MATH1030 Rank-nullity Formula.

1. Definition. (Nullity, column rank, row rank of a matrix.)

Let A be a (p x ¢)-matrix.

(a) The nullity of A is defined to be the dimension of the null space of A. It is denoted by n(A).
(b) The column rank of A is defined to be the dimension of the column space of A. It is denoted by 1o (A).
(¢) The row rank of A is defined to be the dimension of the row space of A. It is denoted by 1y, (A).

2. Theorem (K).
Let A be a (p x q)-matrix.

Suppose A’ is the reduced row-echelon form which is row-equivalent to A. Denote the rank of A’ is r(A). (So r(A)
is the number of leading ones in A’.)

Then the statements below hold:

(a) 7(A) = 1eo1(A) = Trow(A).

(b) n(A) +r(A) =q.

(c) r(A?) =r(A), and n(A?) +r(A) = p.

Remarks.

e The column space of A is a subspace of R? while the row space of A is a subspace of RP. So despite the equality
Teol(A) = Trow(A), we do not expect these two objects to be ‘comparable’. In fact, what is important is that
despite their distinction as objects, their respective dimensions are the same.

o The equality ‘n(A)+r(A) = ¢ is referred to as the ‘Rank-nullity Formula’ (for the matrix A with ¢ columns).
3. Proof of Theorem (K).
(a) The number of vectors in a basis for C(A) is the same as the number of pivot columns in A’, which is the rank
of A’. Hence r(A) = reo1(A).

The number of vectors in a basis for R(A) is the number of non-zero rows in A’, which is also the rank of A’.
Hence 7(A) = rrow (A).

(b) The nullity of A is the same as the number of free columns in A’.
Then n(A) = g — r(A).
Therefore n(A) +r(A) = q.
(c) Note that C(A?) = R(A).
We have 7(A") = e (A?) = rrow(A) = 7(A).
Then n(A?) +r(A) = n(A%) +r(A?) = p.
4. Corollary to Theorem (K).
Let uy,ug, -+ ,u; be vectors in RY. DefineU =[ uy |ug | --- | uy |.

Then the dimension of Span ({uy,ug,--- ,u:}) is r(U).

5. Illustrations of the content of Theorem (K).
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(a) Let A= :1,) 2 _41 g , and write B = A",
2 2 1 1
1 0 0 1
The reduced row-echelon form A’ which is row-equivalent to A is given by A’ = 8 (1) (1) _11
000 O

By direct inspection on A’, we see that r(A) = 3 and n(A4) = 1.
As expected from theory, we have n(A) + r(A) = 4.
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1 0 4 2
Note that B = 1 -1 4 1
1 0 3 1



1 0 0 -2
The reduced row-echelon form B’ which is row-equivalent to B is given by B’ = 8 (1) (1) %
000 O
Note that B’ is not the same as the transpose of A’. However r(B) = r(B’) = 3; so, as expected from theory,
r(B) =r(A).
By direct inspection on B’, we see that r(B) = 3 and n(B) = 1.
As expected from theory, n(B) + r(B) = 4.
1 2 2 3 4
(b) Les A=| 1 3 3 4 5 |, and write B = A’.
2 6 59 6
1 0 0 1 2
The reduced row-echelon form A’ which is row-equivalent to A is given by A’ = 8 (1) (f 21 —43
By direct inspection on A’, we see that r(A) = 3 and n(A4) = 2.
As expected from theory, we have n(A) +r(A) = 5.
1 1 2
2 3 6
Note that B=1| 2 3 5
349
4 5 6
1 00
0 10
The reduced row-echelon form B’ which is row-equivalent to B is given by B’ = 8 8 (1)
0 0 0

Note that B’ is not the same as the transpose of A’. However r(B) = r(B’) = 3; so, as expected from theory,
r(B) =r(A).
By direct inspection on B’, we see that r(B) = 3 and n(B) = 0.
As expected from theory, n(B) + r(B) = 3.
1 -2 -1 1 0 2 0
(c) Let A= (2) _04 _21 % g _17 152 , and write B = A’.
3 -6 -1 5 4 0 10

1 -2 0 0 0 1 1
The reduced row-echelon form A’ which is row-equivalent to A is given by A’ = 8 8 é (1) % :% g
0O 0 00 O O O
By direct inspection on A’, we see that r(A) = 3 and n(A4) = 4.
As expected from theory, we have n(A4) +r(A4) = 7.
1 0 2 3
-2 0 -4 -6
-1 2 -1 -1
Note that B = 1 3 3 5
0 5 2 4
2 =7 1 0
0 12 5 10
1 0 0 -1
01 0 0
001 2
The reduced row-echelon form B’ which is row-equivalent to B is given by B’ = 8 8 8 8
0 00 O
0 00 O

Note that B’ is not the same as the transpose of A’. However r(B) = r(B’) = 3; so, as expected from theory,
r(B) =r(4).

By direct inspection on B’, we see that r(B) = 3 and n(B) = 1.

As expected from theory, n(B) + r(B) = 4.

6. Theorem (1).
Suppose A is a (p X q)-matrix.
Then the inequalities below hold:
(a) r(4) <p.
(b) r(A) <q.



(c) n(4) = q—p.
Proof of Theorem (1). The first two inequalities follow immediately from the definition of (A) as the dimension
of the column space of A and also as the dimension of the row space of A. As for the third, it is a consequence of
the equality n(A) = ¢ — r(A).
. Lemma (2).
Suppose A is a (p x q)-matrix, and B is an (q X s)-matrix. Then N'(B) is a subspace of N(AB).
Proof of Lemma (2).
Suppose A is a (p X g)-matrix, and B is a (¢ X s)-matrix.

By definition, AB is an (p x s)-matrix. Note that N'(B),N(AB) are both subspaces of R®.
[We verify that for any v € R®, if v.€ N(B) then v € N(AB).]

Pick any vector v € R*. Suppose v € N'(B). Then by definition, Bv =0
We have (AB)v = A(Bv) = A0, = 0,. Then by definition v € N(AB).
It follows that N(B) is a subspace of N (AB).

. Theorem (3).
Suppose A is a (p x q)-matrix, and B is an (q X s)-matrix.
Then the inequalities below hold:
(a) n(B) < n(AB).
(b) 7(AB) <r(B).
(c) 7(AB) < r(A).
(d) n(A)+ s <n(AB)+
. Proof of Theorem (3).
Suppose A is a (p x ¢)-matrix, and B is a (¢ X $)-matrix.
(a) By Lemma (2), N(B) is a subspace of N (AB).
Then n(B) = dim(N(B)) < dim(N'(AB)) = n(AB).
(b) By the Rank-nullity Formula, we have n(B) + r(B) = s, and n(AB) 4+ r(AB) = s.
Then r(AB) = s —n(AB) < s — n(B) = r(B).
(c) Note that B*A' = (AB)*.
Then, also by Lemma (2), N(A?) is a subspace of N'((AB)").
Therefore n(A') = dim(N(4?)) < dim(N((AB)!)) = n((AB)?).
By the Rank-nullity Formula, we have n(A%) + r(A?) = p and n((AB)?) + r((AB)!) =
Then 7(AB) = r((AB)!) = p — n((AB)?) < p — n(A?) = r(A%) = r(A).
(d) Again by the Rank-nullity Formula, we have n(A) + r(A) = n and n(AB) + r(AB) = s.
Then s — n(AB) = r(AB) < r(A) = g — n(A).
Therefore n(A) + s < n(AB) +q.



