
MATH1030 Eigenvalues and eigenvectors.

1. Definition. (Eigenvalues and eigenvectors.)
Let A be an (n× n)-square matrix (with real entries). Let λ be a (real) number. Let v be a non-zero vector with n

(real) entries.
We say v is an eigenvector of A with eigenvalue λ (or equivalently, λ is an eigenvalue of A with a corresponding
eigenvector v) if and only if Av = λv.
Remark. In this course, we restrict all discussion to real numbers. However, in other mathematics courses and in
many practical situations, allowing complex numbers into play is not only desirable but also natural and necessary.
This definition is formulated in such a way that it can be adapted to the ‘world of complex numbers’ immediately:
simply change the word ‘real’ to ‘complex’.
Further remarks on terminologies.

(a) We may write ‘the number λ is an eigenvalue of A’ (without mentioning any specific corresponding eigenvector)
if there is some non-zero vector u so that u is an eigenvector of A with eigenvalue λ.

(b) We may write ‘the non-zero vector v is an eigenvector of A’ (without mentioning its corresponding eigenvalue)
if the equality Av = µv holds for some number µ.

2. Lemma (1).
Let A be an (n× n)-square matrix. The statements below hold:

(a) Let v be a non-zero vector in Rn. Let λ, µ be real numbers. Suppose v is an eigenvector of A with eigenvalue
λ and also with eigenvalue µ. Then λ = µ.

(b) Let v be a non-zero vector in Rn. Let λ be a real number. Suppose v is an eigenvector of A with eigenvalue
λ. Then, for any non-zero real number β, the vector βv is an eigenvector of A with eigenvalue λ.

(c) Let u1,u2, · · · ,uk be non-zero vectors in Rn. Let λ be a real number. Suppose each of u1,u2, · · · ,uk is an
eigenvector of A with eigenvalue λ. Then, for any real numbers α1, α2, · · · , αk, if α1u1 +αu2 + · · ·+αuk ̸= 0,
then the vector α1u1 + α2u2 + · · ·+ αkuk is an eigenvector of A with eigenvalue λ.

Remark. In plain words, what this result says is about the square matrix A:

(a) Every eigenvector of A corresponds to a unique eigenvalue.
(b) Every non-zero scalar multiple of an eigenvector of A is also an eigenvector of A, and they correspond to the

same eigenvalue.
(Be careful: we have not ruled out the possibility that non-zero vectors which are not scalar multiple of each
other can be eigenvectors of A with the same eigenvalue.)

(c) When it is not the zero vector, a linear combination of eigenvectors of A with the same eigenvalue is an
eigenvector of A with that eigenvalue.

3. Examples.

(a) Let A =

[
13 30
−6 −14

]
, and u =

[
5
−2

]
, v =

[
2
−1

]
.

Note that none of u,v is the zero vector in R2.

i. We have Au =

[
5
−2

]
= 1 · u. Then u is an eigenvector of A with eigenvalue 1.

Every non-zero scalar multiple of u is also an eigenvector of A with eigenvalue 1. Detail:
• Suppose α ∈ R and α ̸= 0. Then A(αu) = αAu = α · 1u = 1 · αu.

ii. We have Av =

[
−4
2

]
= −2v. Then v is an eigenvector of A with eigenvalue −2.

Every non-zero scalar multiple of v is also an eigenvector of A with eigenvalue −2. Detail:
• Suppose α ∈ R and α ̸= 0. Then A(αv) = αAv = α(−2v) = −2αv.

(b) Let A =

[
1 1 1
0 2 2
0 0 3

]
, and u =

[
1
0
0

]
, v =

[
1
1
0

]
, w =

[
3
4
2

]
.

Note that none of u,v,w is the zero vector in R3.
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i. We have Au =

[
1
0
0

]
= 1 · u. Then u is an eigenvector of A with eigenvalue 1.

Every non-zero scalar multiple of u is also an eigenvector of A with eigenvalue 1. Detail:
• Suppose α ∈ R and α ̸= 0. Then A(αu) = αAu = α · 1u = 1 · αu.

ii. We have Av =

[
2
2
0

]
= 2v. Then v is an eigenvector of A with eigenvalue 2.

Every non-zero scalar multiple of v is also an eigenvector of A with eigenvalue 2. Detail:
• Suppose α ∈ R and α ̸= 0. Then A(αv) = αAv = α · 2v = 2 · αv.

iii. We have Aw =

[
9
12
6

]
= 3w. Then w is an eigenvector of A with eigenvalue 3.

Every non-zero scalar multiple of w is also an eigenvector of A with eigenvalue 3. Detail:
• Suppose α ∈ R and α ̸= 0. Then A(αw) = αAw = α · 3w = 3 · αw.

(c) Let A =

[
2 1 1
1 2 1
1 1 2

]
, and u =

[
1
1
1

]
, v1 =

[
1
−1
0

]
, v2 =

[
1
0
−1

]
.

Note that none of u,v1,v2 is the zero vector in R3.

i. We have Au =

[
4
4
4

]
= 4u. Then u is an eigenvector of A with eigenvalue 4.

Every non-zero scalar multiple of u is also an eigenvector of A with eigenvalue 4.

ii. We have Av1 =

[
1
−1
0

]
= 1 · v1. Then v1 is an eigenvector of A with eigenvalue 1.

We have Av2 =

[
1
0
−1

]
= 1 · v2. Then v2 is an eigenvector of A with eigenvalue 1.

Every linear combination of v1,v2 which is not the zero vector in R3 is also an eigenvector of A with
eigenvalue 1. Detail:
• Suppose α1, α2 ∈ R, and w = α1v1 + α2v2. Suppose w ̸= 03.

Then Aw = A(α1v1 + α2v2) = α1Av1 + α2Av2 = α1v1 + α2v2 = 1 ·w.
Remark. It is possible for a square matrix to have eigenvectors which are not scalar multiples of each
other but which correspond to the same eigenvalue.
More generally, it is possible for a square matrix to have several linearly independent eigenvectors with the
same eigenvalue.

(d) Let A =

 0 0 1 0
0 0 0 1
2 1 1 1
−5 2 5 −1

, and t =

 1
−1
1
−1

, u =

 1
5
−1
−5

, v =

113
3

, w =

 1
−5
−3
15

.

Note that none of t,u,v,w is the zero vector in R4.

i. We have At =

 1
−1
1
−1

 = 1 · t. Then t is an eigenvector of A with eigenvalue 1.

ii. We have Au =

−1
−5
1
5

 = −1 · u. Then u is an eigenvector of A with eigenvalue −1.

iii. We have Av =

339
9

 = 3v. Then v is an eigenvector of A with eigenvalue 3.

iv. We have Aw =

 −3
15
9

−45

 = −3w. Then w is an eigenvector of A with eigenvalue −3.

4. Further examples and non-examples.

(a) Let A = On×n.
For any v ∈ Rn, Av = 0n = 0 · v.
It follows that every non-zero vector in Rn is an eigenvector of A with eigenvalue 0.

2



(b) Let A = In.
For any v ∈ Rn, Av = v = 1 · v.
It follows that every non-zero vector in Rn is an eigenvector of A with eigenvalue 1.

(c) Let b1, b2, b3 ∈ R, and A =

[
b1 0 0
0 b2 0
0 0 b3

]
.

For each j = 1, 2, 3, we have Ae
(3)
j = bje

(3)
j .

It follows that e
(3)
j is an eigenvector of A with eigenvalue bj .

(d) Let b be a real number, and A =

[
b 1 0
0 b 1
0 0 b

]
, and u =

[
1
0
0

]
.

We have Au =

[
b
0
0

]
= bu.

Then u is an eigenvector of A with eigenvalue b.
We verify that b is the only eigenvalue of A and every eigenvector of A is a scalar multiple of u:

• Suppose v is an eigenvector of A with eigenvalue λ. Denote the j-th entry of v by vj for each j = 1, 2, 3.

Then λv = Av =

[
bv1 + v2
bv2 + v3

bv3

]
= bv +

[
v2
v3
0

]
.

Therefore
[
v2
v3
0

]
= (λ− b)v = (λ− b)

[
v1
v2
v3

]
.

Comparing the entries, we have (λ− b)v3 = 0, and v2 = (λ− b)v1 and v3 = (λ− b)v2.
We have λ = b or v3 = 0.
We claim that λ = b:
∗ Suppose it were true that λ ̸= b. Then λ− b ≠ 0 and v3 = 0. So v2 =

v3
λ− b

= 0 and v1 =
v2

λ− b
= 0.

Now v = 0. But this is impossible because v is an eigenvector of A.

Therefore λ = b. Then v2 = v3 = 0. Hence v = v1

[
1
0
0

]
= v1u.

Remark. It is possible for an (n× n)-square matrix to have ‘relatively few’ eigenvectors, in the sense that
there is no chance to form a basis for Rn out of eigenvectors.

(e) Let A =

 1 0 0 −1
1 1 0 0
0 1 1 0
0 0 1 1

.

We verify that A has no eigenvalue (and no eigenvector):

• Suppose u is an eigenvector of A with eigenvalue λ.
Denote the j-th entry of u by uj .

We have λu = Au =

u1 − u4
u1 + u2
u2 + u3
u3 + u4

 = u+

−u4
u1
u2
u3

.

Then (λ− 1)

u1
u2
u3
u4

 = (λ− 1)u =

−u4
u1
u2
u3

.

Comparing the entries, we have 
(λ− 1)u1 = −u4

(λ− 1)u2 = u1

(λ− 1)u3 = u2

(λ− 1)u4 = u3

Then u1 = −(λ− 1)4u1. Therefore [(λ− 1)4 + 1]u1 = 0.
We have (λ− 1)4 + 1 = 0 or u1 = 0.
Since λ is a real number, (λ− 1)4 + 1 > 0. Then u1 = 0.
Therefore u2 = u3 = u4 = 0 also.
Hence u = 0. But this is impossible, because u is an eigenvector of A.

3



Remark. It is possible for a square matrix to have no eigenvalue (and hence to have no eigenvector).

5. Lemma (2).
Let A be an (n× n)-square matrix.
Suppose u,v are eigenvectors of A with distinct eigenvalues. Then u,v are linearly independent.

6. Lemma (3).
Let A be an (n× n)-square matrix.
Suppose u1,u2, · · · ,uk are linearly independent eigenvectors of A.
Further suppose v is an eigenvector of A whose eigenvalue is distinct from the eigenvalue of each of u1,u2, · · · ,uk.
Then u1,u2, · · · ,uk,v are linearly independent.

7. Question.
What are the immediate consequences of Lemma (2) and Lemma (3) combined?
Answer.
Suppose A is an (n× n)-square matrix, and λ1, λ2, λ3, · · · are pairwise distinct eigenvalues of A.

(a) For each j, suppose vj is an eigenvector of A with eigenvalue λj .
By Lemma (2), v1,v2 are linearly independent.
Then by Lemma (3), v1,v2,v3 are linearly independent.
Again by Lemma (3), v1,v2,v3,v4 are linearly independent.
Repeatedly by Lemma (3), v1,v2, · · · ,vk are linearly independent for each k.
It follows that any finitely many vectors from amongst v1,v2,v3, · · · are linearly independent.

(b) Now, for each j, we indeed pick some eigenvector of A, say, vj , with eigenvalue λj .
As argued above, the vectors v1,v2,v3, · · · are linearly independent.
Further recall that any n+ 1 vectors in Rn are linearly dependent.
Then the list v1,v2,v3, · · · has to terminate somewhere: it is v1,v2, · · · ,vp, for some p ≤ n, in disguise.
This in turn implies that the p pairwise distinct numbers λ1, λ2, · · · , λp are all the eigenvalues that A has.

We summarize the above discussion into Theorem (A) and Theorem (B) below.

8. Theorem (A).
Suppose A is a square matrix, and λ1, λ2, λ3, · · · are pairwise distinct eigenvalues.
Further suppose v1,v2,v3, · · · are eigenvectors of A with respective eigenvalues λ1, λ2, λ3, · · · .
Then v1,v2,v3, · · · are linearly independent.
Theorem (B).
Suppose A is an (n× n)-square matrix. Then A has at most n pairwise distinct eigenvalues.
Remark. What we will be most interested is the scenario in which A is an (n × n)-square matrix and there is
some basis for Rn which are eigenvectors of A. (Their eigenvalues are not necessarily pairwise distinct.)

9. Proof of Lemma (2).
Let A be an (n× n)-square matrix.
Suppose u,v are eigenvectors of A with distinct eigenvalues, say, µ, λ respectively.
[Reminder: we want to deduce that u,v are linearly independent.
This amounts to verifying: ‘For any α, β ∈ R, if αu+ βv = 0 then α = β = 0.’]
Pick any α, β ∈ R. Suppose αu+ βv = 0.

[Reminder: We want to deduce α = β = 0.
Ask: How to make use of assumption? Answer: Multiply this equality by A from the left.]

By assumption, Au = µu and Av = λv.
Then αµu+ βλv = αAu+ βAv = A(αu+ βv) = A0 = 0.
We also have αλu+ βλv = λ(αu+ βv) = 0.
Then α(µ− λ)u = 0.
By assumption, u is not the zero vector. Also by assumption, µ− λ ̸= 0. Then α = 0.
Now we have βv = 0. By assumption, v is not the zero vector. Then β = 0.
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10. Proof of Lemma (3).
Let A be an (n× n)-square matrix.
Suppose u1,u2, · · · ,uk are linearly independent eigenvectors of A, say, with eigenvalues µ1, µ2, · · · , µk respectively.
Further suppose v is an eigenvector of A with eigenvalue λ, and λ ̸= µ1, λ ̸= µ2, ..., λ ̸= µk.
[Reminder: we want to deduce that u1,u2, · · · ,uk,v are linearly independent.
This amounts to verifying: ‘For any α1, α2, · · · , αk, β ∈ R, if α1u1 + α2u2 + · · · + αkuk + βv = 0 then α1 = α2 =

· · · = αk = β = 0.’]
Pick any α1, α2, · · · , αk, β ∈ R. Suppose α1u1 + α2u2 + · · ·+ αkuk + βv = 0.

[Reminder: We want to deduce α1 = α2 = · · · = αk = β = 0.
Ask: How to make use of assumption? Answer: Multiply this equality by A from the left.]

By assumption, Auj = µjuj for each j = 1, 2, · · · , k, and Av = λv. Then

α1µ1u1 + α2µ2u2 + · · ·+ αkµkuk + βλv = α1Au1 + α2Au2 + · · ·+ αkAuk + βAv

= A(α1u1 + α2u2 + · · ·+ αkuk + βv)

= A0 = 0

We also have α1λu1 + α2λu2 + · · ·+ αkλuk + βλv = λ(α1u1 + α2u2 + · · ·+ αkuk + βv) = 0.
Then α1(µ1 − λ)u1 + α2(µ2 − λ)u2 + · · ·+ αk(µk − λ)uk = 0.
By assumption, u1,u2, · · · ,uk are linearly independent.
Then for each j, we have αj(µj − λ) = 0. By assumption, λ ̸= µj . Then αj = 0.
Now we have βv = 0. By assumption v is not the zero vector. Then β = 0.
It follows that u1,u2, · · · ,uk,v are linearly independent.

11. Examples: Applications of Theorem (A) and Theorem (B).

(a) Let A =

[
13 30
−6 −14

]
, and u =

[
5
−2

]
, v =

[
2
−1

]
.

It is known that u is an eigenvector of A with eigenvalue 1, and v is an eigenvector of A with eigenvalue −2.
According to Theorem (B), A cannot have any other eigenvalues.
One question remains: Can A have any eigenvector which is neither a non-zero scalar multiple of u nor a
non-zero scalar multiple of v?
We show that this cannot happen:

i. Since u,v are eigenvectors of A of distinct eigenvalues, they are linearly independent vectors. Since they
are vectors in R2, they constitute a basis for R2

ii. Suppose w is an eigenvector of A with eigenvalue µ.
Since w is a vector in R2, w is a linear combination of u,v.
Then there exist some α, β ∈ R such that w = αu+ βv.

iii. Recall that the only eigenvalues of A are 1,−2.
Then µ = 1 or µ = −2.
• (Case 1.) Suppose µ = 1.

Then αu+ βv = w = Aw = A(αu+ βv) = αAu+ βAv = αu− 2βv.
Therefore 3βv = 0. Since v ̸= 0, β = 0.
Then w = αu.
Therefore w is a scalar multiple of u.

• (Case 2.) Suppose µ = −2.
Then −2αu− 2βv = −2w = Aw = A(αu+ βv) = αAu+ βAv = αu− 2βv.
Therefore 3αu = 0. Since u ̸= 0, α = 0.
Then w = βv.
Therefore w is a scalar multiple of v.

Hence, in any case, w is a scalar multiple of u or a scalar multiple of v.
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(b) Let A =

[
1 1 1
0 2 2
0 0 3

]
, and u =

[
1
0
0

]
, v =

[
1
1
0

]
, w =

[
3
4
2

]
.

It is known that u,v,w are eigenvectors of A with eigenvalues 1, 2, 3 respectively.
According to Theorem (B), A cannot have any other eigenvalues.
One question remains: Can A have any eigenvector which is neither a non-zero scalar multiple of u, nor a
non-zero scalar multiple of v, nor a non-zero scalar multiple of w?
We show that this cannot happen:

i. Since u,v,w are eigenvectors of A of distinct eigenvalues, they are linearly independent vectors. Since
they are vectors in R3, they constitute a basis for R3

ii. Suppose t is an eigenvector of A with eigenvalue µ.
Since t is a vector in R3, t is a linear combination of u,v,w.
Then there exist some α, β, γ ∈ R such that t = αu+ βv + γw.

iii. Recall that the only eigenvalues of A are 1, 2, 3.
Then µ = 1 or µ = 2 or µ = 3.
• (Case 1.) Suppose µ = 1.

Then αu+ βv + γw = t = At = A(αu+ βv + γw) = αAu+ βAv + γAw = αu+ 2βv + 3γw.
Therefore 2βv + 3γw = 0. Since v,w are linearly independent, β = γ = 0.
Then t = αu.
Therefore t is a scalar multiple of u.

• (Case 2.) Suppose µ = 2.
Modifying the above argument, we deduce that α = γ = 0 and t = βv.
Therefore t is a scalar multiple of v.

• (Case 3.) Suppose µ = 3.
Modifying the above argument, we deduce that α = β = 0 and t = γw.
Therefore t is a scalar multiple of w.

Hence, in any case, t is a scalar multiple of u or a scalar multiple of v or a scalar multiple of w.

(c) Let A =

[
2 1 1
1 2 1
1 1 2

]
, and u =

[
1
1
1

]
, v1 =

[
1
−1
0

]
, v2 =

[
1
0
−1

]
.

It is known that u,v1,v2 are eigenvectors of A with eigenvalues 4, 1, 1 respectively.
Observe that u,v1,v2 constitute a basis for R3.
We are going to show that A cannot have any other eigenvalue, and that every eigenvector of A is a non-zero
scalar multiple of u or a non-zero vector which is a linear combination of v1,v2.

i. Suppose w is an eigenvector of A with eigenvalue µ.
Since w is a vector in R3, there exist some α, β1, β2 ∈ R such that w = αu+ β1v1 + β2v2.

ii. We have µαu+ µβ1v1 + µβ2v2 = µw = Aw = αAu+ β1Av1 + β2Av2 = 4αu+ β1v1 + β2v2.
Then (µ− 4)αu+ (µ− 1)β1v1 + (µ− 1)β2v2 = 0.
Since u,v1,v2 are linearly independent, we have (µ− 4)α = (µ− 1)β2 = (µ− 1)β3 = 0.

iii. We verify that µ = 4 or µ = 1:
• Suppose µ ̸= 4 and µ ̸= 1.

Then, since (µ− 4)α = (µ− 1)β2 = (µ− 1)β3 = 0, we would have α = β = γ = 0.
Therefore w = αu+ β1v1 + β2v2 = 0. This is impossible because w is an eigenvector of A.

iv. Now we have confirmed that µ = 4 or µ = 1.
• (Case 1.) Suppose µ = 4.

Then since (µ− 1)β2 = (µ− 1)β3 = 0, we have β = γ = 0.
Therefore w = αu.
Hence w is a scalar multiple of u.

• (Case 2.) Suppose µ = 1.
Then since (µ− 4)α = 0, we have α = 0.
Therefore w = β1v1 + β2v2.
Hence w is a linear combination of v1,v2.

Hence, in any case w is a scalar multiple of u or a linear combination of v1,v2.
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