- 1. Definition. (Nullity, column rank, row rank of a matrix.) Let A be a $(p \times q)$ -matrix.
 - (a) The nullity of A is defined to be the dimension of the null space of A. It is denoted by n(A).
 - (b) The column rank of A is defined to be the dimension of the column space of A. It is denoted by $r_{col}(A)$.
 - (c) The row rank of A is defined to be the dimension of the row space of A. It is denoted by $r_{row}(A)$.

- 1. Definition. (Nullity, column rank, row rank of a matrix.) Let A be a $(p \times q)$ -matrix.
 - (a) The nullity of A is defined to be the dimension of the null space of A. It is denoted by n(A).
 - (b) The column rank of A is defined to be the dimension of the column space of A. It is denoted by $r_{col}(A)$.
 - (c) The row rank of A is defined to be the dimension of the row space of A. It is denoted by $r_{row}(A)$.

2. Theorem (K).

Let A be a $(p \times q)$ -matrix.

Suppose A' is the reduced row-echelon form which is row-equivalent to A. Denote the rank of A' by r(A). (So r(A) is the number of leading ones in A'.) Then the statements below hold:

(a) $r(A) = r_{col}(A) = r_{row}(A)$. (b) n(A) + r(A) = q. (c) $r(A^t) = r(A)$, and $n(A^t) + r(A) = p$.

Remarks.

• The column space of A is a subspace of \mathbb{R}^q while the row space of A is a subspace of \mathbb{R}^p . So despite the equality $r_{col}(A) = r_{row}(A)$, we do not expect these two objects to be 'comparable'.

In fact, what is important is that despite their distinction as objects, their respective dimensions are the same.

• The equality n(A) + r(A) = q is referred to as the 'Rank-nullity Formula' (for the matrix A with q columns).

2. Theorem (K).

Let A be a $(p \times q)$ -matrix.

Suppose A' is the reduced row-echelon form which is row-equivalent to A. Denote the rank of A' by r(A). (So r(A) is the number of leading ones in A'.) Then the statements below hold:

(a) $r(A) = r_{col}(A) = r_{row}(A)$. No more than saying these three numbers are the same : Number of leading ones in A', number of pirot columns in A', and (b) n(A) + r(A) = q. (c) $r(A^t) = r(A)$, and $n(A^t) + r(A) = p$. No more than saying : the humber of columns of A is the same as the sum of the number of free columns in A' and the number of pirot columns in A'. Not so immediately apparent. Remarks. (a) $r(A^t) = r(A)$, and $n(A^t) + r(A) = p$.

• The column space of A is a subspace of \mathbb{R}^q while the row space of A is a subspace of \mathbb{R}^p . So despite the equality $r_{col}(A) = r_{row}(A)$, we do not expect these two objects to be 'comparable'.

In fact, what is important is that despite their distinction as objects, their respective dimensions are the same.

• The equality n(A) + r(A) = q is referred to as the 'Rank-nullity Formula' (for the matrix A with q columns).

3. Proof of Theorem (K).

(a) The number of vectors in a basis for $\mathcal{C}(A)$ is the same as the number of pivot columns in A', which is the rank of A'. Hence $r(A) = r_{col}(A)$.

The number of vectors in a basis for $\mathcal{R}(A)$ is the number of non-zero rows in A', which is also the rank of A'. Hence $r(A) = r_{row}(A)$.

(b) The nullity of A is the same as the number of free columns in A'. Then n(A) = q - r(A). Therefore n(A) + r(A) = q.

(c) Note that
$$\mathcal{C}(A^t) = \mathcal{R}(A)$$
.
We have $r(A^t) = r_{col}(A^t) = r_{row}(A) = r(A)$.
Then $n(A^t) + r(A) = n(A^t) + r(A^t) = p$.

4. Corollary to Theorem (K).

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_t$ be vectors in \mathbb{R}^q . Define $U = [\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_t]$. Then the dimension of Span ({ $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_t$ }) is r(U).

3. Proof of Theorem (K).

(a) The number of vectors in a basis for $\mathcal{C}(A)$ is the same as the number of pivot columns in A', which is the rank of A'. Hence $r(A) = r_{col}(A)$.

The number of vectors in a basis for $\mathcal{R}(A)$ is the number of non-zero rows in A', which is also the rank of A'. Hence $r(A) = r_{row}(A)$.

(b) The nullity of A is the same as the number of free columns in A'. Then n(A) = q - r(A). Therefore n(A) + r(A) = q.

- 4. Corollary to Theorem (K).

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_t$ be vectors in \mathbb{R}^q . Define $U = [\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_t]$. Then the dimension of Span ({ $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_t$ }) is r(U).

5. Illustrations of the content of Theorem (K).

(a) Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & 0 \\ 3 & 4 & 4 & 3 \\ 2 & 2 & 1 & 1 \end{bmatrix}$$
, and write $B = A^t$.

The reduced row-echelon form A' which is row-equivalent to A is given by A' =

$$= \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

By direct inspection on A', we see that r(A) = 3 and n(A) = 1. As expected from theory, we have n(A) + r(A) = 4.

Note that $B = \begin{bmatrix} 1 & 1 & 3 & 2 \\ 1 & 0 & 4 & 2 \\ 1 & -1 & 4 & 1 \\ 1 & 0 & 3 & 1 \end{bmatrix}$.

The reduced row-echelon form B' which is row-equivalent to B is given by $B' = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

5. Illustrations of the content of Theorem (K).

(a) Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & 0 \\ 3 & 4 & 4 & 3 \\ 2 & 2 & 1 & 1 \end{bmatrix}$$
, and write $B = A^t$.

The reduced row-echelon form A' which is row-equivalent to A is given by A' =

=	[1	0	0	1	1
	0	1	0	-1	
	0	0	1	1	
	0	0	0	0	

By direct inspection on A', we see that r(A) = 3 and n(A) = 1. As expected from theory, we have n(A) + r(A) = 4.

Note that $B = \begin{bmatrix} 1 & 1 & 3 & 2 \\ 1 & 0 & 4 & 2 \\ 1 & -1 & 4 & 1 \\ 1 & 0 & 3 & 1 \end{bmatrix}$.

The reduced row-echelon form B' which is row-equivalent to B is given by $B' = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

(b) Let $A = \begin{bmatrix} 1 & 2 & 2 & 3 & 4 \\ 1 & 3 & 3 & 4 & 5 \\ 2 & 6 & 5 & 9 & 6 \end{bmatrix}$, and write $B = A^t$.

The reduced row-echelon form A' which is row-equivalent to A is given by $A' = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 & -3 \\ 0 & 0 & 1 & -1 & 4 \end{bmatrix}$.

By direct inspection on A', we see that r(A) = 3 and n(A) = 2. As expected from theory, we have n(A) + r(A) = 5.

Note that $B = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 6 \\ 2 & 3 & 5 \\ 3 & 4 & 9 \\ 4 & 5 & 6 \end{bmatrix}$.

The reduced row-echelon form B' which is row-equivalent to B is given by $B' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

(b) Let
$$A = \begin{bmatrix} 1 & 2 & 2 & 3 & 4 \\ 1 & 3 & 3 & 4 & 5 \\ 2 & 6 & 5 & 9 & 6 \end{bmatrix}$$
, and write $B = A^t$.

The reduced row-echelon form A' which is row-equivalent to A is given by $A' = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 2 & -3 \\ 0 & 0 & 1 & -1 & 4 \end{bmatrix}$.

By direct inspection on A', we see that r(A) = 3 and n(A) = 2. As expected from theory, we have n(A) + r(A) = 5.

Note that $B = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 6 \\ 2 & 3 & 5 \\ 3 & 4 & 9 \\ 4 & 5 & 6 \end{bmatrix}$.

The reduced row-echelon form B' which is row-equivalent to B is given by $B' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

(c) Let
$$A = \begin{bmatrix} 1 & -2 & -1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 2 & 3 & 5 & -7 & 12 \\ 2 & -4 & -1 & 3 & 2 & 1 & 5 \\ 3 & -6 & -1 & 5 & 4 & 0 & 10 \end{bmatrix}$$
, and write $B = A^t$.

The reduced row-echelon form A' which is row-equivalent to A is given by $A' = \begin{bmatrix} 1 & 2 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 1 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

By direct inspection on A', we see that r(A) = 3 and n(A) = 4. As expected from theory, we have n(A) + r(A) = 7.

Note that $B = \begin{bmatrix} 1 & 0 & 2 & 3 \\ -2 & 0 & -4 & -6 \\ -1 & 2 & -1 & -1 \\ 1 & 3 & 3 & 5 \\ 0 & 5 & 2 & 4 \\ 2 & -7 & 1 & 0 \\ 0 & 12 & 5 & 10 \end{bmatrix}$.

(c) Let
$$A = \begin{bmatrix} 1 & -2 & -1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 2 & 3 & 5 & -7 & 12 \\ 2 & -4 & -1 & 3 & 2 & 1 & 5 \\ 3 & -6 & -1 & 5 & 4 & 0 & 10 \end{bmatrix}$$
, and write $B = A^t$.

The reduced row-echelon form A' which is row-equivalent to A is given by A' =

$$\mathbf{Y} = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 1 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

0 0 0

By direct inspection on A', we see that r(A) = 3 and n(A) = 4. As expected from theory, we have $\underline{n(A) + r(A) = 7}$.

2.	1	0	2	3	
** *	-2	0	-4	-6	
	-1	2	-1	-1	
Note that $B =$	1	3	3	5	
<i>a</i>	0	5	2	4	
	2	-7	1	0	
	0	12	5	10	

6. Theorem (1).

Suppose A is a $(p \times q)$ -matrix.

Then the inequalities below hold:

(a) $r(A) \leq p$.

(b) $r(A) \leq q$.

(c) $n(A) \ge q - p$.

Proof of Theorem (1).

The first two inequalities follow immediately from the definition of r(A) as the dimension of the column space of A and also as the dimension of the row space of A.

As for the third, it is a consequence of the equality n(A) = q - r(A).

7. Lemma (2).

Suppose A is a $(p \times q)$ -matrix, and B is an $(q \times s)$ -matrix.

Then $\mathcal{N}(B)$ is a subspace of $\mathcal{N}(AB)$.

Proof of Lemma (2).

Suppose A is a $(p \times q)$ -matrix, and B is a $(q \times s)$ -matrix.

By definition, AB is an $(p \times s)$ -matrix.

Note that $\mathcal{N}(B)$, $\mathcal{N}(AB)$ are both subspaces of \mathbb{R}^s .

[We verify that for any $\mathbf{v} \in \mathbb{R}^s$, if $\mathbf{v} \in \mathcal{N}(B)$ then $\mathbf{v} \in \mathcal{N}(AB)$.]

Pick any vector $\mathbf{v} \in \mathbb{R}^s$. Suppose $\mathbf{v} \in \mathcal{N}(B)$. Then by definition, $B\mathbf{v} = \mathbf{0}_q$. We have $(AB)\mathbf{v} = A(B\mathbf{v}) = A\mathbf{0}_q = \mathbf{0}_p$. Then by definition $\mathbf{v} \in \mathcal{N}(AB)$. It follows that $\mathcal{N}(B)$ is a subspace of $\mathcal{N}(AB)$. 8. Theorem (3).

Suppose A is a $(p \times q)$ -matrix, and B is an $(q \times s)$ -matrix.

Then the inequalities below hold:

(a) $n(B) \le n(AB)$.

(b) $r(AB) \leq r(B)$.

(c) $r(AB) \leq r(A)$.

(d) $n(A) + s \le n(AB) + q$.

9. Proof of Theorem (3).

Suppose A is a $(p \times q)$ -matrix, and B is a $(q \times s)$ -matrix.

(a) By Lemma (2), $\mathcal{N}(B)$ is a subspace of $\mathcal{N}(AB)$.

Then

$$n(B) = \dim(\mathcal{N}(B)) \le \dim(\mathcal{N}(AB)) = n(AB).$$

8. Theorem (3).

Suppose A is a $(p \times q)$ -matrix, and B is an $(q \times s)$ -matrix.

Then the inequalities below hold:

(a) $n(B) \le n(AB)$. (b) $r(AB) \le r(B)$. (c) $r(AB) \le r(A)$. (d) $n(A) + s \le n(AB) + q$.

9. Proof of Theorem (3).

Suppose A is a $(p \times q)$ -matrix, and B is a $(q \times s)$ -matrix.

(a) By Lemma (2), $\mathcal{N}(B)$ is a subspace of $\mathcal{N}(AB)$.

Then

 $n(B) = \dim(\mathcal{N}(B)) \le \dim(\mathcal{N}(AB)) = n(AB).$

(b) By the Rank-nullity Formula, we have

$$n(B) + r(B) = s$$
, and $n(AB) + r(AB) = s$.

Then

$$r(AB) = s - n(AB) \le s - n(B) = r(B).$$

(c) Note that $B^t A^t = (AB)^t$. Then, also by Lemma (2), $\mathcal{N}(A^t)$ is a subspace of $\mathcal{N}((AB)^t)$.

Therefore

$$n(A^t) = \dim(\mathcal{N}(A^t)) \le \dim(\mathcal{N}((AB)^t)) = n((AB)^t).$$

By the Rank-nullity Formula, we have

$$n(A^{t}) + r(A^{t}) = p$$
 and $n((AB)^{t}) + r((AB)^{t}) = p$.

Then

$$r(AB) = r((AB)^t) = p - n((AB)^t) \le p - n(A^t) = r(A^t) = r(A).$$

(d) Again by the Rank-nullity Formula, we have

$$n(A) + r(A) = n$$
 and $n(AB) + r(AB) = s$.

Then

$$s - n(AB) = r(AB) \le r(A) = q - n(A).$$

Therefore

$$n(A) + s \le n(AB) + q.$$