1. Definition. (Diagonal matrix.)
Let D be a (n x n)-square matrix, whose (1, j)-th entry is denoted by d;;.

The matrix D is said to be a diagonal matrix if and only if

d;j = 0 whenever ¢ # j.

Remark on notation.

When
dip = a1, doo = Qo, dpp = Ay,

we may write
D = diag(ala g, - - 704n)-



1. Definition. (Diagonal matrix.)

Let D be a (n x n)-square matrix, whose (1, j)-th entry is denoted by d;;.

The matrix D is said to be a diagonal matrix if and only if

Remark on notation.

When

we may write

d;; = 0 whenever 1 # j.

di1 = oy, doo = an,

/7“

dnn — Olp,

)= diag(oq,’ozg, L Q).
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2. Definition. (Diagonalizability and diagonalization.)

Let A be an (n X n)-square matrix.
(a) Suppose U is a non-singular (n X n)-square matrix.

Then we say that U YAU is a diagonalization of A if and only if
UL AU is a diagonal matrix.

(b) A is said to be diagonalizable if and only if

there is some non-singular (n X n)-square matrix T such that
T AT is a diagonalization of A.

Remark.

A diagonalizable matrix may have various diagonalization.



2. Definition. (Diagonalizability and diagonalization.)
Let A be an (n X n)-square matrix.

(a) Suppose U is a non-singular (n X n)-square matrix.

Then we say that U tAU is a dia,gOna]izatjon of A if and only if o
UtAU is a diagonal matrix. U-‘A\) S

(b) A is said to be diagonalizable if and only if

there is some non-singular (n X n)-square matrix T such that
T—YAT is a diagonalization of A.

Remark.

A diagonalizable matrix may have various diagonalization.
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3. Recall the definition for the notions of eigenvalue and eigenvector from the handout Eigen-
values and eigenvectors:

Let A be an (n X n)-square matrix (with real entries).
Let X\ be a (real) number. Let v be a non-zero vector with n (real) entries.

We say v is an eigenvector of A with eigenvalue A (or equivalently, A is an eigenvalue of
A with a corresponding eigenvector v ) if and only if Av = \v.

4. Theorem (C).

Let A is an (n X n)-square matrix.

Let uy,us, - - - ,u, be vectors in R", and U = [111112"' un].
Suppose uy, Uy, - - - , W, constitute a basis for R". (So U is non-singular.)

Then the statements below are logically equivalent:

(a) uy,uy, - - - ,u, are eigenvectors of A, with eigenvalues \1, Ao, - -+ , A\, respectively.

(b) ULAU is a diagonal matrix, given by U AU = diag(A, Ao, -+ -, \p).



3. Recall the definition for the notions of eigenvalue and eigenvector from the handout Eigen-
values and eigenvectors:

Let A be an (n X n)-square matrix (with real entries).
Let X be a (real) number. Let v be a non-zero vector with n (real) entries.

We say v is an eigenvector of A with eigenvalue A (or equivalently, X is an eigenvalue of
A with a corresponding eigenvector v) if and only if Av = \v.

4. Theorem (C).

Let A is an (n X n)-square matrix.

Let ui,uy, - -+ ,u, be vectors in R*, and U = [Ul‘UQIH' }un}

Suppose uy, Uy, - - - , U, constitute a basis for R". (So U is non-singular.)

Then the statements below are logically equivalent:
(a) ug, ug, - - - ,uy, are eigenvectors of A, with eigenvalues A1, Ao, - -+ , \,, respectively.
(b) UTAU is a diagonal matrix, given by ULAU = diag(A1, Mg, -+, An).
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5. Corollary to Theorem (C).
Let A is an (n X n)-square matrix.

Suppose A has n pairwise distinct eigenvalues.

Then A is diagonalizable.

Proof of Corollary to Theorem (C).

Each of the n eigenvalues of A will correspond to an eigenvector.

Since the eigenvalues are pairwise distinct, the n corresponding eigenvectors will be linearly
independent.

These n vectors will then constitute a basis for R”.



6. Examples of diagonalizable matrices and their diagonalizations.

13 30 D 2
(a) Let A = [—6 _14],andu1: [_2],u2: [_1].

It happens that u;, us are eigenvectors of A with respective eigenvalues 1, —2.
Since uy, uy are eigenvectors of A with distinct eigenvalues, they are linearly independent.

Then uy, us constitute a basis for R?.

Define U = [111112].

U is nonsingular, and U~ = [ _12 _25 ] :

By direct verification, we see that

e 10
w10

as expected from theory.



6. Examples of diagonalizable matrices and their diagonalizations.

13 30 5 2
(a) Let A= |i—6 _14]7andu1:{ 2},u2: [_1].

[t happens that uy, ugy are eigenvectors of A with respective eigenvalues 1, —2.

Since uy, uy are eigenvectors of A with distinct eigenvalues, they are linearly independent.

Then uy, uy constitute a basis for R?.
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U is nonsingular, and U~ = [ _12 _25 ] .

By direct verification, we see that

e
av=5 5

as expected from theory:.



(11 1]
(b)Let A= {022 |,andu; = |0, us= |1|,u3= [4].
003

It happens that u;, us, uz are eigenvectors of A with respective eigenvalues 1, 2, 3.

Since uy, U, ug are eigenvectors of A with pairwise distinct eigenvalues, they are linear
independent.

Then uy, us, us constitute a basis for R>.

Define U = [UlUQU3:|.

(1 —1 1/2]
U is nonsingular, and U1 = | 0 1 -2 |.
0 0 1/2]
By direct verification, we see that
(100 |
UAU =020,
100 3]

as expected from theory.



L
(b)Let A=1022|,andu; = [0|,uy= [1]|,us= [|4].
0l 5

It happens that uy, ug, ug are eigenvectors of A with respective eigenvalues 1, 2, 3.

Since uy, Ug, ug are eigenvectors of A with pairwise distinct eigenvalues, they are linear

independent. , //_\J/—\/
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Then uy, ug, us constitute a basis for R3.
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(21 1]
(c)Let A= 121 |,andu; = |1|,us= [—1]|,u3=10
1 12

It happens that u;, us, uz are eigenvectors of A with respective eigenvalues 4, 1, 1.
We can check that uy, us, ug are linear independent. (Fill in the detail.)
Then uy, uy, us constitute a basis for R>.

Define U = [111112113}.

1/3 1/3 1/3
U is nonsingular, and Ut = | 1/3 —=2/3 1/3 |.
1/3 1/3 —2/3 ]

By direct verification, we see that

U TAU =

S O =
o = O

as expected from theory.



211 1 1 1
(c)Let A= 121 ]|,andu;= [1|,ue=|—-1|,uz=]0 |.
1 12 1 0 | —1

It happens that uy, us, us are eigenvectors of A with respective eigenvalues 4, 1, 1.

We can check that u;, uy, us are linear independent. (Fill in the detail.)

Then uy, us, us constitute a basis for R3. ~The, non- 3”3“1”“/ makin caed
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0O 01 0 1 1 1 1

0 00 1 —1 5 1 —9
(d)LetA— 9 11 1 ,andul— 1 , U = _1,113— 37113— 3|

-5 20 —1 —1 —9 3 15

It happens that uy, us, us, uy are eigenvectors of A with respective eigenvalues 1, —1, 3, —3.
Since up, Uy, ug, Uy are eigenvectors of A with pairwise distinct eigenvalues, they are linear independent.
Then uj, us, us, uy constitute a basis for R*.

Define U = [ul‘ug‘ug‘ud.

5/8 —1/4 0 —1/8
1/4 1/8 —1/8 0

0 1/8 5/24 1/12
1/8 0 —1/12 1/24

U is nonsingular, and U~ =

By direct verification, we see that

U AU =

as expected from theory.



7. Non-examples on diagonalizability.

(b 10 1
(a) Let b be a real number, and A= [0 b 1 |,andu= |0].
1000 0]

w is an eigenvector of A with eigenvalue b, and every eigenvector of A is a non-zero scalar
multiple of u.

Then there is no basis for R® which is constituted by eigenvectors of A.

Therefore A is not diagonalizable.

(b) Let A =

O = = O
—_ = O O
b—‘CDOI

1
1
0

- 0 —

A has no eigenvalues, and hence no eigenvectors.

Then there is no basis for R* which is constituted by eigenvectors of A.

Therefore A is not diagonalizable.



8. Proof of Theorem (C).

Let A is an (n X n)-square matrix.

Let uy,us, - -+ ,u, be vectors in R", and U = [u1u2--- un].

Suppose uj, Uy, - - - , U, constitute a basis for R".

« Suppose uj, us, - -- , U, are eigenvectors of A, with eigenvalues Ai, Ao, -+, \,, respec-
tively.

[Reminder: We want to verify that a diagonalization for A is given by
U_lAU — diag(Ala >\27 e 7>\n)]

Then for each 7 =1,2,--- ,n, we have Au; = A\ju;.

Therefore

AU = [AulAug--- Aun} = [)\1111)\2112"' )\nun}
— [ el [ AUl ] = [ (el | Unel) - [T (el ]
= U | el [ Aol |- Al | = U diag(h, Ao, -+, \)

Since up, Uy, - - - , U, constitutes a basis for R”, U is non-singular and invertible. The
matrix U~ is well-defined.

Then U'AU = diag(Ai, Aa, - -+, \,), which is a diagonal matrix.



. Suppose U AU is a diagonal matrix, given by
U AU = diag(A1, Ao, -+, M)

[Reminder: We want to verify that for each j,
u; is an eigenvector of A with eigenvalue A;.]

Then
[Auy[Auy |- [ Au, | = AU = U diag(h, Ao+ A)
= U | el [ el |- [ Ael
= [ UOnel) U0uel") |-+ (U (el |
= | aUe el | A U6l |
= | Mug | Aug |-+ Ay, |
Therefore, for cach j = 1,2, ,n, we have

Allj = )\jllj.

Hence uy, us, - - - , u,, are eigenvectors of A, with eigenvalues Ay, Ao, - - - , \,, respectively.



9. Lemma (1).

Suppose A is an (n X n)-square matrix.
Then A is singular if and only if 0 is an eigenvalue of A.

Furthermore, if A is singular then

every non-zero vector in N'(A) is an eigenvector of A with eigenvalue 0.

Remark.

When
dim(N(A)) > 2,

we do not expect any two arbitrary non-zero vectors in A'(A) to be scalar multiples of each
other.

This result reminds us that we should not expect eigenvectors corresponding to the same
eigenvalue of A to be non-zero scalar multiples of each other.



10. Lemma (2).

Let A be an (n X n)-square matrix.

Suppose A is a real number.

Then the statements below hold:
(a) A is an eigenvalue of A if and only if A — \I,, is singular.

(b) Now suppose A is an eigenvalue of A indeed.

Then for any non-zero vector x in R",

x is an eigenvector of A with eigenvalue A if and only if x € N(A — A\I,,).

11. Definition. (Eigenspace.)
Let A be an (n X n)-square matrix.

Suppose A be an eigenvalue of A.

Then N (A — \1,,) is called the eigenspace of A with eigenvalue \.
It is denoted by E4 (A).

The dimension of €4 (\) is called the geometric multiplicity of the eigenvalue \ of A.



10. Lemma (2).
Let A be an (n X n)-square matrix.

Suppose \ is a real number.

Then the statements below hold.:
(a) X is an eigenvalue of A if and only if A — \I,, is singular.

(b) Now suppose A is an eigenvalue of A indeed.

Then for any non-zero vector x in R",

x is an eigenvector of A with eigenvalue X if and only if x € N(A — \I,,).
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It is denoted by E4 (N). :}‘:’ E:l; té%ﬁﬁ;@f@i

The dimension of €4 (\) is called the geometric multiplicity of the eigenvalue A of A.

11. Definition. (Eigenspace.)
Let A be an (n X n)-square matrix.
Suppose A be an eigenvalue of A.




12.

Theorem (D).

Let A is an (n X n)-square matrix.
Suppose A1, Aa, - -+, A, are all the eigenvalues of A, pairwise distinct.

Then the statements below are logically equivalent:

(a) A is diagonalizable.

b) The sum of the respective geometric multiplicities of A1, Ao, - -+ , A, as eigenvalues of A,
( g p, as eig
equals n.

Now suppose A is indeed diagaonalizable.

For each k =1,2,--- ,p, write dim(E4 (A\)) = ng, and suppose that
Vi1, V2, ", Vin, constitute a basis for €4 (Ay).
Then a basis for R" is constituted by
Vi1,V12," " s Ving
V21,V22, ", V2ns,

Vp717 Vp727 T 7Vp7np'

Proof.  Omitted. (The argument is not difficult at a conceptual level; we can certainly
give it within the context of this course. However it will be tedious unless we introduce the
notion of direct sum.)



13. Illustration of the content of Theorem (D).

13 30 D 2
(a) Let A = [—6 _14],andu1: [_2],112: [_1].

It happens that u;, us are eigenvectors of A with respective eigenvalues 1, —2.

The only eigenspaces of A are
Eall),E4(—2).
The dimension of €4 (1) is 1, with a basis given by ;.

The dimension of £4 (—2) is 1, with a basis given by us.

Since
dim(E4 (1)) + dim(E4 (—2)) = 2 = dim(R?),
A is expected to be diagonalizable.
A diagonalization of A is given by
U AU = diag(1, —2),

in which

U = [111112}.



(11 1]
(b)Let A= {022 |,andu; = |0, us= |1|,u3= [4].
003

It happens that u;, us, uz are eigenvectors of A with respective eigenvalues 1, 2, 3.
The only eigenspaces of A are
Ea(1),E4(2),€4(3).
The dimension of £4 (1) is 1, with a basis given by u;.
The dimension of €4 (2) is 1, with a basis given by u.
The dimension of €4 (3) is 1, with a basis given by us.

Since
dim(E4 (1)) + dim(E4 (2)) + dim(E4 (3)) = 3 = dim(R?),
A is expected to be diagonalizable.
A diagonalization of A is given by
U AU = diag(1,2,3),

in which
U:[ulugug].



(21 1] 1 1 1
(c)Let A= 121 |,andu; = |1|,us= [—1]|,u3=10
11 2] 1] 0 -1

It happens that u;, us, uz are eigenvectors of A with respective eigenvalues 4, 1, 1.

The only eigenspaces of A are
Eald),E4(1).
The dimension of €4 (4) is 1, with a basis given by u;.

The dimension of €4 (1) is 2, with a basis given by us, us.

Since
dim(E4 (4)) + dim(E4 (1)) = 3 = dim(R?),
A is expected to be diagonalizable.
A diagonalization of A is given by
U AU = diag(4,1, 1),

in which
U:[ulugug].



(d) Let A =

It happens that uy, us, us, uy are eigenvectors of A with respective eigenvalues 1, —1, 3,

o O O

-5

0
1
1

o = OO
Ol — O +—

—1

cand uy =

The only eigenspaces of A are

Ex(1),E4(=1),E4(3),E4(=3).

W W —

The dimension of £4 (1) is 1, with a basis given by ;.

The dimension of £4(3) is 1, with a basis given by us.

(

The dimension of £4 (—1) is 1, with a basis given by us.
(
(

The dimension of £4 (—3) is 1, with a basis given by uy.

Since

dim(E4 (1)) + dim(E4 (—1)) + dim(E4 (3)) + dim(E4 (—=3)) = 4 = dim(RY),

A is expected to be diagonalizable.

A diagonalization of A is given by

in which

U AU = diag(1, —1,3, —3),

U= [uﬂuz‘u;g‘uzl].

—3.



(e) Let b be a real number, and A =

o o o
oS =
S = O

b is the only eigenvalue of A, and
every eigenvector of A is a non-zero scalar multiple of u.

The only eigenspace of A is
€a(b),

which is of dimension 1.

Therefore A is not diagonalizable.

(f) Let A =

O = = O
_ = O O

OO~ =
HOO'

A has no eigenvalues, and hence no eigenspace.

Therefore A is not diagonalizable.

,andu= |0].




14. Theorem (3).

Let A be an (n X n)-square matrix.

Suppose A is diagonalizable, with a diagonalization U AU = D, for some non-singular
(n x m)-square matrix U and for some (n x n)-diagonal matrix D.

Then the statements below hold:
(a) For each positive integer p,
AP is diagonalizable,

with a diagonalization given by

U 1APU = DP.

(b) Suppose A is non-singular.
Then D is non-singular, and A™! is diagonalizable, with a diagonalization given by
U AU =D""
Proof of Theorem (3). Exercise.

Remark.  This result tells us that when A is diagonalizable, it will be easy to find its
positive powers. (Why? Because it is easy to find the positive powers of a diagonal matrix.)



14. Theorem (3).
Let A be an (n X m)-square matrix.

Suppose A is diagonalizable, with a diagonalization U AU = D, for some non-singular
(n X m)-square matrix U and for some (n X n)-diagonal matrix D.

Then the statements below hold:

1Lk o

UT'N U= UTAUUTAY
Rk b

VAN U= U'ATUUTAY
s b“ _

(a) For each positive integer p,
AP is diagonalizable,

with a diagonalization given by

U~1APU = DP.

\/JL%B - 0[‘6()\\, eE '/XV\)/
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Then D is non-singular, and A~! is diagonalizable, with a diagonalization given by
et hogpent enetly b U—A"U =D
W‘:) Nksm&&:kg °6’:'> D) h&h\‘}@/b’D.
Proof of Theorem (3). Exercise.

(b) Suppose A is non-singular.

/""x“)}

Remark.  This result tells us that when A is diagonalizable, it will be easy to find its
positive powers. (Why? Because it is easy to find the positive powers of a diagonal matrix.)



15. Examples on application of Theorem (3).

111
(a)Let A= |0 2 2
00 3
It happens that A is diagonalizable, with a diagonalization given by
U AU = diag(1,2,3),
1 1 3
in which U = [ul‘uﬂu?,},ul: O, o= [1|,u3= [4].
0 0 2
Then
A = Udiag(1,2,3)U"".
113 1 —1 1/2
Notethat U= [0 1 4| andU1=]0 1 =2
00 2 0 0 1/2

Then for each positive integer p, we have

AP = U(diag(1,2,3))PU!
= U(diag(1,2F,3"))U"!

1137710 0][1 —11/2 1 —1427 1/2—-2-20 4 (3/2) -3
= Jlo14flo2xz 0|01 —2|=]0 —2.20 2.3
002[[003][0 0 1/2 0 0 3



1
1
2
A

It happens that A is diagonalizable, with a diagonalization given by

U AU = diag(4,1, 1),

1 1 1
inwhiChU:[ul‘UQ‘ug],ulz Il,up=|[—1|,uz=10

1 0 —1
Then

A =Udiag(4,1,)U .
1 1 TR
Notethat U= |1 —1 0 [andU'==|1 =2 1
1 0 —1 111 -9

Then for each positive integer p, we have

AP = U(diag(4,1,1))PU "
— U(diag(4”,1, 1)U

| I 1 1 40 0 1
= 3 I =1 0 01 0 -2 1 | ==
I 0 -1 0 0 —1 I 1 =2

P —3 443
P —1 4P 42 -1
P41 4P 41 4P —2



