1. Definition. (Diagonal matrix.)

Let D be a $(n \times n)$ -square matrix, whose (i, j)-th entry is denoted by d_{ij} . The matrix D is said to be a diagonal matrix if and only if $d_{ij} = 0$ whenever $i \neq j$.

Remark on notation. When $d_{11} = \alpha_1, d_{22} = \alpha_2, \cdots, d_{nn} = \alpha_n$, we may write $D = \text{diag}(\alpha_1, \alpha_2, \cdots, \alpha_n)$.

2. Definition. (Diagonalizability and diagonalization.)

Let A be an $(n \times n)$ -square matrix.

- (a) Suppose U is a non-singular $(n \times n)$ -square matrix. Then we say that $U^{-1}AU$ is a diagonalization of A if and only if $U^{-1}AU$ is a diagonal matrix.
- (b) A is said to be diagonalizable if and only if there is some non-singular $(n \times n)$ -square matrix T such that $T^{-1}AT$ is a diagonalization of A.

Remark. A diagonalizable matrix may have various diagonalization.

3. Recall the definition for the notions of eigenvalue and eigenvector from the handout Eigenvalues and eigenvectors:

Let A be an $(n \times n)$ -square matrix (with real entries). Let λ be a (real) number. Let \mathbf{v} be a non-zero vector with n (real) entries.

We say \mathbf{v} is an eigenvector of A with eigenvalue λ (or equivalently, λ is an eigenvalue of A with a corresponding eigenvector \mathbf{v}) if and only if $A\mathbf{v} = \lambda \mathbf{v}$.

4. Theorem (C).

Let A is an $(n \times n)$ -square matrix. Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ be vectors in \mathbb{R}^n , and $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix}$.

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ constitute a basis for \mathbb{R}^n . (So U is non-singular.)

Then the statements below are logically equivalent:

- (a) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ are eigenvectors of A, with eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_n$ respectively.
- (b) $U^{-1}AU$ is a diagonal matrix, given by $U^{-1}AU = \text{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$.

5. Corollary to Theorem (C).

Let A is an $(n \times n)$ -square matrix.

Suppose A has n pairwise distinct eigenvalues. Then A is diagonalizable.

Proof of Corollary to Theorem (C).

Each of the *n* eigenvalues of *A* will correspond to an eigenvector. Since the eigenvalues are pairwise distinct, the *n* corresponding eigenvectors will be linearly independent. These *n* vectors will then constitute a basis for \mathbb{R}^n .

6. Examples of diagonalizable matrices and their diagonalizations.

(a) Let
$$A = \begin{bmatrix} 13 & 30 \\ -6 & -14 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

It happens that $\mathbf{u}_1, \mathbf{u}_2$ are eigenvectors of A with respective eigenvalues 1, -2.

Since $\mathbf{u}_1, \mathbf{u}_2$ are eigenvectors of A with distinct eigenvalues, they are linearly independent.

Then $\mathbf{u}_1, \mathbf{u}_2$ constitute a basis for \mathbb{R}^2 .

Define $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix}$.

U is nonsingular, and $U^{-1} = \begin{bmatrix} 1 & 2 \\ -2 & -5 \end{bmatrix}$.

By direct verification, we see that $U^{-1}AU = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$, as expected from theory.

(b) Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix}$.

It happens that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are eigenvectors of A with respective eigenvalues 1, 2, 3.

Since $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are eigenvectors of A with pairwise distinct eigenvalues, they are linear independent. Then $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ constitute a basis for \mathbb{R}^3 .

Define
$$U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$$
.
 U is nonsingular, and $U^{-1} = \begin{bmatrix} 1 & -1 & 1/2 \\ 0 & 1 & -2 \\ 0 & 0 & 1/2 \end{bmatrix}$.
By direct verification, we see that $U^{-1}AU = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, as expected from theory.
(c) Let $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$, and $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.
It happens that \mathbf{u}_1 \mathbf{u}_2 are eigenvectors of A with respective eigenvalues $A = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

It happens that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are eigenvectors of A with respective eigenvalues 4, 1, 1.

We can check that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are linear independent. (Fill in the detail.)

Then $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ constitute a basis for \mathbb{R}^3 .

Define $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$.

U is nonsingular, and
$$U^{-1} = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & -2/3 & 1/3 \\ 1/3 & 1/3 & -2/3 \end{bmatrix}$$
.

By direct verification, we see that $U^{-1}AU = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, as expected from theory.

(d) Let
$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 1 & 1 & 1 \\ -5 & 2 & 5 & -1 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 5 \\ -1 \\ -5 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 3 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ -5 \\ -3 \\ 15 \end{bmatrix}$

It happens that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ are eigenvectors of A with respective eigenvalues 1, -1, 3, -3. Since $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ are eigenvectors of A with pairwise distinct eigenvalues, they are linear independent. Then $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ constitute a basis for \mathbb{R}^4

Define
$$U = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3 | \mathbf{u}_4].$$

$$U \text{ is nonsingular, and } U^{-1} = \begin{bmatrix} 5/8 & -1/4 & 0 & -1/8 \\ 1/4 & 1/8 & -1/8 & 0 \\ 0 & 1/8 & 5/24 & 1/12 \\ 1/8 & 0 & -1/12 & 1/24 \end{bmatrix}.$$
By direct verification, we see that $U^{-1}AU = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}$, as expected from theory.

7. Non-examples on diagonalizability.

(a) Let b be a real number, and
$$A = \begin{bmatrix} b & 1 & 0 \\ 0 & b & 1 \\ 0 & 0 & b \end{bmatrix}$$
, and $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

u is an eigenvector of A with eigenvalue b, and every eigenvector of A is a non-zero scalar multiple of **u**. Then there is no basis for \mathbb{R}^3 which is constituted by eigenvectors of A. Therefore A is not diagonalizable.

(b) Let
$$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
.

A has no eigenvalues, and hence no eigenvectors. Then there is no basis for \mathbb{R}^4 which is constituted by eigenvectors of A. Therefore A is not diagonalizable.

8. Proof of Theorem (C).

Let A is an $(n \times n)$ -square matrix. Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ be vectors in \mathbb{R}^n , and $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix}$. Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ constitute a basis for \mathbb{R}^n .

Suppose u₁, u₂, ..., u_n are eigenvectors of A, with eigenvalues λ₁, λ₂, ..., λ_n respectively.
[Reminder: We want to verify that a diagonalization for A is given by U⁻¹AU = diag(λ₁, λ₂, ..., λ_n).] Then for each j = 1, 2, ..., n, we have Au_j = λ_ju_j. Therefore

 $AU = \begin{bmatrix} A\mathbf{u}_1 & | A\mathbf{u}_2 & | \cdots & | A\mathbf{u}_n \end{bmatrix} = \begin{bmatrix} \lambda_1\mathbf{u}_1 & | \lambda_2\mathbf{u}_2 & | \cdots & | \lambda_n\mathbf{u}_n \end{bmatrix}$ $= \begin{bmatrix} \lambda_1 U \mathbf{e}_1^{(n)} & | \lambda_2 U \mathbf{e}_2^{(n)} & | \cdots & | \lambda_n U \mathbf{e}_n^{(n)} \end{bmatrix} = \begin{bmatrix} U(\lambda_1 \mathbf{e}_1^{(n)}) & | U(\lambda_2 \mathbf{e}_2^{(n)}) & | \cdots & | U(\lambda_n \mathbf{e}_n^{(n)}) \end{bmatrix}$ $= U \begin{bmatrix} \lambda_1 \mathbf{e}_1^{(n)} & | \lambda_2 \mathbf{e}_2^{(n)} & | \cdots & | \lambda_n \mathbf{e}_n^{(n)} \end{bmatrix} = U \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$

Since $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ constitutes a basis for \mathbb{R}^n, U is non-singular and invertible. The matrix U^{-1} is well-defined. Then $U^{-1}AU = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$, which is a diagonal matrix.

• Suppose $U^{-1}AU$ is a diagonal matrix, given by $U^{-1}AU = \text{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$. [Reminder: We want to verify that for each j, \mathbf{u}_j is an eigenvector of A with eigenvalue λ_j .] Then

$$\begin{bmatrix} A\mathbf{u}_1 \mid A\mathbf{u}_2 \mid \cdots \mid A\mathbf{u}_n \end{bmatrix} = AU = U \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$$
$$= U \begin{bmatrix} \lambda_1 \mathbf{e}_1^{(n)} \mid \lambda_2 \mathbf{e}_2^{(n)} \mid \cdots \mid \lambda_n \mathbf{e}_n^{(n)} \end{bmatrix}$$
$$= \begin{bmatrix} U(\lambda_1 \mathbf{e}_1^{(n)}) \mid U(\lambda_2 \mathbf{e}_2^{(n)}) \mid \cdots \mid U(\lambda_n \mathbf{e}_n^{(n)}) \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_1 U \mathbf{e}_1^{(n)} \mid \lambda_2 U \mathbf{e}_2^{(n)} \mid \cdots \mid \lambda_n U \mathbf{e}_n^{(n)} \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_1 \mathbf{u}_1 \mid \lambda_2 \mathbf{u}_2 \mid \cdots \mid \lambda_n \mathbf{u}_n \end{bmatrix}$$

Therefore, for each $j = 1, 2, \dots, n$, we have $A\mathbf{u}_j = \lambda_j \mathbf{u}_j$.

Hence $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ are eigenvectors of A, with eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_n$ respectively.

9. Lemma (1).

Suppose A is an $(n \times n)$ -square matrix. Then A is singular if and only if 0 is an eigenvalue of A.

Furthermore, if A is singular then every non-zero vector in $\mathcal{N}(A)$ is an eigenvector of A with eigenvalue 0.

Remark. When dim $(\mathcal{N}(A)) \geq 2$, we do not expect any two arbitrary non-zero vectors in $\mathcal{N}(A)$ to be scalar multiples of each other. This result reminds us that we should not expect eigenvectors corresponding to the same eigenvalue of A to be non-zero scalar multiples of each other.

10. Lemma (2).

Let A be an $(n \times n)$ -square matrix. Suppose λ is a real number. Then the statements below hold:

- (a) λ is an eigenvalue of A if and only if $A \lambda I_n$ is singular.
- (b) Now suppose λ is an eigenvalue of A indeed. Then for any non-zero vector \mathbf{x} in \mathbb{R}^n , \mathbf{x} is an eigenvector of A with eigenvalue λ if and only if $\mathbf{x} \in \mathcal{N}(A \lambda I_n)$.

11. Definition. (Eigenspace.)

Let A be an $(n \times n)$ -square matrix. Suppose λ be an eigenvalue of A. Then $\mathcal{N}(A - \lambda I_n)$ is called the eigenspace of A with eigenvalue λ . It is denoted by $\mathcal{E}_A(\lambda)$.

The dimension of $\mathcal{E}_A(\lambda)$ is called the geometric multiplicity of the eigenvalue λ of A.

12. Theorem (D).

Let A is an $(n \times n)$ -square matrix. Suppose $\lambda_1, \lambda_2, \dots, \lambda_p$ are all the eigenvalues of A, pairwise distinct. Then the statements below are logically equivalent:

- (a) A is diagonalizable.
- (b) The sum of the respective geometric multiplicities of $\lambda_1, \lambda_2, \dots, \lambda_p$, as eigenvalues of A, equals n.

Now suppose A is indeed diagaonalizable.

For each $k = 1, 2, \dots, p$, write dim $(\mathcal{E}_A(\lambda_k)) = n_k$, and suppose that $\mathbf{v}_{k,1}, \mathbf{v}_{k,2}, \dots, \mathbf{v}_{k,n_k}$ constitute a basis for $\mathcal{E}_A(\lambda_k)$. Then a basis for \mathbb{R}^n is constituted by

$$\mathbf{v}_{1,1}, \mathbf{v}_{1,2}, \cdots, \mathbf{v}_{1,n_1},$$

 $\mathbf{v}_{2,1}, \mathbf{v}_{2,2}, \cdots, \mathbf{v}_{2,n_2},$
 \cdots
 $\mathbf{v}_{p,1}, \mathbf{v}_{p,2}, \cdots, \mathbf{v}_{p,n_p}$

Proof. Omitted. (The argument is not difficult at a conceptual level; we can certainly give it within the context of this course. However it will be tedious unless we introduce the notion of *direct sum*.)

13. Illustration of the content of Theorem (D).

(a) Let
$$A = \begin{bmatrix} 13 & 30 \\ -6 & -14 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

It happens that $\mathbf{u}_1, \mathbf{u}_2$ are eigenvectors of A with respective eigenvalues 1, -2.

The only eigenspaces of A are $\mathcal{E}_{A}(1)$, $\mathcal{E}_{A}(-2)$.

The dimension of $\mathcal{E}_{A}(1)$ is 1, with a basis given by \mathbf{u}_{1} .

The dimension of $\mathcal{E}_A(-2)$ is 1, with a basis given by \mathbf{u}_2 .

Since $\dim(\mathcal{E}_A(1)) + \dim(\mathcal{E}_A(-2)) = 2 = \dim(\mathbb{R}^2)$, A is expected to be diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \text{diag}(1, -2)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix}$.

(b) Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix}$

It happens that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are eigenvectors of A with respective eigenvalues 1, 2, 3.

The only eigenspaces of A are $\mathcal{E}_{A}(1)$, $\mathcal{E}_{A}(2)$, $\mathcal{E}_{A}(3)$.

The dimension of $\mathcal{E}_{A}(1)$ is 1, with a basis given by \mathbf{u}_{1} .

The dimension of $\mathcal{E}_{A}(2)$ is 1, with a basis given by \mathbf{u}_{2} .

The dimension of $\mathcal{E}_A(3)$ is 1, with a basis given by \mathbf{u}_3 .

Since $\dim(\mathcal{E}_A(1)) + \dim(\mathcal{E}_A(2)) + \dim(\mathcal{E}_A(3)) = 3 = \dim(\mathbb{R}^3)$, A is expected to be diagonalizable. A diagonalization of A is given by $U^{-1}AU = \operatorname{diag}(1,2,3)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$.

(c) Let
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$.

It happens that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are eigenvectors of A with respective eigenvalues 4, 1, 1.

The only eigenspaces of A are $\mathcal{E}_{A}(4)$, $\mathcal{E}_{A}(1)$.

The dimension of $\mathcal{E}_{A}(4)$ is 1, with a basis given by \mathbf{u}_{1} .

The dimension of $\mathcal{E}_A(1)$ is 2, with a basis given by $\mathbf{u}_2, \mathbf{u}_3$.

Since $\dim(\mathcal{E}_A(4)) + \dim(\mathcal{E}_A(1)) = 3 = \dim(\mathbb{R}^3)$, A is expected to be diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \text{diag}(4, 1, 1)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$.

(d) Let
$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 1 & 1 & 1 \\ -5 & 2 & 5 & -1 \end{bmatrix}$$
, and $\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 5 \\ -1 \\ -5 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 3 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ -5 \\ -3 \\ 15 \end{bmatrix}$.

It happens that $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ are eigenvectors of A with respective eigenvalues 1, -1, 3, -3.

The only eigenspaces of A are $\mathcal{E}_{A}(1)$, $\mathcal{E}_{A}(-1)$, $\mathcal{E}_{A}(3)$, $\mathcal{E}_{A}(-3)$.

The dimension of $\mathcal{E}_A(1)$ is 1, with a basis given by \mathbf{u}_1 .

The dimension of $\mathcal{E}_A(-1)$ is 1, with a basis given by \mathbf{u}_2 .

The dimension of $\mathcal{E}_{A}(3)$ is 1, with a basis given by \mathbf{u}_{3} .

The dimension of $\mathcal{E}_A(-3)$ is 1, with a basis given by \mathbf{u}_4 .

Since $\dim(\mathcal{E}_A(1)) + \dim(\mathcal{E}_A(-1)) + \dim(\mathcal{E}_A(3)) + \dim(\mathcal{E}_A(-3)) = 4 = \dim(\mathbb{R}^4)$, A is expected to be diagonalizable.

A diagonalization of A is given by $U^{-1}AU = \text{diag}(1, -1, 3, -3)$, in which $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{u}_4 \end{bmatrix}$.

(e) Let b be a real number, and $A = \begin{bmatrix} b & 1 & 0 \\ 0 & b & 1 \\ 0 & 0 & b \end{bmatrix}$, and $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

b is the only eigenvalue of A, and every eigenvector of A is a non-zero scalar multiple of \mathbf{u} .

The only eigenspace of A is $\mathcal{E}_{A}(b)$, which is of dimension 1.

Therefore A is not diagonalizable.

(f) Let
$$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
.

A has no eigenvalues, and hence no eigenspace. Therefore A is not diagonalizable.

14. Theorem (3).

Let A be an $(n \times n)$ -square matrix. Suppose A is diagonalizable, with a diagonalization $U^{-1}AU = D$, for some non-singular $(n \times n)$ -square matrix U and for some $(n \times n)$ -diagonal matrix D.

Then the statements below hold:

- (a) For each positive integer p, A^p is diagonalizable, with a diagonalization given by $U^{-1}A^pU = D^p$.
- (b) Suppose A is non-singular. Then D is non-singular, and A^{-1} is diagonalizable, with a diagonalization given by $U^{-1}A^{-1}U = D^{-1}$.

Proof of Theorem (3). Exercise.

Remark. This result tells us that when A is diagonalizable, it will be easy to find its positive powers. (Why? Because it is easy to find the positive powers of a diagonal matrix.)

15. Examples on application of Theorem (3).

(a) Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$.

It happens that A is diagonalizable, with a diagonalization given by $U^{-1}AU = \text{diag}(1,2,3)$, in which U =

$$\begin{bmatrix} \mathbf{u}_1 & | \mathbf{u}_2 & | \mathbf{u}_3 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 3\\4\\2 \end{bmatrix}.$$

Then $A = U \operatorname{diag}(1, 2, 3)U^{-1}.$
Note that $U = \begin{bmatrix} 1 & 1 & 3\\0 & 1 & 4\\0 & 0 & 2 \end{bmatrix}$ and $U^{-1} = \begin{bmatrix} 1 & -1 & 1/2\\0 & 1 & -2\\0 & 0 & 1/2 \end{bmatrix}$

Then for each positive integer p, we have

$$\begin{aligned} A^{p} &= U(\operatorname{diag}(1,2,3))^{p}U^{-1} = U(\operatorname{diag}(1,2^{p},3^{p}))U^{-1} \\ &= \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^{p} & 0 \\ 0 & 0 & 3^{p} \end{bmatrix} \begin{bmatrix} 1 & -1 & 1/2 \\ 0 & 1 & -2 \\ 0 & 0 & 1/2 \end{bmatrix} \\ &= \begin{bmatrix} 1 & -1+2^{p} & 1/2-2\cdot2^{p}+(3/2)\cdot3^{p} \\ 0 & 2^{p} & -2\cdot2^{p}+2\cdot3^{p} \\ 0 & 0 & 3^{p} \end{bmatrix} \begin{bmatrix} 1 & -1 & 1/2 \\ 0 & 1 & -2 \\ 0 & 0 & 1/2 \end{bmatrix} \end{aligned}$$

(b) Let
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
.

It happens that A is diagonalizable, with a diagonalization given by $U^{-1}AU = \text{diag}(4, 1, 1)$, in which $U = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} \mathbf{u}_1 & | \mathbf{u}_2 & | \mathbf{u}_3 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}.$$

Then $A = U \operatorname{diag}(4, 1, 1)U^{-1}.$
Note that $U = \begin{bmatrix} 1 & 1 & 1\\1 & -1 & 0\\1 & 0 & -1 \end{bmatrix}$ and $U^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1\\1 & -2 & 1\\1 & 1 & -2 \end{bmatrix}.$

Then for each positive integer p, we have

$$\begin{split} A^p &= U(\operatorname{diag}(4,1,1))^p U^{-1} = U(\operatorname{diag}(4^p,1,1)) U^{-1} \\ &= \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 4^p & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} \\ &= \frac{1}{3} \begin{bmatrix} 4^p & 4^p - 3 & 4^p + 3 \\ 4^p - 1 & 4^p + 2 & 4^p - 1 \\ 4^p + 1 & 4^p + 1 & 4^p - 2 \end{bmatrix}. \end{split}$$