
MATH1030 Dimension relation on sum and intersection.

1. Recall the definition for the respective notions of intersection and sum for subspaces of Rn:

Let Y, Z be subspaces of Rn.
(a) The intersection of Y, Z, denoted by V ∩W , is the subspace of Rn defined to by

Y ∩ Z = {x ∈ Rn : x ∈ Y and x ∈ Z}.

(b) The sum of Y, Z, denoted by Y + Z, is the subspace of Rn defined by

Y + Z =
{
x ∈ Rn :

There exist some y ∈ Y , z ∈ Z
such that x = y + z

}
.

Also recall the result below, which is Theorem (G) from the handout More on minimal spanning sets:

Let W be a non-zero subspace of Rn, and u1,u2, · · · ,up be vectors in W .
Further suppose that u1,u2, · · · ,up are linearly independent.
Then, there is some basis for W , which is constituted of at most n vectors, amongst them being the vectors
u1,u2, · · · ,up.

With the help of this result, we are going to establish an numerical equality relating the respective dimensions of
any two subspaces of Rn and the respective dimensions of their intersection and their sum.

2. Theorem (L). (Dimension Theorem relating the sum and intersection of subspaces of Rn.)
Suppose Y, Z are subspaces of Rn.
Then dim(Y + Z) + dim(Y ∩ Z) = dim(Y ) + dim(Z).
Remark. What is nice about Theorem (L) is that it provides a relation from which we can deduce the dimension
of a certain subspace of Rn (or obtain some constraints on its dimension), without having to go into the trouble of
immediately finding a basis for it, as long as we are provided enough information on some other subspaces of Rn.

3. Proof of Theorem (L).
Suppose Y, Z are subspaces of Rn. Write dim(Y ) = m, and dim(Z) = n.
Note that Y ∩ Z, Y + Z are subspaces of Rn. Write dim(Y ∩ Z) = p, and dim(Y + Z) = q.
Pick some basis for Y ∩ Z, say, x1,x2, · · · ,xp.
By Theorem (G), there is some basis for Y , which is constituted by vectors in Y , amongst them being x1,x2, · · · ,xp.
Denote the other vectors in this basis for Y by s1, s2, · · · , sk.
By construction, we have p+ k = m. Also, by construction, none of s1, s2, · · · , sk belongs to Z. Justification:

• Suppose it were true that s1 belonged to Z. Then s1 ∈ Y and s1 ∈ Z. Therefore s1 ∈ Y ∩ Z.
Since x1,x2, · · · ,xp constitute a basis for Y ∩ Z, it would happen that s1 was a linear combination of
x1,x2, · · · ,xp.
Then x1,x2, · · · ,xp, s1 would be linearly dependent.
However, because x1,x2, · · · ,xp, s1, s2, · · · , sk constitute a basis for Y , they are linearly independent. Then
x1,x2, · · · ,xp, s1 are linearly dependent. Contradiction arises.
Hence in the first place s1 does not belong to Z. Similarly, none of s2, · · · , sk belong to Z.

Similarly, there is some basis for Z, which is constituted by vectors in Z, amongst them being x1,x2, · · · ,xp. Denote
the other vectors in this basis for Y by t1, t2, · · · , tℓ.
By construction, we have p+ ℓ = n. Moreover, by construction, none of t1, t2, · · · , tℓ belong to Y .
We verify that x1,x2, · · · ,xp, s1, s2, · · · , sk, t1, t2, · · · , tℓ constitute a basis for V +W :

• Pick any u ∈ Y + Z. By definition, there exist some v ∈ Y , w ∈ Z such that u = v +w.
Since v ∈ Y , there exist some α1, α2, · · · , αp, β1, β2, · · · , βk such that

v = α1x1 + α2x2 + · · ·+ αpxp + β1s1 + β2s2 + · · ·+ βksk.

Since w ∈ Z, there exist some γ1, γ2, · · · , γp, δ1, δ2, · · · , δℓ such that

w = γ1x1 + γ2x2 + · · ·+ γpxp + δ1t1 + δ2t2 + · · ·+ δℓtℓ.

Then
u = v +w

= (α1 + γ1)x1 + (α2 + γ2)x2 + · · ·+ (αp + γp)xp + β2s2 + · · ·+ βksk + δ1t1 + δ2t2 + · · ·+ δℓtℓ
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• Pick any α1, α2, · · · , αp, β1, β2, · · · , βk, γ1, γ2, · · · , γℓ ∈ R.
Suppose α1x1 + α2x2 + · · ·+ αpxp + β1s1 + β2s2 + · · ·+ βksk + γ1t1 + γ2t2 + · · ·+ γℓtℓ = 0.
Write x = α1x1 + α2x2 + · · ·+ αpxp, s = β1s1 + β2s2 + · · ·+ βksk, t = γ1t1 + γ2t2 + · · ·+ γℓtℓ.
By assumption, we have x+ s+ t = 0.
We have s = −x− t. Since s ∈ Y and −x− t ∈ Z, we have s ∈ Y ∩ Z.
Since s ∈ Y ∩ Z, there exist some δ1, δ2, · · · , δp ∈ R such that s = δ1x1 + δ2x2 + · · ·+ δpxp.
Then δ1x1 + δ2x2 + · · ·+ δpxp + (−β1)s1 + (−β2)s2 + · · ·+ (−βk)sk = s− s = 0.
Since x1,x2, · · · ,xp, s1, s2, · · · , sk constitute a basis for Y , we have δ1 = δ2 = · · · = δp = 0 and −β1 = −β2 =

· · · = −βk = 0. Then β1 = β2 = · · · = βk = 0, and s = 0.
Now we have α1x1 + α2x2 + · · ·+ αpxp + γ1t1 + γ2t2 + · · ·+ γℓtℓ = x+ t = 0.
Since x1,x2, · · · ,xp, t1, t2, · · · , tℓ constitute a basis for Z, we have α1 = α2 = · · · = αp = 0 and γ1 = γ2 =

· · · = γℓ = 0.

Therefore dim(Y + Z) = p+ k + ℓ.
Hence dim(Y + Z) + dim(Y ∩ Z) = (p+ k + ℓ) + p = (p+ k) + (p+ ℓ) = dim(Y ) + dim(Z).

4. Illustrations of Theorem (L).

(a) Let u1 = e
(3)
1 ,u2 = e

(3)
2 , and v1 = e

(3)
2 ,v2 = e

(3)
3 .

Suppose Y = Span ({u1,u2}) and Z = Span ({v1,v2}).

Then Y + Z = Span ({u1,u2,v1,v2}) = Span ({e(3)1 , e
(3)
2 , e

(3)
3 }) = R3. (Why?)

Note that dim(Y ) = 2, dim(Z) = 2 and dim(Y + Z) = 3. (Why?)
Without finding a basis for Y ∩ Z, we see that dim(Y ∩ Z) = dim(Y ) + dim(Z)− dim(Y + Z) = 1.

It happens that Y ∩ Z = Span ({e(3)2 }). Justification.

• Note that the non-zero vector e
(3)
2 is one linearly independent vector in Y ∩ Z. Since dim(Y ∩ Z) = 1, a

basis for Y ∩ Z is constituted by e
(3)
2 .

(b) Let u1 = e
(4)
1 ,u2 = e

(4)
2 , and v1 = e

(4)
3 ,v2 = e

(4)
4 .

Suppose Y = Span ({u1,u2}) and Z = Span ({v1,v2}).

Then Y + Z = Span ({u1,u2,v1,v2}) = Span ({e(4)1 , e
(4)
2 , e

(4)
3 , e

(4)
4 }) = R4. (Why?)

Note that dim(Y ) = 2, dim(Z) = 2 and dim(Y + Z) = 4. (Why?)
Without finding a basis for Y ∩ Z, we see that dim(Y ∩ Z) = dim(Y ) + dim(Z)− dim(Y + Z) = 0.
It happens that Y ∩ Z = {04}, and its basis is the empty set.

(c) Let s1 =

[
1
1
0

]
, s2 =

[
1
0
1

]
, t1 =

[
0
1
1

]
, t2 =

[
1
1
1

]
.

Define V = Span ({s1, s2}), W = Span ({t1, t2}).
Note that dim(V ) = 2 and dim(W ) = 2.
By definition, V +W = Span ({s1, s2, t1, t2}).
s1, s2, t1 are linearly independent. (Why? How?)
Then V +W = R3 and dim(V +W ) = 3. (Why?)
Therefore dim(V ∩W ) = 1.

(d) Let s1 =

11
0
0

, s2 =

01
0
1

, s3 =

00
1
1

, t1 =

 1
0
−1
0

, t2 =

 0
1
0
−1

, t3 =

 0
0
1
−1

.

Define V = Span ({s1, s2, s3}), W = Span ({t1, t2, t3}).
Note that dim(V ) = 3 and dim(W ) = 3 (Why?)
By definition, V +W = Span ({s1, s2, s3, t1, t2, t3}).
s1, s2, s3, t2 are linearly independent. (Why? How?)
Then V +W = R4 and dim(V +W ) = 4. (Why?)
Therefore dim(V ∩W ) = 2.
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(e) Let s1 =

11
0
0

, s2 =

01
0
1

, t1 =

 1
0
−1
0

, t2 =

 0
0
1
−1

.

Define V = Span ({s1, s2}), W = Span ({t1, t2}).
Note that dim(V ) = 3 and dim(W ) = 3. (Why?)
By definition, V +W = Span ({s1, s2, t1, t2}).
We determine the dimension of V +W by finding a basis for it:

• Write U = [ s1 s2 t1 t2 ].
Apply row operations on U to find the reduced row-echelon form U ′ which is row-equivalent to U :

U =

 1 0 1 0
1 1 0 0
0 0 −1 1
0 1 0 −1

 −→ · · · · · · −→ U ′ =

 1 0 0 1
0 1 0 −1
0 0 1 −1
0 0 0 0


The pivot columns of U ′ are the first, second and third columns.
Then a basis for V +W is constituted by s1, s2, t1.
Therefore dim(V +W ) = 3.

It follows that dim(V ∩W ) = 1.

(f) Let s1 =

11
1
1

, s2 =

 1
−1
1
−1

, t1 =

 1
1
−1
−1

, t2 =

 1
−1
−1
1

.

Define V = Span ({s1, s2}), W = Span ({t1, t2}).
Note that dim(V ) = 2 and dim(W ) = 2. (Why?)
By definition, V +W = Span ({s1, s2, t1, t2}).
It happens that s1, s2, t1, t2 are linearly independent.
Then V +W = R4, and dim(V +W ) = 4.
Therefore dim(V ∩W ) = 0 and V ∩W = {04}.

5. We now also recall Theorem (K) (which we call the Rank-nullity Formula) from the handout Rank-nullity Formula:

Let A be an (p× q)-matrix.
Denote by A′ the reduced row-echelon form which is row equivalent to A, and suppose the rank of A′ is r(A).
Then the statements below hold:
(a) r(A) = rcol(A) = rrow(A).
(b) n(A) + r(A) = q.
(c) r(At) = r(A), and n(At) + r(A) = p.

We shall freely apply this result in the various examples below.

6. Further illustrations of Theorem (L).

(a) Let B =
[
1 2 2 4
1 3 3 5

]
, and C = [ 2 6 5 6 ].

Define V = N (B) and W = N (C).
We have dim(V ) + r(B) = 4. Note that r(B) = rrow(B) = 2. Then dim(V ) = 2.
We have dim(W ) + r(C) = 4. Note that r(C) = rrow(C) = 1. Then dim(W ) = 3.

Define A =
[
B
C

]
. Note that N (A) = N (B) ∩N (C) = V ∩W .

Then dim(V ∩W ) + r(A) = 4. We determine the value of r(A):
• We obtain the reduced row-echelon form A′ which is row-equivalent to A by applying a sequence of row

operations to A:

A −→ · · · −→

[
1 0 0 2
0 1 0 −3
0 0 1 4

]
= A′

We see that r(A) = r(A′) = 3.
Then dim(V ∩W ) = 1.
We have dim(V +W )+dim(V ∩W ) = dim(V )+dim(W ). Then dim(V +W ) = dim(V )+dim(W )−dim(V ∩W ) =

4. It happens that V +W = R4.
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(b) Let B =
[
1 2 7 1 −1
1 1 3 1 0

]
, and C =

[
3 2 5 −1 9
1 −1 −5 2 0

]
.

Define V = N (B) and W = N (C).
We have dim(V ) + r(B) = 5. Note that r(B) = rrow(B) = 2. Then dim(V ) = 3.
We have dim(W ) + r(C) = 5. Note that r(C) = rrow(C) = 2. Then dim(W ) = 3.

Define A =
[
B
C

]
. Note that N (A) = N (B) ∩N (C) = V ∩W .

Then dim(V ∩W ) + r(A) = 5. We determine the value of r(A):
• We obtain the reduced row-echelon form A′ which is row-equivalent to A by applying a sequence of row

operations to A:

A −→ · · · −→

 1 0 −1 0 3
0 1 4 0 −1
0 0 0 1 −2
0 0 0 0 0

 = A′

We see that r(A) = r(A′) = 3.
Then dim(V ∩W ) = 2.
We have dim(V +W )+dim(V ∩W ) = dim(V )+dim(W ). Then dim(V +W ) = dim(V )+dim(W )−dim(V ∩W ) =
4.
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