1. Definition. (Nullity, column rank, row rank of a matrix.)

Let A be a (p X q)-matrix.

(a) The nullity of A is defined to be the dimension of the null space of A.
It is denoted by n(A).

(b) The column rank of A is defined to be the dimension of the column space of A.
It is denoted by 1., (A).

(¢) The row rank of A is defined to be the dimension of the row space of A.
It is denoted by 1,(A).
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2. Theorem (K).
Let A be a (p X q)-matrix.

Suppose A’ is the reduced row-echelon form which is row-equivalent to A.

Denote the rank of A" by r(A). (So r(A) is the number of leading ones in A’.)
Then the statements below hold:

(a) r(A) = rei(A) = Trow(A).
(b) n(A) +7(A) =q.
(c) r(AY) = r(A), and n(A") +r(A) = p.

Remarks.

« The column space of A is a subspace of R? while the row space of A is a subspace of RP.

So despite the equality r.;(A) = 70w(A), we do not expect these two objects to be
‘comparable’.

In fact, what is important is that despite their distinction as objects, their respective
dimensions are the same.

« The equality ‘n(A) + r(A) = ¢ is referred to as the ‘Rank-nullity Formula’ (for the
matrix A with ¢ columns).
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3. Proof of Theorem (K).

(a) The number of vectors in a basis for C(A) is the same as the number of pivot columns
in A, which is the rank of A’. Hence r(A) = r.,(A).

The number of vectors in a basis for R(A) is the number of non-zero rows in A’, which
is also the rank of A’. Hence 7(A) = 10 (A).

(b) The nullity of A is the same as the number of free columns in A".
Then n(A) = q —r(A).
Therefore n(A) +r(A) =

(¢) Note that C(A") = R(A).

We have r(A") = re(A") = rrow(A) = r(A).
Then n(A") +r(A) = n(A") +r(A") = p.

4. Corollary to Theorem (K).
Let uy,us, - - - ,u; be vectors in RY.
Define U = [u1u2--- ut]
Then the dimension of Span ({uy,ug, -+ ,w}) isr(U).
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By direct inspection on A’, we see that r(A) = 3 and n(A) = 1.
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1 1 3 2
1 0
1 -1

0

Note that B =

W =~

2
1
1

The reduced row-echelon form B’ which is row-equivalent to B is given by B’ =

Note that B’ is not the same as the transpose of A’.

However r(B) = r(B’) = 3; so, as expected from theory, r(B) =
By direct inspection on B’, we see that r(B) = 3 and n(B) = 1.
As expected from theory, n(B) + r(B) = 4.

r(A).

S O O

o O O =

S O = O

o O = O

O = O O

O = O O

o =

O = =



5. llustrations of the content of Theorem (K).
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The reduced row-echelon form A’ which is row-equivalent to A is given by A’ =
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(b) Let A= 1 3 3 4 5 |, and write B = A",
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6. Theorem (1).
Suppose A is a (p X q)-matrix.

Then the inequalities below hold:
(a) 7(A) < p.
(b) r(A) < ¢

(c)n(A) = ¢ —p.

Proof of Theorem (1).

The first two inequalities follow immediately from the definition of r(A) as the dimension
of the column space of A and also as the dimension of the row space of A.

As for the third, it is a consequence of the equality n(A) = ¢ — r(A).



7. Lemma (2).
Suppose A is a (p X q)-matrix, and B is an (q X s)-matrix.

Then N (B) is a subspace of N(AB).

Proof of Lemma (2).

Suppose A is a (p X ¢)-matrix, and B is a (¢ X s)-matrix.
By definition, AB is an (p X s)-matrix.

Note that N (B), N (AB) are both subspaces of R?.

[We verify that for any v € R°, if v.€ N(B) then v € N(AB).

Pick any vector v € R*. Suppose v € N (B). Then by definition, Bv = 0,,.
We have (AB)v = A(Bv) = A0, = 0,,. Then by definition v € N(AB).
It follows that AV (B) is a subspace of N (AB).



8. Theorem (3).
Suppose A is a (p X q)-matrix, and B is an (q X s)- matrix.

Then the inequalities below hold:

9. Proof of Theorem (3).
Suppose A is a (p X ¢)-matrix, and B is a (¢ X s)-matrix.
(a) By Lemma (2), N(B) is a subspace of N'(AB).

Then
n(B) = dim(N(B)) < dim(N(AB)) = n(AB).



8. Theorem (3).
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9. Proof of Theorem (3). |
Suppose A is a (p X g)-matrix, and B is a (¢ X s)-matrix.
(a) By Lemma (2), N'(B) is a subspace of N'(AB).

Then
n(B) = dim(N(B)) < dim(N(AB)) = n(AB).



(b) By the Rank-nullity Formula, we have
n(B)+r(B)=s, and n(AB)+r(AB)=s.
Then
r(AB) =s—n(AB) < s—n(B)=r(B).
(¢) Note that B'A" = (AB)". Then, also by Lemma (2), N'(A") is a subspace of N'((AB)").
Therefore
n(A") = dim(WN(A")) < dim(N ((AB)")) = n((AB)").
By the Rank-nullity Formula, we have
n(A) +r(AY =p and n((AB)") +r((AB)") = p.
Then
r(AB) = r((AB)') = p — n((AB)") < p — n(A") = r(A") = r(A).
(d) Again by the Rank-nullity Formula, we have
n(A)+r(A)=n and n(AB)+r(AB)=s.
Then
s —n(AB)=r(AB) <r(A)=q—n(A).

Therefore
n(A)+s <n(AB) +q.



