1. Recall the definition for the notion of basis for a subspace of \mathbb{R}^n .

Let V be a subspace of \mathbb{R}^n .

We declare that if V is the zero subspace of \mathbb{R}^n then the empty set is the basis for V.

From now on suppose V is not the zero subspace of \mathbb{R}^n .

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are vectors in V.

The vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are said to constitute a basis for V if and only if both of the statements (BL), (BS) below hold:

(BL) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent.

(BS) Every vector in V is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$.

Also recall Theorem (J) from the handout Inequalities on dimension:

Let W be a subspace of \mathbb{R}^n . Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ be vectors in W. Then the statements below are logically equivalent:

- (\sharp) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ constitute a basis for W.
- ($\boldsymbol{\natural}$) dim(W) = p, and $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent.
- (b) dim(W) = p, and every vector of W is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$.

2. 'Algorithms' associated with Theorem (J).

When we can only rely on the definition of for the notion of basis, it will be a tedious task to check whether a given collections of vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \cdots$ in \mathbb{R}^n constitutes a basis for a given subspace V of \mathbb{R}^n . (Why? In order to verify that every vector in W is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \cdots$, we have to first produce a basis, say, $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3, \cdots$ for W. This is already no easy task.)

Theorem (J) provides a short-cut in many situations. If the dimension of V has already been known, then we will only need to verify the validity of one (instead of both) of the statements (BL), (BS) for the collection of vectors concerned.

3. 'Algorithm' for checking whether a concretely given collection of vectors of \mathbb{R}^n is a basis for the null space of a matrix with n columns.

Let A be a matrix with n columns, and $V = \mathcal{N}(A)$. Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ be vectors in \mathbb{R}^n .

We proceed to determine whether $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ constitute a basis for V, as described below:

• Step (1).

Check whether $A\mathbf{u}_1 = A\mathbf{u}_2 = \cdots = A\mathbf{u}_p = \mathbf{0}$.

If no, then conclude that some of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ do not belong to V and that these vectors do not constitute a basis for V.

If yes, then proceed to Step (2).

• Step (2).

(From now on, we suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p \in V$.)

Find the reduced row-echelon form A' which is row equivalent to A.

By inspecting A', determine whether $\dim(V) = p$ holds. (Recall that $\dim(V)$ is the number of free columns of A'.)

If no, then conclude that $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ do not constitute a basis for V.

If yes, then proceed to Step (3).

• Step (3).

(From now on, we also suppose $p = \dim(V)$.)

Define $U = [\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_p].$

Determine the reduced row-echelon form U' which is row-equivalent to U.

By inspecting U', determine whether $\mathcal{N}(U) = \{\mathbf{0}_p\}$.

If no, then conclude that $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly dependent and that they do not constitute a basis for V. If yes, then conclude that $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent and that they do constitute a basis for V.

4. Illustrations.

(a) Let
$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & -1 \\ 3 & 1 & 5 & -7 \end{bmatrix}$$
, and $V = \mathcal{N}(A)$. Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 5 \\ -3 \\ -1 \\ 1 \end{bmatrix}$

We check whether $\mathbf{u}_1, \mathbf{u}_2$ constitute a basis for V.

We have $A\mathbf{u}_1 = \mathbf{0}_3$ and $A\mathbf{u}_2 = \mathbf{0}_3$. Then $\mathbf{u}_1, \mathbf{u}_2 \in V$.

We obtain the reduced row-echelon form A' which is row-equivalent to A by applying a sequence of row operations to A:

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & -1 \\ 3 & 1 & 5 & -7 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} = A'$$

There are two free columns in A'. Then $\dim(V) = \dim(\mathcal{N}(A')) = 2$.

Define $U = [\mathbf{u}_1 | \mathbf{u}_2]$. We obtain the reduced row-echelon form U' which is row-equivalent to U:

$$U = \begin{bmatrix} 1 & 5\\ -1 & -3\\ 1 & -1\\ 1 & 1 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0\\ 0 & 1\\ 0 & 0\\ 0 & 0 \end{bmatrix} = U'$$

We have $\mathcal{N}(U) = \{\mathbf{0}_2\}$. Then $\mathbf{u}_1, \mathbf{u}_2$ are linearly independent. Hence $\mathbf{u}_1, \mathbf{u}_2$ constitute a basis for V.

(b) Let
$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & 7 \\ 1 & 1 & 1 & -1 & 3 \\ 3 & 1 & 5 & -7 & 1 \end{bmatrix}$$
, and $V = \mathcal{N}(A)$. Let $\mathbf{u}_1 = \begin{bmatrix} 2 \\ -5 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} -1 \\ 8 \\ -2 \\ -1 \\ -2 \end{bmatrix}$.

We check whether $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ constitute a basis for V.

We have $A\mathbf{u}_1 = \mathbf{0}_5$, $A\mathbf{u}_2 = \mathbf{0}_5$ and $A\mathbf{u}_3 = \mathbf{0}_5$. Then $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \in V$.

We obtain the reduced row-echelon form A' which is row-equivalent to A by applying a sequence of row operations to A:

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & 7 \\ 1 & 1 & 1 & -1 & 3 \\ 3 & 1 & 5 & -7 & 1 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & 2 & -3 & -1 \\ 0 & 1 & -1 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = A'$$

There are three free columns in A'. Then $\dim(V) = \dim(\mathcal{N}(A')) = 3$.

Define $U = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3]$. We obtain the reduced row-echelon form U' which is row-equivalent to U:

$U = \begin{bmatrix} 2 & 2 & -1 \\ -5 & 2 & 8 \\ 1 & 0 & -2 \\ 1 & 1 & -1 \\ 1 & -1 & -2 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 2 & 2 & -1 \\ -5 & 2 & 8 & -1 \\ -5 & 2 & -1 & -2 \end{bmatrix}$	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{bmatrix} 0\\0\\1\\0\\0 \end{bmatrix}$	=U'
---	--	---	---	-----

We have $\mathcal{N}(U) = \{\mathbf{0}_3\}$. Then $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are linearly independent.

Hence $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ constitute a basis for V.

5. 'Algorithm' for checking whether a concretely given collection of vectors of \mathbb{R}^n is a basis for the span of another concretely given collection of vectors of \mathbb{R}^n .

Let $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_k$ be vectors in \mathbb{R}^n , and $V = \text{Span}(\{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_k\})$.

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ be vectors in \mathbb{R}^n .

We proceed to determine whether $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ constitute a basis for V, as described below:

• Step (0).

Form the $(n \times k)$ -matrix $Z = [\mathbf{z}_1 | \mathbf{z}_2 | \cdots | \mathbf{z}_k]$ and the $(n \times p)$ -matrix $U = [\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_p]$.

• Step (1).

Form the $(n \times (k+p))$ -matrix $[Z \mid U]$.

Obtain some appropriate $(n \times (k + p))$ -matrix [Z' | U'] which is row-equivalent to [Z | U], and in which Z' is the reduced row-echelon form row-equivalent to Z.

• Step (2).

By inspecting [Z' | U'], determine whether each of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ belongs to V. If no, then conclude that $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ do not constitute a basis for V. If yes, then proceed to Step (3). • Step (3).

(From now on, we suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p \in V$.) By inspecting Z', determine determine whether dim(V) = p holds. If no, then conclude that $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ do not constitute a basis for V. If yes, then proceed to Step (4).

• Step (4).

(From now on, we also suppose $\dim(V) = p$.)

Determine the reduced row-echelon form \hat{U} which is row-equivalent to U.

By inspecting \hat{U} , determine whether $\mathcal{N}(U) = \{\mathbf{0}_p\}$.

If no, then conclude that $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly dependent and that they do not constitute a basis for $\mathcal{N}(A)$.

If yes, then conclude that $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent and that they do constitute a basis for $\mathcal{N}(A)$.

6. Illustrations.

(a) Let
$$\mathbf{z}_{1} = \begin{bmatrix} 1\\ 1\\ 3\\ 2 \end{bmatrix}$$
, $\mathbf{z}_{2} = \begin{bmatrix} 1\\ 0\\ 4\\ 2 \end{bmatrix}$, $\mathbf{z}_{3} = \begin{bmatrix} 1\\ -1\\ 4\\ 1 \end{bmatrix}$, $\mathbf{z}_{4} = \begin{bmatrix} 1\\ 0\\ 3\\ 1 \end{bmatrix}$, and $V = \text{Span} (\{\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}, \mathbf{z}_{4}\})$.
Let $\mathbf{u}_{1} = \begin{bmatrix} 2\\ 1\\ 7\\ 4 \end{bmatrix}$, $\mathbf{u}_{2} = \begin{bmatrix} 2\\ -1\\ 8\\ 3 \end{bmatrix}$, $\mathbf{u}_{3} = \begin{bmatrix} 2\\ 0\\ 7\\ 3 \end{bmatrix}$.

We check whether $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ constitute a basis for V.

Define $Z = [\mathbf{z}_1 \mid \mathbf{z}_2 \mid \mathbf{z}_3 \mid \mathbf{z}_4].$

Define $U = [\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3].$

We apply row operations on [Z | U] so as to obtain a matrix [Z' | U'] in which Z' is the reduced row-echelon form which is row equivalent to Z:

$$\begin{bmatrix} Z \mid U \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & | & 2 & 2 & 2 \\ 1 & 0 & -1 & 0 & | & 1 & -1 & 0 \\ 3 & 4 & 4 & 3 & | & 7 & 8 & 7 \\ 2 & 2 & 1 & 1 & | & 4 & 3 & 3 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & | & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 & | & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & | & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & | & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} Z \mid U \end{bmatrix}$$

Each column in U' is a linear combination of the columns of Z'. Then $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \in \mathcal{C}(Z) = V$.

Note that
$$Z' = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
. Then $\dim(V) = r(Z) = r(Z') = 3$.

We obtain the reduced row-echelon form \hat{U} which is row-equivalent to U:

$\begin{bmatrix} 2\\1\\7\\4 \end{bmatrix}$	$\begin{array}{c}2\\-1\\8\\3\end{array}$	$\begin{array}{c}2\\0\\7\\3\end{array}$	$\longrightarrow \dots \longrightarrow$	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ 0 \ 0 \ 0 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$
-				-		-

We have $\mathcal{N}(U) = \{\mathbf{0}_3\}$. Then $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are linearly independent.

Hence $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ constitute a basis for V.

(b) Let
$$\mathbf{z}_{1} = \begin{bmatrix} 1\\2\\7\\1\\-1 \end{bmatrix}$$
, $\mathbf{z}_{2} = \begin{bmatrix} 1\\1\\3\\1\\0 \end{bmatrix}$, $\mathbf{z}_{3} = \begin{bmatrix} 3\\2\\5\\-1\\9 \end{bmatrix}$, $\mathbf{z}_{4} = \begin{bmatrix} 1\\-1\\-5\\2\\0 \end{bmatrix}$, and $V = \text{Span} \left(\{\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}, \mathbf{z}_{4}\}\right)$.
Let $\mathbf{u}_{1} = \begin{bmatrix} 0\\1\\4\\0\\1 \end{bmatrix}$, $\mathbf{u}_{2} = \begin{bmatrix} 2\\1\\2\\-2\\9 \end{bmatrix}$, $\mathbf{u}_{3} = \begin{bmatrix} 5\\5\\15\\1\\8 \end{bmatrix}$.

We check whether $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ constitute a basis for V.

Define $Z = [\mathbf{z}_1 \mid \mathbf{z}_2 \mid \mathbf{z}_3 \mid \mathbf{z}_4].$

Define $U = [\mathbf{u}_1 \mid \mathbf{u}_2 \mid \mathbf{u}_3].$

We apply row operations on [Z | U] so as to obtain a matrix [Z' | U'] in which Z' is the reduced row-echelon form which is row equivalent to Z:

$$\begin{bmatrix} Z \mid U \end{bmatrix} = \begin{bmatrix} 1 & 1 & 3 & 1 & 0 & 2 & 5 \\ 2 & 1 & 2 & -1 & 1 & 1 & 5 \\ 7 & 3 & 5 & -5 & 4 & 2 & 15 \\ 1 & 1 & -1 & 2 & 0 & -2 & 1 \\ -1 & 0 & 9 & 0 & -1 & 9 & 8 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & 0 & -9/4 & 1 & 0 & 1 \\ 0 & 1 & 0 & 2 & -1 & -1 & 1 \\ 0 & 0 & 1 & -1/4 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} Z \mid U \end{bmatrix}$$

Each column in U' is a linear combination of the columns of Z'. Then $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \in \mathcal{C}(Z) = V$.

Note that
$$Z' = \begin{bmatrix} 1 & 0 & 0 & -9/4 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1/4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
. Then $\dim(V) = r(Z) = r(Z') = 3$.

We obtain the reduced row-echelon form \hat{U} which is row-equivalent to U:

$$\begin{bmatrix} 0 & 2 & 5\\ 1 & 1 & 5\\ 4 & 2 & 15\\ 0 & -2 & 1\\ -1 & 9 & 8 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end{bmatrix}$$

We have $\mathcal{N}(U) = \{\mathbf{0}_3\}$. Then $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are linearly independent. Hence $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ constitute a basis for V.