
1. Definition. (Nullity, column rank, row rank of a matrix.)

Let A be a (p× q)-matrix.

(a) The nullity of A is defined to be the dimension of the null space of A.
It is denoted by n(A).

(b) The column rank of A is defined to be the dimension of the column space of A.
It is denoted by rcol(A).

(c) The row rank of A is defined to be the dimension of the row space of A.
It is denoted by rrow(A).
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2. Theorem (K).
Let A be a (p× q)-matrix.
Suppose A′ is the reduced row-echelon form which is row-equivalent to A.
Denote the rank of A′ by r(A). (So r(A) is the number of leading ones in A′.)
Then the statements below hold:

(a) r(A) = rcol(A) = rrow(A).

(b) n(A) + r(A) = q.

(c) r(At) = r(A), and n(At) + r(A) = p.

Remarks.
• The column space of A is a subspace of Rq while the row space of A is a subspace of Rp.

So despite the equality rcol(A) = rrow(A), we do not expect these two objects to be
‘comparable’.
In fact, what is important is that despite their distinction as objects, their respective
dimensions are the same.

• The equality ‘n(A) + r(A) = q’ is referred to as the ‘Rank-nullity Formula’ (for the
matrix A with q columns).
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3. Proof of Theorem (K).
(a) The number of vectors in a basis for C(A) is the same as the number of pivot columns

in A′, which is the rank of A′. Hence r(A) = rcol(A).

The number of vectors in a basis for R(A) is the number of non-zero rows in A′, which
is also the rank of A′. Hence r(A) = rrow(A).

(b) The nullity of A is the same as the number of free columns in A′.
Then n(A) = q − r(A).
Therefore n(A) + r(A) = q.

(c) Note that C(At) = R(A).
We have r(At) = rcol(A

t) = rrow(A) = r(A).
Then n(At) + r(A) = n(At) + r(At) = p.

4. Corollary to Theorem (K).
Let u1,u2, · · · ,ut be vectors in Rq.
Define U =

[
u1 u2 · · · ut

]
.

Then the dimension of Span ({u1,u2, · · · ,ut}) is r(U).
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5. Illustrations of the content of Theorem (K).

(a) Let A =


1 1 1 1
1 0 −1 0
3 4 4 3
2 2 1 1

, and write B = At.

The reduced row-echelon form A′ which is row-equivalent to A is given by A′ =


1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 0

.

By direct inspection on A′, we see that r(A) = 3 and n(A) = 1.
As expected from theory, we have n(A) + r(A) = 4.

Note that B =


1 1 3 2
1 0 4 2
1 −1 4 1
1 0 3 1

.

The reduced row-echelon form B′ which is row-equivalent to B is given by B′ =


1 0 0 −2
0 1 0 1
0 0 1 1
0 0 0 0

.

Note that B′ is not the same as the transpose of A′.
However r(B) = r(B′) = 3; so, as expected from theory, r(B) = r(A).
By direct inspection on B′, we see that r(B) = 3 and n(B) = 1.
As expected from theory, n(B) + r(B) = 4.
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(b) Let A =

 1 2 2 3 4
1 3 3 4 5
2 6 5 9 6

, and write B = At.

The reduced row-echelon form A′ which is row-equivalent to A is given by A′ =

 1 0 0 1 2
0 1 0 2 −3
0 0 1 −1 4

.

By direct inspection on A′, we see that r(A) = 3 and n(A) = 2.
As expected from theory, we have n(A) + r(A) = 5.

Note that B =


1 1 2
2 3 6
2 3 5
3 4 9
4 5 6

.

The reduced row-echelon form B′ which is row-equivalent to B is given by B′ =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

.

Note that B′ is not the same as the transpose of A′.
However r(B) = r(B′) = 3; so, as expected from theory, r(B) = r(A).
By direct inspection on B′, we see that r(B) = 3 and n(B) = 0.
As expected from theory, n(B) + r(B) = 3.
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(c) Let A =


1 −2 −1 1 0 2 0
0 0 2 3 5 −7 12
2 −4 −1 3 2 1 5
3 −6 −1 5 4 0 10

, and write B = At.

The reduced row-echelon form A′ which is row-equivalent to A is given by A′ =


1 −2 0 0 0 1 1
0 0 1 0 1 −2 3
0 0 0 1 1 −1 2
0 0 0 0 0 0 0

.

By direct inspection on A′, we see that r(A) = 3 and n(A) = 4.
As expected from theory, we have n(A) + r(A) = 7.

Note that B =



1 0 2 3
−2 0 −4 −6
−1 2 −1 −1
1 3 3 5
0 5 2 4
2 −7 1 0
0 12 5 10


.

The reduced row-echelon form B′ which is row-equivalent to B is given by B′ =



1 0 0 −1
0 1 0 0
0 0 1 2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

Note that B′ is not the same as the transpose of A′.
However r(B) = r(B′) = 3; so, as expected from theory, r(B) = r(A).
By direct inspection on B′, we see that r(B) = 3 and n(B) = 1.
As expected from theory, n(B) + r(B) = 4.
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6. Theorem (1).
Suppose A is a (p× q)-matrix.

Then the inequalities below hold:
(a) r(A) ≤ p.

(b) r(A) ≤ q.

(c) n(A) ≥ q − p.

Proof of Theorem (1).
The first two inequalities follow immediately from the definition of r(A) as the dimension
of the column space of A and also as the dimension of the row space of A.

As for the third, it is a consequence of the equality n(A) = q − r(A).
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7. Lemma (2).
Suppose A is a (p× q)-matrix, and B is an (q × s)-matrix.

Then N (B) is a subspace of N (AB).

Proof of Lemma (2).
Suppose A is a (p× q)-matrix, and B is a (q × s)-matrix.

By definition, AB is an (p× s)-matrix.

Note that N (B) ,N (AB) are both subspaces of Rs.

[We verify that for any v ∈ Rs, if v ∈ N (B) then v ∈ N (AB).]

Pick any vector v ∈ Rs. Suppose v ∈ N (B). Then by definition, Bv = 0q.

We have (AB)v = A(Bv) = A0q = 0p. Then by definition v ∈ N (AB).

It follows that N (B) is a subspace of N (AB).
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8. Theorem (3).
Suppose A is a (p× q)-matrix, and B is an (q × s)- matrix.

Then the inequalities below hold:

(a) n(B) ≤ n(AB).

(b) r(AB) ≤ r(B).

(c) r(AB) ≤ r(A).

(d) n(A) + s ≤ n(AB) + q.

9. Proof of Theorem (3).
Suppose A is a (p× q)-matrix, and B is a (q × s)-matrix.

(a) By Lemma (2), N (B) is a subspace of N (AB).

Then
n(B) = dim(N (B)) ≤ dim(N (AB)) = n(AB).
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(b) By the Rank-nullity Formula, we have
n(B) + r(B) = s, and n(AB) + r(AB) = s.

Then
r(AB) = s− n(AB) ≤ s− n(B) = r(B).

(c) Note that BtAt = (AB)t. Then, also by Lemma (2), N (At) is a subspace of N ((AB)t).

Therefore
n(At) = dim(N

(
At

)
) ≤ dim(N

(
(AB)t

)
) = n((AB)t).

By the Rank-nullity Formula, we have
n(At) + r(At) = p and n((AB)t) + r((AB)t) = p.

Then
r(AB) = r((AB)t) = p− n((AB)t) ≤ p− n(At) = r(At) = r(A).

(d) Again by the Rank-nullity Formula, we have
n(A) + r(A) = n and n(AB) + r(AB) = s.

Then
s− n(AB) = r(AB) ≤ r(A) = q − n(A).

Therefore
n(A) + s ≤ n(AB) + q.
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