1. Definition. (Subspaces of subspace of \mathbb{R}^n .)

Let V, W be subspaces of \mathbb{R}^n .

We say V is a subspace of W if and only if the statement (\dagger) holds:

```
(†) For any \mathbf{x} \in \mathbb{R}^n, if \mathbf{x} \in V then \mathbf{x} \in W.
```

Remark.

In plain words, the statement (\dagger) reads: 'every vector of V belongs to W'.

1. Definition. (Subspaces of subspace of \mathbb{R}^n .) Let V, W be subspaces of \mathbb{R}^n .

We say V is a subspace of W if and only if the statement (\dagger) holds:

(†) For any $\mathbf{x} \in \mathbb{R}^n$, if $\mathbf{x} \in V$ then $\mathbf{x} \in W$.

Remark.

In plain words, the statement (\dagger) reads: 'every vector of V belongs to W'.

Visual Hation the dephitive W is a subspace of
V is a subspace of
Every vector which 'subspace of a Subspace of belongs to also belongs to W. (This is what (T) is saying.)

2. Illustrations.

(a) Let
$$A = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 1 & 3 & 3 & 5 \\ 2 & 6 & 5 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 1 & 3 & 3 & 5 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 3 & 3 & 5 \\ 2 & 6 & 5 & 6 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 3 & 3 & 5 \\ 2 & 6 & 5 & 6 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 3 & 3 & 5 \end{bmatrix}$.

With a direct application of the definition, we can show that:

- $\mathcal{N}(A)$ is a subspace of $\mathcal{N}(B)$,
- $\mathcal{N}(A)$ is a subspace of $\mathcal{N}(C)$,
- $\mathcal{N}(A)$ is a subspace of $\mathcal{N}(D)$,
- $\mathcal{N}(B)$ is a subspace of $\mathcal{N}(D)$, and
- $\mathcal{N}(C)$ is a subspace of $\mathcal{N}(D)$.

- $\mathcal{N}(B)$ is not a subspace of $\mathcal{N}(C)$, and
- $\mathcal{N}(C)$ is not a subspace of $\mathcal{N}(B)$.

2. Illustrations.

(a) Let
$$A = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 1 & 3 & 3 & 5 \\ 2 & 6 & 5 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 1 & 3 & 3 & 5 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 3 & 3 & 5 \\ 2 & 6 & 5 & 6 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 3 & 3 & 5 \\ 2 & 6 & 5 & 6 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 3 & 3 & 5 \end{bmatrix}$

With a direct application of the definition, we can show that:

- $\mathcal{N}(A)$ is a subspace of $\mathcal{N}(B)$,
- $\mathcal{N}(A)$ is a subspace of $\mathcal{N}(C)$,
- $\mathcal{N}(A)$ is a subspace of $\mathcal{N}(D)$,
- $\mathcal{N}(B)$ is a subspace of $\mathcal{N}(D)$, and
- $\mathcal{N}(C)$ is a subspace of $\mathcal{N}(D)$.

- $\mathcal{N}(B)$ is not a subspace of $\mathcal{N}(C)$, and
- $\mathcal{N}(C)$ is not a subspace of $\mathcal{N}(B)$.

ow that:	7 بر	(D)
		N (C)
	1)	(B)
1	R	
		(A)
	/	

(b) Let
$$\mathbf{x}_1 = \begin{bmatrix} 2 \\ -1 \\ 3 \\ 1 \\ 2 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 5 \\ 2 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 2 \\ 1 \\ -3 \\ 6 \\ 1 \end{bmatrix}$, $\mathbf{x}_4 = \begin{bmatrix} -6 \\ 7 \\ -1 \\ 1 \\ 1 \end{bmatrix}$, and

 $T = \mathsf{Span}\left(\{\mathbf{x}_1, \mathbf{x}_2\}\right), U = \mathsf{Span}\left(\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}\right), V = \mathsf{Span}\left(\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_4\}\right), W = \mathsf{Span}\left(\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}\right).$

With a direct application of the definition, we can show that:

- T is a subspace of U,
- T is a subspace of V,
- T is a subspace of W,
- U is a subspace of W, and
- V is a subspace of W.

- U is not a subspace of V, and
- V is not a subspace of U.

(b) Let $\mathbf{x}_1 = \begin{bmatrix} 2 \\ -1 \\ 3 \\ 1 \\ 2 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 5 \\ 2 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 2 \\ 1 \\ -3 \\ 6 \\ 1 \end{bmatrix}$, $\mathbf{x}_4 = \begin{bmatrix} -6 \\ 7 \\ -1 \\ 1 \\ 1 \end{bmatrix}$, and

 $T = \mathsf{Span}(\{\mathbf{x}_1, \mathbf{x}_2\}), U = \mathsf{Span}(\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}), V = \mathsf{Span}(\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_4\}), W = \mathsf{Span}(\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}).$

Br W= Span ({x, x2, x3, x4})

(x, is not displayed) in this picture.

With a direct application of the definition, we can show that:

- T is a subspace of U,
- T is a subspace of V,
- T is a subspace of W,
- U is a subspace of W, and
- V is a subspace of W.

- U is not a subspace of V, and
- V is not a subspace of U.

3. Again recall the Replacement Theorem (Theorem (F)) in the handout More on minimal spanning set:

```
Let W be a subspace of \mathbb{R}^n.
```

Let $\mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_p, \mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_q$ be vectors in W. Suppose none of these vectors is the zero vector.

```
Suppose \mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_p are linearly independent.
Further suppose \mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_q constitute a basis for W.
```

Then:

- $q \ge p$, and
- \bullet there is a basis for W which is constituted by

 $* \mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_p$ together with

* some q - p vectors from amongst $\mathbf{t}_1, \mathbf{t}_2, \cdots, \mathbf{t}_q$.

This result, combined with the notion of *subspaces of a subspace of* \mathbb{R}^n , leads to Theorem (I), which is a useful tool for comparing various subspaces of \mathbb{R}^n .

4. Theorem (I).

Let V, W be subspaces of \mathbb{R}^n . Suppose V is a subspace of W.

```
Then \dim(V) \leq \dim(W).
```

Moreover, equality holds if and only if V = W.

Remark.

From the handout *Dimension*, we have learnt that

- every subspace of \mathbb{R}^n is of dimension at most n, and
- \mathbb{R}^n is the one and only one *n*-dimensional subspace of \mathbb{R}^n .

What we have learnt earlier can be seen as a manifestation of Theorem (I) in the special case in which $W = \mathbb{R}^n$.

5. Proof of Theorem (I).

Let V, W be subspaces of \mathbb{R}^n .

Suppose V is a subspace of W.

Write dim(V) = k. Pick some basis for V, say, $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$.

Then by assumption, each of them belongs to W.

(a) By definition, $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ are linearly independent. So they are k linearly independent vectors in W. Hence $\dim(V) = k \leq \dim(W)$ by Theorem (H).

(b) Suppose V = W. Then $\dim(V) = \dim(W)$.

(c) Suppose
$$\dim(V) = \dim(W)$$
. Then $\dim(W) = k$.
Pick some basis for W , say, $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_k$.

Recall that $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ are k linearly independent vectors in W.

Then by the Replacement Theorem, $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$, together with possibly some vectors from amongst $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_k$, constitute a basis for W.

Since dim(W) = k, the k vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ already constitute a basis for W. It follows that $W = \text{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\}) = V$.

5. Proof of Theorem (I).

Let V, W be subspaces of \mathbb{R}^n . Suppose V is a subspace of W. Write dim(V) = k. Pick some basis for V, say, $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$. Then by assumption, each of them belongs to W. So by definition, $V = Span(\{v_1, v_2, \dots, v_k\})$ and v_1, v_2, \dots, v_k are linearly independent.

- (a) By definition, $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ are linearly independent. So they are k linearly independent vectors in W. Hence $\dim(V) = k \leq \dim(W)$ by Theorem (H).
- (b) Suppose V = W. Then $\dim(V) = \dim(W)$.
- (c) Suppose $\dim(V) = \dim(W)$. Then $\dim(W) = k$. Pick some basis for W, say, $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_k$.

Recall that $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ are k linearly independent vectors in W.

Then by the Replacement Theorem, $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$, together with possibly some vectors from amongst $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_k$, constitute a basis for W.

Since dim(W) = k, the k vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k$ already constitute a basis for W.

It follows that $W = \text{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\}) = V$.

6. Corollary (1) to Theorem (I).

Let V, W be subspaces of \mathbb{R}^n . Suppose dim(W) = p.

Further suppose V is a subspace of W. Also suppose that there are p vectors in V which are linearly independent. Then V = W.

- 7. Proof of Corollary (1) to Theorem (I).
 Let V, W be subspaces of ℝⁿ. Suppose dim(W) = p.
 Further suppose V is a subspace of W.
 Also suppose that there are p vectors in V which are linearly independent.
 - Since V is a subspace of W, we have $\dim(V) \leq \dim(W)$.
 - Since there are p vectors in V which are linearly independent, we have

 $\dim(V) \ge p = \dim(W),$

Then $\dim(V) = \dim(W)$.

Now, by Theorem (I), since V is a subspace of W, we have V = W.

6. Corollary (1) to Theorem (I).

Let V, W be subspaces of \mathbb{R}^n . Suppose dim(W) = p.

Further suppose V is a subspace of W.

Also suppose that there are p vectors in V which are linearly independent.

Then V = W.

- 7. Proof of Corollary (1) to Theorem (I). Let V, W be subspaces of \mathbb{R}^n . Suppose $\dim(W) = p$. Further suppose V is a subspace of W. Also suppose that there are p vectors in V which are linearly independent.
 - Since V is a subspace of W, we have $\dim(V) \leq \dim(W)$.
 - Since there are p vectors in V which are linearly independent, we have

$\dim(V) \ge p \bigoplus \dim(W),$

Then $\dim(V) = \dim(W)$.

Now, by Theorem (I), since V is a subspace of W, we have V = W.

8. Corollary (2) to Theorem (I).

Let V, W be subspaces of \mathbb{R}^n . Suppose dim(V) = p.

Further suppose V is a subspace of W.

Also suppose that there are p vectors of W so that every vector of W is a linear combination of these p vectors.

Then V = W.

9. Proof of Corollary (2) to Theorem (I).

Let V, W be subspaces of \mathbb{R}^n . Suppose $\dim(V) = p$. Further suppose V is a subspace of W.

Also suppose that there are p vectors of W, say, $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_p$, so that every vector of W is a linear combination of these p vectors.

• Since $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_p$ are all vectors in W, every linear combination of $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_p$ is a vector in W.

Then $W = \mathsf{Span} \{ \mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_p \}.$

Therefore there is a basis for W from amongst the p vectors $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_p$. Hence $\dim(W) \leq p = \dim(V)$.

• Since V is a subspace of W, we have $\dim(V) \leq \dim(W)$.

Then $\dim(V) = \dim(W)$. Now, by Theorem (I), since V is a subset of W, we have V = W.

10. Theorem (J). (Re-formulation of the notion of basis in terms of dimension.) Let W be a subspace of \mathbb{R}^n .

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ be vectors in W.

Then the statements below are logically equivalent:

(\sharp) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ constitute a basis for W.

 $(\natural) \dim(W) = p$, and $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent.

(b) dim(W) = p, and every vector of W is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$.

11. Proof of Theorem (J).

Let W be a subspace of \mathbb{R}^n . Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ be vectors in W.

[The statement (\sharp) implies each of the statements (\flat), (\flat) immediately.

What matters is whether whether each of the statements (\natural) , (\flat) separately implies (\sharp) .]

[We ask whether (\$) implies (\$).]
Suppose dim(W) = p and u₁, u₂, ··· , u_p are linearly independent.
Define V = Span ({u₁, u₂, ··· , u_p}). [We want to show that V = W.]
By definition, u₁, u₂, ··· , u_p constitute a basis for the p-dimensional subspace V of ℝⁿ.
Now we have dim(V) = p = dim(W).

Since $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are vectors in W, every linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ belongs to W.

Then V is a subspace of W.

Now, by Corollary (2) to Theorem (I), we have V = W.

Hence $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ constitute a basis for W.

• [We ask whether (\flat) implies (\sharp) .]

Suppose dim(W) = p, and every vector in W is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$. Since $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are vectors in W, every linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ is a vector in W.

Then there is a basis for W, with, say, q vectors, from amongst the vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$. Without loss of generality, assume they are $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_q$.

These q vectors are linearly independent.

Since these q vectors constitute a basis for W, we have $\dim(W) = q$.

Then $p = \dim(W) = q$. Therefore $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent.

Hence $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ constitute a basis for W.

12. Theorem (J'). (Re-formulation of Theorem (J) in terms of systems of equations.)

Let W be a subspace of \mathbb{R}^n .

Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ be vectors in W, and U is the $(n \times p)$ -matrix given by $U = [\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_p].$

Then the statements below are logically equivalent:

(a) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ is a basis for W.

(b) $\dim(W) = p$, and the homogeneous system $\mathcal{LS}(U, \mathbf{0})$ has no non-trivial solution.

(c) $\dim(W) = p$, and for any $\mathbf{b} \in V$, the system $\mathcal{LS}(U, \mathbf{b})$ is consistent.