.
Suppose A has n pairwise distinct eigenvalues. Then A is diagonalizable.
Proof of Corollary to Theorem (C).
Each of the n eigenvalues of A will correspond to an eigenvector. Since the eigenvalues are pairwise distinct, the n

corresponding eigenvectors will be linearly independent. These n vectors will then constitute a basis for Rn.

6. Examples of diagonalizable matrices and their diagonalizations.

(a) Let A =

[
13 30
−6 −14

]
, and u1 =

[
5
−2

]
, u2 =

[
2
−1

]
.

It happens that u1,u2 are eigenvectors of A with respective eigenvalues 1,−2.
Since u1,u2 are eigenvectors of A with distinct eigenvalues, they are linearly independent.
Then u1,u2 constitute a basis for R2.
Define U =

[
u1 u2

]
.

U is nonsingular, and U−1 =

[
1 2
−2 −5

]
.

By direct verification, we see that U−1AU =

[
1 0
0 −2

]
, as expected from theory.
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(b) Let A =

 1 1 1
0 2 2
0 0 3

, and u1 =

10
0

, u2 =

11
0

, u3 =

34
2

.

It happens that u1,u2,u3 are eigenvectors of A with respective eigenvalues 1, 2, 3.
Since u1,u2,u3 are eigenvectors of A with pairwise distinct eigenvalues, they are linear independent.
Then u1,u2,u3 constitute a basis for R3.
Define U =

[
u1 u2 u3

]
.

U is nonsingular, and U−1 =

 1 −1 1/2
0 1 −2
0 0 1/2

.
By direct verification, we see that U−1AU =

 1 0 0
0 2 0
0 0 3

, as expected from theory.

(c) Let A =

 2 1 1
1 2 1
1 1 2

, and u1 =

11
1

, u2 =

 1
−1
0

, u3 =

 1
0
−1

.

It happens that u1,u2,u3 are eigenvectors of A with respective eigenvalues 4, 1, 1.
We can check that u1,u2,u3 are linear independent. (Fill in the detail.)
Then u1,u2,u3 constitute a basis for R3.
Define U =

[
u1 u2 u3

]
.

U is nonsingular, and U−1 =

 1/3 1/3 1/3
1/3 −2/3 1/3
1/3 1/3 −2/3

.
By direct verification, we see that U−1AU =

 4 0 0
0 1 0
0 0 1

, as expected from theory.

(d) Let A =


0 0 1 0
0 0 0 1
2 1 1 1
−5 2 5 −1

, and u1 =


1
−1
1
−1

, u2 =


1
5
−1
−5

, u3 =


1
1
3
3

, u3 =


1
−5
−3
15

.

It happens that u1,u2,u3,u4 are eigenvectors of A with respective eigenvalues 1,−1, 3,−3.
Since u1,u2,u3,u4 are eigenvectors of A with pairwise distinct eigenvalues, they are linear independent.
Then u1,u2,u3,u4 constitute a basis for R4.
Define U =

[
u1 u2 u3 u4

]
.

U is nonsingular, and U−1 =


5/8 −1/4 0 −1/8
1/4 1/8 −1/8 0
0 1/8 5/24 1/12
1/8 0 −1/12 1/24

.

By direct verification, we see that U−1AU =


1 0 0 0
0 −1 0 0
0 0 3 0
0 0 0 −3

, as expected from theory.

7. Non-examples on diagonalizability.

(a) Let b be a real number, and A =

 b 1 0
0 b 1
0 0 b

, and u =

10
0

.

u is an eigenvector of A with eigenvalue b, and every eigenvector of A is a non-zero scalar multiple of u.
Then there is no basis for R3 which is constituted by eigenvectors of A.
Therefore A is not diagonalizable.

(b) Let A =


1 0 0 −1
1 1 0 0
0 1 1 0
0 0 1 1

.
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A has no eigenvalues, and hence no eigenvectors.
Then there is no basis for R4 which is constituted by eigenvectors of A.
Therefore A is not diagonalizable.

8. Proof of Theorem (C).

Let A is an (n× n)-square matrix. Let u1,u2, · · · ,un be vectors in Rn, and U =
[
u1 u2 · · · un

]
.

Suppose u1,u2, · · · ,un constitute a basis for Rn.

• Suppose u1,u2, · · · ,un are eigenvectors of A, with eigenvalues λ1, λ2, · · · , λn respectively.
[Reminder: We want to verify that a diagonalization for A is given by U−1AU = diag(λ1, λ2, · · · , λn).]
Then for each j = 1, 2, · · · , n, we have Auj = λjuj .
Therefore

AU =
[
Au1 Au2 · · · Aun

]
=

[
λ1u1 λ2u2 · · · λnun

]
=

[
λ1Ue

(n)
1 λ2Ue

(n)
2 · · · λnUe

(n)
n

]
=

[
U(λ1e

(n)
1 ) U(λ2e

(n)
2 ) · · · U(λne

(n)
n )

]
= U

[
λ1e

(n)
1 λ2e

(n)
2 · · · λne

(n)
n

]
= U diag(λ1, λ2, · · · , λn)

Since u1,u2, · · · ,un constitutes a basis for Rn, U is non-singular and invertible. The matrix U−1 is well-defined.
Then U−1AU = diag(λ1, λ2, · · · , λn), which is a diagonal matrix.

• Suppose U−1AU is a diagonal matrix, given by U−1AU = diag(λ1, λ2, · · · , λn).
[Reminder: We want to verify that for each j, uj is an eigenvector of A with eigenvalue λj .]
Then [

Au1 Au2 · · · Aun

]
= AU = U diag(λ1, λ2, · · · , λn)

= U
[
λ1e

(n)
1 λ2e

(n)
2 · · · λne

(n)
n

]
=

[
U(λ1e

(n)
1 ) U(λ2e

(n)
2 ) · · · U(λne

(n)
n )

]
=

[
λ1Ue

(n)
1 λ2Ue

(n)
2 · · · λnUe

(n)
n

]
=

[
λ1u1 λ2u2 · · · λnun

]
Therefore, for each j = 1, 2, · · · , n, we have Auj = λjuj .
Hence u1,u2, · · · ,un are eigenvectors of A, with eigenvalues λ1, λ2, · · · , λn respectively.

9. Lemma (1).

Suppose A is an (n× n)-square matrix. Then A is singular if and only if 0 is an eigenvalue of A.

Furthermore, if A is singular then every non-zero vector in N (A) is an eigenvector of A with eigenvalue 0.

Remark. When dim(N (A)) ≥ 2, we do not expect any two arbitrary non-zero vectors in N (A) to be scalar
multiples of each other. This result reminds us that we should not expect eigenvectors corresponding to the same
eigenvalue of A to be non-zero scalar multiples of each other.

10. Lemma (2).

Let A be an (n× n)-square matrix. Suppose λ is a real number. Then the statements below hold:

(a) λ is an eigenvalue of A if and only if A− λIn is singular.

(b) Now suppose λ is an eigenvalue of A indeed. Then for any non-zero vector x in Rn, x is an eigenvector of A
with eigenvalue λ if and only if x ∈ N (A− λIn).

11. Definition. (Eigenspace.)

Let A be an (n× n)-square matrix. Suppose λ be an eigenvalue of A. Then N (A− λIn) is called the eigenspace of
A with eigenvalue λ. It is denoted by EA (λ).

The dimension of EA (λ) is called the geometric multiplicity of the eigenvalue λ of A.
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12. Theorem (D).

Let A is an (n× n)-square matrix. Suppose λ1, λ2, · · · , λp are all the eigenvalues of A, pairwise distinct.

Then the statements below are logically equivalent:

(a) A is diagonalizable.

(b) The sum of the respective geometric multiplicities of λ1, λ2, · · · , λp, as eigenvalues of A, equals n.

Now suppose A is indeed diagaonalizable.
For each k = 1, 2, · · · , p, write dim(EA (λk)) = nk, and suppose that vk,1,vk,2, · · · ,vk,nk

constitute a basis for
EA (λk). Then a basis for Rn is constituted by

v1,1,v1,2, · · · ,v1,n1
,

v2,1,v2,2, · · · ,v2,n2
,

. . .
vp,1,vp,2, · · · ,vp,np .

Proof. Omitted. (The argument is not difficult at a conceptual level; we can certainly give it within the context
of this course. However it will be tedious unless we introduce the notion of direct sum.)

13. Illustration of the content of Theorem (D).

(a) Let A =

[
13 30
−6 −14

]
, and u1 =

[
5
−2

]
, u2 =

[
2
−1

]
.

It happens that u1,u2 are eigenvectors of A with respective eigenvalues 1,−2.
The only eigenspaces of A are EA (1) , EA (−2).
The dimension of EA (1) is 1, with a basis given by u1.
The dimension of EA (−2) is 1, with a basis given by u2.
Since dim(EA (1)) + dim(EA (−2)) = 2 = dim(R2), A is expected to be diagonalizable.
A diagonalization of A is given by U−1AU = diag(1,−2), in which U =

[
u1 u2

]
.

(b) Let A =

 1 1 1
0 2 2
0 0 3

, and u1 =

10
0

, u2 =

11
0

, u3 =

34
2

.

It happens that u1,u2,u3 are eigenvectors of A with respective eigenvalues 1, 2, 3.
The only eigenspaces of A are EA (1) , EA (2) , EA (3).
The dimension of EA (1) is 1, with a basis given by u1.
The dimension of EA (2) is 1, with a basis given by u2.
The dimension of EA (3) is 1, with a basis given by u3.
Since dim(EA (1)) + dim(EA (2)) + dim(EA (3)) = 3 = dim(R3), A is expected to be diagonalizable.
A diagonalization of A is given by U−1AU = diag(1, 2, 3), in which U =

[
u1 u2 u3

]
.

(c) Let A =

 2 1 1
1 2 1
1 1 2

, and u1 =

11
1

, u2 =

 1
−1
0

, u3 =

 1
0
−1

.

It happens that u1,u2,u3 are eigenvectors of A with respective eigenvalues 4, 1, 1.
The only eigenspaces of A are EA (4) , EA (1).
The dimension of EA (4) is 1, with a basis given by u1.
The dimension of EA (1) is 2, with a basis given by u2,u3.
Since dim(EA (4)) + dim(EA (1)) = 3 = dim(R3), A is expected to be diagonalizable.
A diagonalization of A is given by U−1AU = diag(4, 1, 1), in which U =

[
u1 u2 u3

]
.

(d) Let A =


0 0 1 0
0 0 0 1
2 1 1 1
−5 2 5 −1

, and u1 =


1
−1
1
−1

, u2 =


1
5
−1
−5

, u3 =


1
1
3
3

, u3 =


1
−5
−3
15

.
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It happens that u1,u2,u3,u4 are eigenvectors of A with respective eigenvalues 1,−1, 3,−3.
The only eigenspaces of A are EA (1) , EA (−1) , EA (3) , EA (−3).
The dimension of EA (1) is 1, with a basis given by u1.
The dimension of EA (−1) is 1, with a basis given by u2.
The dimension of EA (3) is 1, with a basis given by u3.
The dimension of EA (−3) is 1, with a basis given by u4.
Since dim(EA (1)) + dim(EA (−1)) + dim(EA (3)) + dim(EA (−3)) = 4 = dim(R4), A is expected to be diagonal-
izable.
A diagonalization of A is given by U−1AU = diag(1,−1, 3,−3), in which U =

[
u1 u2 u3 u4

]
.

(e) Let b be a real number, and A =

 b 1 0
0 b 1
0 0 b

, and u =

10
0

.

b is the only eigenvalue of A, and every eigenvector of A is a non-zero scalar multiple of u.
The only eigenspace of A is EA (b), which is of dimension 1.
Therefore A is not diagonalizable.

(f) Let A =


1 0 0 −1
1 1 0 0
0 1 1 0
0 0 1 1

.

A has no eigenvalues, and hence no eigenspace.
Therefore A is not diagonalizable.

14. Theorem (3).

Let A be an (n × n)-square matrix. Suppose A is diagonalizable, with a diagonalization U−1AU = D, for some
non-singular (n× n)-square matrix U and for some (n× n)-diagonal matrix D.
Then the statements below hold:

(a) For each positive integer p, Ap is diagonalizable, with a diagonalization given by U−1ApU = Dp.
(b) Suppose A is non-singular. Then D is non-singular, and A−1 is diagonalizable, with a diagonalization given by

U−1A−1U = D−1.

Proof of Theorem (3). Exercise.
Remark. This result tells us that when A is diagonalizable, it will be easy to find its positive powers. (Why?
Because it is easy to find the positive powers of a diagonal matrix.)

15. Examples on application of Theorem (3).

(a) Let A =

 1 1 1
0 2 2
0 0 3

.

It happens that A is diagonalizable, with a diagonalization given by U−1AU = diag(1, 2, 3), in which U =

[
u1 u2 u3

]
, u1 =

10
0

, u2 =

11
0

, u3 =

34
2

.

Then A = U diag(1, 2, 3)U−1.

Note that U =

 1 1 3
0 1 4
0 0 2

 and U−1 =

 1 −1 1/2
0 1 −2
0 0 1/2

.

Then for each positive integer p, we have

Ap = U(diag(1, 2, 3))pU−1 = U(diag(1, 2p, 3p))U−1

=

 1 1 3
0 1 4
0 0 2

 1 0 0
0 2p 0
0 0 3p

 1 −1 1/2
0 1 −2
0 0 1/2


=

 1 −1 + 2p 1/2− 2 · 2p + (3/2) · 3p
0 2p −2 · 2p + 2 · 3p
0 0 3p

.
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(b) Let A =

 2 1 1
1 2 1
1 1 2

.

It happens that A is diagonalizable, with a diagonalization given by U−1AU = diag(4, 1, 1), in which U =

[
u1 u2 u3

]
, u1 =

11
1

, u2 =

 1
−1
0

, u3 =

 1
0
−1

.

Then A = U diag(4, 1, 1)U−1.

Note that U =

 1 1 1
1 −1 0
1 0 −1

 and U−1 =
1

3

 1 1 1
1 −2 1
1 1 −2

.

Then for each positive integer p, we have

Ap = U(diag(4, 1, 1))pU−1 = U(diag(4p, 1, 1))U−1

=
1

3

 1 1 1
1 −1 0
1 0 −1

 4p 0 0
0 1 0
0 0 −1

 1 1 1
1 −2 1
1 1 −2


=

1

3

 4p 4p − 3 4p + 3
4p − 1 4p + 2 4p − 1
4p + 1 4p + 1 4p − 2

.
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