
MATH1030 Inequalities on dimension.

1. Definition. (Subspaces of subspace of Rn.)
Let V,W be subspaces of Rn.
We say V is a subspace of W if and only if the statement (†) holds:

(†) For any x ∈ Rn, if x ∈ V then x ∈ W .

Remark. In plain words, the statement (†) reads: ‘every vector of V belongs to W ’.

2. Illustrations.

(a) Let A =

[
1 2 2 4
1 3 3 5
2 6 5 6

]
, B =

[
1 2 2 4
1 3 3 5

]
, C =

[
1 3 3 5
2 6 5 6

]
, D = [ 1 3 3 5 ].

With a direct application of the definition, we can show that:
• N (A) is a subspace of N (B),
• N (A) is a subspace of N (C),
• N (A) is a subspace of N (D),
• N (B) is a subspace of N (D), and
• N (C) is a subspace of N (D).

After some harder work, we can also show that:
• N (B) is not a subspace of N (C), and
• N (C) is not a subspace of N (B).

(b) Let x1 =

 2
−1
3
1
2

, x2 =

 1
2
−1
5
2

, x3 =

 2
1
−3
6
1

, x4 =

−6
7
−1
1
1

, and

T = Span ({x1,x2}), U = Span ({x1,x2,x3}), V = Span ({x1,x2,x4}),W = Span ({x1,x2,x3,x4}).

We can show that:
• T is a subspace of U ,
• T is a subspace of V ,
• T is a subspace of W ,
• U is a subspace of W , and
• V is a subspace of W .

After some harder work, we can also show that:
• U is not a subspace of V , and
• V is not a subspace of U .

3. Again recall the Replacement Theorem (Theorem (F)) in the handout More on minimal spanning set:

Let W be a subspace of Rn.
Let s1, s2, · · · , sp, t1, t2, · · · , tq be vectors in W . Suppose none of these vectors is the zero vector.
Suppose s1, s2, · · · , sp are linearly independent.
Further suppose t1, t2, · · · , tq constitute a basis for W .
Then, q ≥ p, and there is a basis for W which is constituted by s1, s2, · · · , sp together with some q − p vectors
from amongst t1, t2, · · · , tq.

This result, combined with the notion of subspaces of a subspace of Rn, leads to Theorem (I), which is a useful tool
for comparing various subspaces of Rn.

4. Theorem (I).
Let V,W be subspaces of Rn.
Suppose V is a subspace of W .
Then dim(V ) ≤ dim(W ). Moreover, equality holds if and only if V = W .
Remark. From the handout Dimension, we have learnt that

• every subspace of Rn is of dimension at most n, and
• Rn is the one and only one n-dimensional subspace of Rn.
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What we have learnt earlier can be seen as a manifestation of Theorem (I) in the special case in which W = Rn.

5. Proof of Theorem (I).
Let V,W be subspaces of Rn.
Suppose V is a subspace of W .
Write dim(V ) = k. Pick some basis for V , say, v1,v2, · · · ,vk. Then by assumption, each of them belongs to W .

(a) By definition, v1,v2, · · · ,vk are linearly independent.
So they are k linearly independent vectors in W .
Hence dim(V ) = k ≤ dim(W ) by Theorem (H).

(b) Suppose V = W . Then dim(V ) = dim(W ).
(c) Suppose dim(V ) = dim(W ). Then dim(W ) = k.

Pick some basis for W , say, w1,w2, · · · ,wk.
Recall that v1,v2, · · · ,vk are k linearly independent vectors in W .
Then by the Replacement Theorem, v1,v2, · · · ,vk, together with possibly some vectors from amongst w1,w2, · · · ,wk,
constitute a basis for W .
Since dim(W ) = k, the k vectors v1,v2, · · · ,vk already constitute a basis for W .
It follows that W = Span ({v1,v2, · · · ,vk}) = V .

6. Corollary (1) to Theorem (I).
Let V,W be subspaces of Rn. Suppose dim(W ) = p.
Further suppose V is a subspace of W .
Also suppose that there are p vectors in V which are linearly independent.
Then V = W .

7. Proof of Corollary (1) to Theorem (I).
Let V,W be subspaces of Rn. Suppose dim(W ) = p.
Further suppose V is a subspace of W .
Also suppose that there are p vectors in V which are linearly independent.

• Since V is a subspace of W , we have dim(V ) ≤ dim(W ).
• Since there are p vectors in V which are linearly independent, we have dim(V ) ≥ p = dim(W ).

Then dim(V ) = dim(W ). Now, by Theorem (I), since V is a subspace of W , we have V = W .

8. Corollary (2) to Theorem (I).
Let V,W be subspaces of Rn. Suppose dim(V ) = p.
Further suppose V is a subspace of W .
Also suppose that there are p vectors of W so that every vector of W is a linear combination of these p vectors.
Then V = W .

9. Proof of Corollary (2) to Theorem (I).
Let V,W be subspaces of Rn. Suppose dim(V ) = p.
Further suppose V is a subspace of W .
Also suppose that there are p vectors of W , say, w1,w2, · · · ,wp, so that every vector of W is a linear combination
of these p vectors.

• Since w1,w2, · · · ,wp are all vectors in W , every linear combination of w1,w2, · · · ,wp is a vector in W .
Then W = Span {w1,w2, · · · ,wp}.
Therefore there is a basis for W from amongst the p vectors w1,w2, · · · ,wp. Hence dim(W ) ≤ p = dim(V ).

• Since V is a subspace of W , we have dim(V ) ≤ dim(W ).

Then dim(V ) = dim(W ). Now, by Theorem (I), since V is a subset of W , we have V = W .

10. Theorem (J). (Re-formulation of the notion of basis in terms of dimension.)
Let W be a subspace of Rn. Suppose u1,u2, · · · ,up be vectors in W .
Then the statements below are logically equivalent:

(♯) u1,u2, · · · ,up constitute a basis for W .
(♮) dim(W ) = p, and u1,u2, · · · ,up are linearly independent.
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(♭) dim(W ) = p, and every vector of W is a linear combination of u1,u2, · · · ,up.

11. Proof of Theorem (J).
Let W be a subspace of Rn. Suppose u1,u2, · · · ,up be vectors in W .

[The statement (♯) implies each of the statements (♮), (♭) immediately.
What matters is whether whether each of the statements (♮), (♭) separately implies (♯).]

• [We ask whether (♮) implies (♯).]
Suppose dim(W ) = p and u1,u2, · · · ,up are linearly independent.
Define V = Span ({u1,u2, · · · ,up}). [We want to show that V = W .]
By definition, u1,u2, · · · ,up constitute a basis for the p-dimensional subspace V of Rn.
Now we have dim(V ) = p = dim(W ).
Since u1,u2, · · · ,up are vectors in W , every linear combination of u1,u2, · · · ,up belongs to W .
Then V is a subspace of W . Now, by Corollary (2) to Theorem (I), we have V = W .
Hence u1,u2, · · · ,up constitute a basis for W .

• [We ask whether (♭) implies (♯).]
Suppose dim(W ) = p, and every vector in W is a linear combination of u1,u2, · · · ,up.
Since u1,u2, · · · ,up are vectors in W , every linear combination of u1,u2, · · · ,up is a vector in W .
Then there is a basis for W , with, say, q vectors, from amongst the vectors u1,u2, · · · ,up. Without loss of
generality, assume they are u1,u2, · · · ,uq. These q vectors are linearly independent.
Since these q vectors constitute a basis for W , we have dim(W ) = q.
Then p = dim(W ) = q. Therefore u1,u2, · · · ,up are linearly independent.
Hence u1,u2, · · · ,up constitute a basis for W .

12. Theorem (J’). (Re-formulation of Theorem (J) in terms of systems of equations.)
Let W be a subspace of Rn.
Suppose u1,u2, · · · ,up be vectors in W , and U is the (n× p)-matrix given by U = [ u1 u2 · · · up ].
Then the statements below are logically equivalent:

(a) u1,u2, · · · ,up is a basis for W .
(b) dim(W ) = p, and the homogeneous system LS(U, 0) has no non-trivial solution.
(c) dim(W ) = p, and for any b ∈ V , the system LS(U, b) is consistent.
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