1. Definition. (Nullity, column rank, row rank of a matrix.)

Let A be a $(p \times q)$ -matrix.

- (a) The nullity of A is defined to be the dimension of the null space of A. It is denoted by n(A).
- (b) The column rank of A is defined to be the dimension of the column space of A. It is denoted by $r_{col}(A)$.
- (c) The row rank of A is defined to be the dimension of the row space of A. It is denoted by $r_{row}(A)$.

2. Theorem (K).

Let A be a $(p \times q)$ -matrix.

Suppose A' is the reduced row-echelon form which is row-equivalent to A. Denote the rank of A' is r(A). (So r(A) is the number of leading ones in A'.)

Then the statements below hold:

- (a) r(A) = r_{col}(A) = r_{row}(A).
 (b) n(A) + r(A) = q.
- (c) $r(A^t) = r(A)$, and $n(A^t) + r(A) = p$.

Remarks.

- The column space of A is a subspace of \mathbb{R}^q while the row space of A is a subspace of \mathbb{R}^p . So despite the equality $r_{col}(A) = r_{row}(A)$, we do not expect these two objects to be 'comparable'. In fact, what is important is that despite their distinction as objects, their respective dimensions are the same.
- The equality n(A) + r(A) = q is referred to as the 'Rank-nullity Formula' (for the matrix A with q columns).

3. Proof of Theorem (K).

(a) The number of vectors in a basis for C(A) is the same as the number of pivot columns in A', which is the rank of A'. Hence $r(A) = r_{col}(A)$.

The number of vectors in a basis for $\mathcal{R}(A)$ is the number of non-zero rows in A', which is also the rank of A'. Hence $r(A) = r_{row}(A)$.

- (b) The nullity of A is the same as the number of free columns in A'. Then n(A) = q - r(A). Therefore n(A) + r(A) = q.
- (c) Note that $C(A^t) = \mathcal{R}(A)$. We have $r(A^t) = r_{col}(A^t) = r_{row}(A) = r(A)$. Then $n(A^t) + r(A) = n(A^t) + r(A^t) = p$.

4. Corollary to Theorem (K).

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_t$ be vectors in \mathbb{R}^q . Define $U = [\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_t]$. Then the dimension of Span $(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_t\})$ is r(U).

5. Illustrations of the content of Theorem (K).

(a) Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & 0 \\ 3 & 4 & 4 & 3 \\ 2 & 2 & 1 & 1 \end{bmatrix}$$
, and write $B = A^t$.

The reduced row-echelon form A' which is row-equivalent to A is given by $A' = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

By direct inspection on A', we see that r(A) = 3 and n(A) = 1. As expected from theory, we have n(A) + r(A) = 4.

Note that $B = \begin{bmatrix} 1 & 1 & 3 & 2 \\ 1 & 0 & 4 & 2 \\ 1 & -1 & 4 & 1 \\ 1 & 0 & 3 & 1 \end{bmatrix}$.

The reduced row-echelon form B' which is row-equivalent to B is given by $B' = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

Note that B' is not the same as the transpose of A'. However r(B) = r(B') = 3; so, as expected from theory, r(B) = r(A).

By direct inspection on B', we see that r(B) = 3 and n(B) = 1. As expected from theory, n(B) + r(B) = 4.

(b) Let $A = \begin{bmatrix} 1 & 2 & 2 & 3 & 4 \\ 1 & 3 & 3 & 4 & 5 \\ 2 & 6 & 5 & 9 & 6 \end{bmatrix}$, and write $B = A^t$.

The reduced row-echelon form A' which is row-equivalent to A is given by $A' = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 & -3 \\ 0 & 0 & 1 & -1 & 4 \end{bmatrix}$.

By direct inspection on A', we see that r(A) = 3 and n(A) = 2.

As expected from theory, we have n(A) + r(A) = 5.

Note that
$$B = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 6 \\ 2 & 3 & 5 \\ 3 & 4 & 9 \\ 4 & 5 & 6 \end{bmatrix}$$
.

The reduced row-echelon form B' which is row-equivalent to B is given by $B' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

Note that B' is not the same as the transpose of A'. However r(B) = r(B') = 3; so, as expected from theory, r(B) = r(A).

By direct inspection on B', we see that r(B) = 3 and n(B) = 0. As expected from theory, n(B) + r(B) = 3.

(c) Let
$$A = \begin{bmatrix} 1 & -2 & -1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 2 & 3 & 5 & -7 & 12 \\ 2 & -4 & -1 & 3 & 2 & 1 & 5 \\ 3 & -6 & -1 & 5 & 4 & 0 & 10 \end{bmatrix}$$
, and write $B = A^t$.

The reduced row-echelon form A' which is row-equivalent to A is given by $A' = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 1 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$

By direct inspection on A', we see that r(A) = 3 and n(A) = 4. As expected from theory, we have n(A) + r(A) = 7.

Note that
$$B = \begin{bmatrix} 1 & 0 & 2 & 3 \\ -2 & 0 & -4 & -6 \\ -1 & 2 & -1 & -1 \\ 1 & 3 & 3 & 5 \\ 0 & 5 & 2 & 4 \\ 2 & -7 & 1 & 0 \\ 0 & 12 & 5 & 10 \end{bmatrix}$$
.

Note that B' is not the same as the transpose of A'. However r(B) = r(B') = 3; so, as expected from theory, r(B) = r(A).

By direct inspection on B', we see that r(B) = 3 and n(B) = 1. As expected from theory, n(B) + r(B) = 4.

6. Theorem (1).

Suppose A is a $(p \times q)$ -matrix. Then the inequalities below hold:

(a) $r(A) \leq p$.

(b) $r(A) \le q$.

(c) $n(A) \ge q - p$.

Proof of Theorem (1). The first two inequalities follow immediately from the definition of r(A) as the dimension of the column space of A and also as the dimension of the row space of A. As for the third, it is a consequence of the equality n(A) = q - r(A).

7. Lemma (2).

Suppose A is a $(p \times q)$ -matrix, and B is an $(q \times s)$ -matrix. Then $\mathcal{N}(B)$ is a subspace of $\mathcal{N}(AB)$.

Proof of Lemma (2).

Suppose A is a $(p \times q)$ -matrix, and B is a $(q \times s)$ -matrix.

By definition, AB is an $(p \times s)$ -matrix. Note that $\mathcal{N}(B)$, $\mathcal{N}(AB)$ are both subspaces of \mathbb{R}^s .

[We verify that for any $\mathbf{v} \in \mathbb{R}^s$, if $\mathbf{v} \in \mathcal{N}(B)$ then $\mathbf{v} \in \mathcal{N}(AB)$.]

Pick any vector $\mathbf{v} \in \mathbb{R}^s$. Suppose $\mathbf{v} \in \mathcal{N}(B)$. Then by definition, $B\mathbf{v} = \mathbf{0}_q$.

We have $(AB)\mathbf{v} = A(B\mathbf{v}) = A\mathbf{0}_q = \mathbf{0}_p$. Then by definition $\mathbf{v} \in \mathcal{N}(AB)$.

It follows that $\mathcal{N}(B)$ is a subspace of $\mathcal{N}(AB)$.

8. Theorem (3).

Suppose A is a $(p \times q)$ -matrix, and B is an $(q \times s)$ -matrix. Then the inequalities below hold:

- (a) $n(B) \le n(AB)$.
- (b) $r(AB) \leq r(B)$.
- (c) $r(AB) \leq r(A)$.
- (d) $n(A) + s \le n(AB) + q$.

9. Proof of Theorem (3).

Suppose A is a $(p \times q)$ -matrix, and B is a $(q \times s)$ -matrix.

- (a) By Lemma (2), $\mathcal{N}(B)$ is a subspace of $\mathcal{N}(AB)$. Then $n(B) = \dim(\mathcal{N}(B)) \le \dim(\mathcal{N}(AB)) = n(AB)$.
- (b) By the Rank-nullity Formula, we have n(B) + r(B) = s, and n(AB) + r(AB) = s. Then $r(AB) = s - n(AB) \le s - n(B) = r(B)$.
- (c) Note that $B^t A^t = (AB)^t$. Then, also by Lemma (2), $\mathcal{N}(A^t)$ is a subspace of $\mathcal{N}((AB)^t)$. Therefore $n(A^t) = \dim(\mathcal{N}(A^t)) \le \dim(\mathcal{N}((AB)^t)) = n((AB)^t)$. By the Rank-nullity Formula, we have $n(A^t) + r(A^t) = p$ and $n((AB)^t) + r((AB)^t) = p$. Then $r(AB) = r((AB)^t) = p - n((AB)^t) \le p - n(A^t) = r(A^t) = r(A)$.
- (d) Again by the Rank-nullity Formula, we have n(A) + r(A) = n and n(AB) + r(AB) = s. Then $s - n(AB) = r(AB) \le r(A) = q - n(A)$. Therefore $n(A) + s \le n(AB) + q$.