MATH1030 Dimension relation on sum and intersection.

- 1. Recall the definition for the respective notions of *intersection* and sum for subspaces of \mathbb{R}^n :
 - Let Y, Z be subspaces of \mathbb{R}^n .
 - (a) The intersection of Y, Z, denoted by $V \cap W$, is the subspace of \mathbb{R}^n defined to by

$$Y \cap Z = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \in Y \text{ and } \mathbf{x} \in Z \}.$$

(b) The sum of Y, Z, denoted by Y + Z, is the subspace of \mathbb{R}^n defined by

$$Y + Z = \left\{ \mathbf{x} \in \mathbb{R}^n : \begin{array}{l} \text{There exist some } y \in Y, \ z \in Z \\ \text{such that } x = y + z \end{array} \right\}.$$

Also recall the result below, which is Theorem (G) from the handout More on minimal spanning sets:

Let W be a non-zero subspace of \mathbb{R}^n , and $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ be vectors in W.

Further suppose that $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent.

Then, there is some basis for W, which is constituted of at most n vectors, amongst them being the vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$.

With the help of this result, we are going to establish an numerical equality relating the respective dimensions of any two subspaces of \mathbb{R}^n and the respective dimensions of their intersection and their sum.

2. Theorem (L). (Dimension Theorem relating the sum and intersection of subspaces of \mathbb{R}^n .)

Suppose Y, Z are subspaces of \mathbb{R}^n .

Then $\dim(Y+Z) + \dim(Y \cap Z) = \dim(Y) + \dim(Z)$.

Remark. What is nice about Theorem (L) is that it provides a relation from which we can deduce the dimension of a certain subspace of \mathbb{R}^n (or obtain some constraints on its dimension), without having to go into the trouble of immediately finding a basis for it, as long as we are provided enough information on some other subspaces of \mathbb{R}^n .

3. Proof of Theorem (L).

Suppose Y, Z are subspaces of \mathbb{R}^n . Write $\dim(Y) = m$, and $\dim(Z) = n$.

Note that $Y \cap Z$, Y + Z are subspaces of \mathbb{R}^n . Write $\dim(Y \cap Z) = p$, and $\dim(Y + Z) = q$.

Pick some basis for $Y \cap Z$, say, $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p$.

By Theorem (G), there is some basis for Y, which is constituted by vectors in Y, amongst them being $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p$. Denote the other vectors in this basis for Y by $\mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_k$.

By construction, we have p + k = m. Also, by construction, none of $\mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_k$ belongs to Z. Justification:

• Suppose it were true that \mathbf{s}_1 belonged to Z. Then $\mathbf{s}_1 \in Y$ and $\mathbf{s}_1 \in Z$. Therefore $\mathbf{s}_1 \in Y \cap Z$. Since $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p$ constitute a basis for $Y \cap Z$, it would happen that \mathbf{s}_1 was a linear combination of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p$.

Then $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p, \mathbf{s}_1$ would be linearly dependent.

However, because $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p, \mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_k$ constitute a basis for Y, they are linearly independent. Then $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p, \mathbf{s}_1$ are linearly dependent. Contradiction arises.

Hence in the first place \mathbf{s}_1 does not belong to Z. Similarly, none of $\mathbf{s}_2, \cdots, \mathbf{s}_k$ belong to Z.

Similarly, there is some basis for Z, which is constituted by vectors in Z, amongst them being $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p$. Denote the other vectors in this basis for Y by $\mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_\ell$.

By construction, we have $p + \ell = n$. Moreover, by construction, none of $\mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_\ell$ belong to Y.

We verify that $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p, \mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_k, \mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_\ell$ constitute a basis for V + W:

• Pick any $\mathbf{u} \in Y + Z$. By definition, there exist some $\mathbf{v} \in Y$, $\mathbf{w} \in Z$ such that $\mathbf{u} = \mathbf{v} + \mathbf{w}$. Since $\mathbf{v} \in Y$, there exist some $\alpha_1, \alpha_2, \cdots, \alpha_p, \beta_1, \beta_2, \cdots, \beta_k$ such that

 $\mathbf{v} = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_p \mathbf{x}_p + \beta_1 \mathbf{s}_1 + \beta_2 \mathbf{s}_2 + \dots + \beta_k \mathbf{s}_k.$

Since $\mathbf{w} \in \mathbb{Z}$, there exist some $\gamma_1, \gamma_2, \cdots, \gamma_p, \delta_1, \delta_2, \cdots, \delta_\ell$ such that

$$\mathbf{w} = \gamma_1 \mathbf{x}_1 + \gamma_2 \mathbf{x}_2 + \dots + \gamma_p \mathbf{x}_p + \delta_1 \mathbf{t}_1 + \delta_2 \mathbf{t}_2 + \dots + \delta_\ell \mathbf{t}_\ell.$$

Then

$$\mathbf{u} = \mathbf{v} + \mathbf{w}$$

= $(\alpha_1 + \gamma_1)\mathbf{x}_1 + (\alpha_2 + \gamma_2)\mathbf{x}_2 + \dots + (\alpha_p + \gamma_p)\mathbf{x}_p + \beta_2\mathbf{s}_2 + \dots + \beta_k\mathbf{s}_k + \delta_1\mathbf{t}_1 + \delta_2\mathbf{t}_2 + \dots + \delta_\ell\mathbf{t}_\ell$

• Pick any $\alpha_1, \alpha_2, \cdots, \alpha_p, \beta_1, \beta_2, \cdots, \beta_k, \gamma_1, \gamma_2, \cdots, \gamma_\ell \in \mathbb{R}$. Suppose $\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \cdots + \alpha_p \mathbf{x}_p + \beta_1 \mathbf{s}_1 + \beta_2 \mathbf{s}_2 + \cdots + \beta_k \mathbf{s}_k + \gamma_1 \mathbf{t}_1 + \gamma_2 \mathbf{t}_2 + \cdots + \gamma_\ell \mathbf{t}_\ell = \mathbf{0}$. Write $\mathbf{x} = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \cdots + \alpha_p \mathbf{x}_p$, $\mathbf{s} = \beta_1 \mathbf{s}_1 + \beta_2 \mathbf{s}_2 + \cdots + \beta_k \mathbf{s}_k$, $\mathbf{t} = \gamma_1 \mathbf{t}_1 + \gamma_2 \mathbf{t}_2 + \cdots + \gamma_\ell \mathbf{t}_\ell$. By assumption, we have $\mathbf{x} + \mathbf{s} + \mathbf{t} = \mathbf{0}$. We have $\mathbf{s} = -\mathbf{x} - \mathbf{t}$. Since $\mathbf{s} \in Y$ and $-\mathbf{x} - \mathbf{t} \in Z$, we have $\mathbf{s} \in Y \cap Z$. Since $\mathbf{s} \in Y \cap Z$, there exist some $\delta_1, \delta_2, \cdots, \delta_p \in \mathbb{R}$ such that $\mathbf{s} = \delta_1 \mathbf{x}_1 + \delta_2 \mathbf{x}_2 + \cdots + \delta_p \mathbf{x}_p$. Then $\delta_1 \mathbf{x}_1 + \delta_2 \mathbf{x}_2 + \cdots + \delta_p \mathbf{x}_p + (-\beta_1) \mathbf{s}_1 + (-\beta_2) \mathbf{s}_2 + \cdots + (-\beta_k) \mathbf{s}_k = \mathbf{s} - \mathbf{s} = \mathbf{0}$. Since $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p, \mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_k$ constitute a basis for Y, we have $\delta_1 = \delta_2 = \cdots = \delta_p = 0$ and $-\beta_1 = -\beta_2 = \cdots = -\beta_k = 0$. Now we have $\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \cdots + \alpha_p \mathbf{x}_p + \gamma_1 \mathbf{t}_1 + \gamma_2 \mathbf{t}_2 + \cdots + \gamma_\ell \mathbf{t}_\ell = \mathbf{x} + \mathbf{t} = \mathbf{0}$. Since $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p, \mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_\ell$ constitute a basis for Z, we have $\alpha_1 = \alpha_2 = \cdots = \alpha_p = 0$ and $\gamma_1 = \gamma_2 = \cdots = \gamma_\ell = 0$.

Therefore $\dim(Y+Z) = p + k + \ell$.

Hence $\dim(Y + Z) + \dim(Y \cap Z) = (p + k + \ell) + p = (p + k) + (p + \ell) = \dim(Y) + \dim(Z).$

4. Illustrations of Theorem (L).

- (a) Let $\mathbf{u}_1 = \mathbf{e}_1^{(3)}, \mathbf{u}_2 = \mathbf{e}_2^{(3)}, \text{ and } \mathbf{v}_1 = \mathbf{e}_2^{(3)}, \mathbf{v}_2 = \mathbf{e}_3^{(3)}.$ Suppose $Y = \text{Span}(\{\mathbf{u}_1, \mathbf{u}_2\})$ and $Z = \text{Span}(\{\mathbf{v}_1, \mathbf{v}_2\}).$ Then $Y + Z = \text{Span}(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_1, \mathbf{v}_2\}) = \text{Span}(\{\mathbf{e}_1^{(3)}, \mathbf{e}_2^{(3)}, \mathbf{e}_3^{(3)}\}) = \mathbb{R}^3.$ (Why?) Note that $\dim(Y) = 2, \dim(Z) = 2$ and $\dim(Y + Z) = 3.$ (Why?) Without finding a basis for $Y \cap Z$, we see that $\dim(Y \cap Z) = \dim(Y) + \dim(Z) - \dim(Y + Z) = 1.$ It happens that $Y \cap Z = \text{Span}(\{\mathbf{e}_2^{(3)}\}).$ Justification.
 - Note that the non-zero vector $\mathbf{e}_2^{(3)}$ is one linearly independent vector in $Y \cap Z$. Since $\dim(Y \cap Z) = 1$, a basis for $Y \cap Z$ is constituted by $\mathbf{e}_2^{(3)}$.

(b) Let
$$\mathbf{u}_1 = \mathbf{e}_1^{(4)}, \mathbf{u}_2 = \mathbf{e}_2^{(4)}$$
, and $\mathbf{v}_1 = \mathbf{e}_3^{(4)}, \mathbf{v}_2 = \mathbf{e}_4^{(4)}$.
Suppose $Y = \text{Span}(\{\mathbf{u}_1, \mathbf{u}_2\})$ and $Z = \text{Span}(\{\mathbf{v}_1, \mathbf{v}_2\})$.
Then $Y + Z = \text{Span}(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_1, \mathbf{v}_2\}) = \text{Span}(\{\mathbf{e}_1^{(4)}, \mathbf{e}_2^{(4)}, \mathbf{e}_3^{(4)}, \mathbf{e}_4^{(4)}\}) = \mathbb{R}^4$. (Why?)
Note that $\dim(Y) = 2$, $\dim(Z) = 2$ and $\dim(Y + Z) = 4$. (Why?)
Without finding a basis for $Y \cap Z$, we see that $\dim(Y \cap Z) = \dim(Y) + \dim(Z) - \dim(Y + Z) = 0$.
It happens that $Y \cap Z = \{\mathbf{0}_4\}$, and its basis is the empty set.

(c) Let $\mathbf{s}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\mathbf{s}_2 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$, $\mathbf{t}_1 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$, $\mathbf{t}_2 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$. Define $V = \text{Span}(\{\mathbf{s}_1, \mathbf{s}_2\}), W = \text{Span}(\{\mathbf{t}_1, \mathbf{t}_2\})$.

Note that dim(V) = 2 and dim(W) = 2. By definition, $V + W = \text{Span}(\{\mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_1, \mathbf{t}_2\})$. $\mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_1$ are linearly independent. (Why? How?) Then $V + W = \mathbb{R}^3$ and dim(V + W) = 3. (Why?) Therefore dim $(V \cap W) = 1$.

(d) Let
$$\mathbf{s}_1 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$$
, $\mathbf{s}_2 = \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}$, $\mathbf{s}_3 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$, $\mathbf{t}_1 = \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}$, $\mathbf{t}_2 = \begin{bmatrix} 0\\1\\0\\-1 \end{bmatrix}$, $\mathbf{t}_3 = \begin{bmatrix} 0\\0\\1\\-1 \end{bmatrix}$.

Define $V = \text{Span} (\{\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3\}), W = \text{Span} (\{\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3\}).$ Note that dim(V) = 3 and dim(W) = 3 (Why?) By definition, $V + W = \text{Span} (\{\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3, \mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3\}).$ $\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3, \mathbf{t}_2$ are linearly independent. (Why? How?) Then $V + W = \mathbb{R}^4$ and dim(V + W) = 4. (Why?) Therefore dim $(V \cap W) = 2$.

(e) Let
$$\mathbf{s}_1 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$$
, $\mathbf{s}_2 = \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}$, $\mathbf{t}_1 = \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}$, $\mathbf{t}_2 = \begin{bmatrix} 0\\0\\1\\-1 \end{bmatrix}$.

Define $V = \text{Span} (\{\mathbf{s}_1, \mathbf{s}_2\}), W = \text{Span} (\{\mathbf{t}_1, \mathbf{t}_2\}).$ Note that dim(V) = 3 and dim(W) = 3. (Why?) By definition, $V + W = \text{Span} (\{\mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_1, \mathbf{t}_2\}).$

We determine the dimension of V + W by finding a basis for it:

• Write $U = [\mathbf{s}_1 | \mathbf{s}_2 | \mathbf{t}_1 | \mathbf{t}_2]$. Apply row operations on U to find the reduced row-echelon form U' which is row-equivalent to U:

$$U = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \longrightarrow \dots \longrightarrow U' = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The pivot columns of U' are the first, second and third columns.

Then a basis for V + W is constituted by $\mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_1$.

Therefore $\dim(V+W) = 3$.

It follows that $\dim(V \cap W) = 1$.

(f) Let
$$\mathbf{s}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
, $\mathbf{s}_2 = \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}$, $\mathbf{t}_1 = \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}$, $\mathbf{t}_2 = \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix}$.

Define $V = \text{Span} (\{\mathbf{s}_1, \mathbf{s}_2\}), W = \text{Span} (\{\mathbf{t}_1, \mathbf{t}_2\}).$ Note that dim(V) = 2 and dim(W) = 2. (Why?) By definition, $V + W = \text{Span} (\{\mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_1, \mathbf{t}_2\}).$ It happens that $\mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_1, \mathbf{t}_2$ are linearly independent. Then $V + W = \mathbb{R}^4$, and dim(V + W) = 4. Therefore dim $(V \cap W) = 0$ and $V \cap W = \{\mathbf{0}_4\}.$

5. We now also recall Theorem (K) (which we call the Rank-nullity Formula) from the handout Rank-nullity Formula:

Let A be an $(p \times q)$ -matrix.

Denote by A' the reduced row-echelon form which is row equivalent to A, and suppose the rank of A' is r(A). Then the statements below hold:

(a)
$$r(A) = r_{col}(A) = r_{row}(A)$$
.
(b) $n(A) + r(A) = q$.

(c) $r(A^t) = r(A)$, and $n(A^t) + r(A) = p$.

We shall freely apply this result in the various examples below.

6. Further illustrations of Theorem (L).

(a) Let
$$B = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 1 & 3 & 3 & 5 \end{bmatrix}$$
, and $C = \begin{bmatrix} 2 & 6 & 5 & 6 \end{bmatrix}$.
Define $V = \mathcal{N}(B)$ and $W = \mathcal{N}(C)$.
We have $\dim(V) + r(B) = 4$. Note that $r(B) = r_{row}(B) = 2$. Then $\dim(V) = 2$.
We have $\dim(W) + r(C) = 4$. Note that $r(C) = r_{row}(C) = 1$. Then $\dim(W) = 3$.
Define $A = \begin{bmatrix} B \\ -C \end{bmatrix}$. Note that $\mathcal{N}(A) = \mathcal{N}(B) \cap \mathcal{N}(C) = V \cap W$.
Then $\dim(V \cap W) + r(A) = 4$. We determine the value of $r(A)$:

Then $\dim(V + W) + r(A) = 4$. We determine the value of r(A):

• We obtain the reduced row-echelon form A' which is row-equivalent to A by applying a sequence of row operations to A:

$$A \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \end{bmatrix} = A'$$

We see that r(A) = r(A') = 3.

Then $\dim(V \cap W) = 1$.

We have $\dim(V+W) + \dim(V \cap W) = \dim(V) + \dim(W)$. Then $\dim(V+W) = \dim(V) + \dim(W) - \dim(V \cap W) = 4$. It happens that $V + W = \mathbb{R}^4$.

(b) Let $B = \begin{bmatrix} 1 & 2 & 7 & 1 & -1 \\ 1 & 1 & 3 & 1 & 0 \end{bmatrix}$, and $C = \begin{bmatrix} 3 & 2 & 5 & -1 & 9 \\ 1 & -1 & -5 & 2 & 0 \end{bmatrix}$. Define $V = \mathcal{N}(B)$ and $W = \mathcal{N}(C)$. We have $\dim(V) + r(B) = 5$. Note that $r(B) = r_{row}(B) = 2$. Then $\dim(V) = 3$. We have $\dim(W) + r(C) = 5$. Note that $r(C) = r_{row}(C) = 2$. Then $\dim(W) = 3$. Define $A = \begin{bmatrix} B \\ -C \end{bmatrix}$. Note that $\mathcal{N}(A) = \mathcal{N}(B) \cap \mathcal{N}(C) = V \cap W$. Then $\dim(V \cap W) + r(A) = 5$. We determine the value of r(A):

• We obtain the reduced row-echelon form A' which is row-equivalent to A by applying a sequence of row operations to A:

$$A \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & -1 & 0 & 3\\ 0 & 1 & 4 & 0 & -1\\ 0 & 0 & 0 & 1 & -2\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = A'$$

We see that r(A) = r(A') = 3.

Then $\dim(V \cap W) = 2$.

We have $\dim(V+W) + \dim(V \cap W) = \dim(V) + \dim(W)$. Then $\dim(V+W) = \dim(V) + \dim(W) - \dim(V \cap W) = 4$.