
MATH1030 Dimension.

1. Recall the definition for the notion of basis for a subspace of Rn.

Let V be a subspace of Rn.
We declare that if V is the zero subspace of Rn then the empty set is the basis for V .
From now on suppose V is not the zero subspace of Rn.
Suppose u1,u2, · · · ,up are vectors in V .
The vectors u1,u2, · · · ,up are said to constitute a basis for V (or the set {u1,u2, · · · ,up} is said to be a basis
for V ) if and only if both of the statements (BL), (BS) below hold:

(BL) u1,u2, · · · ,up are linearly independent.
(BS) Every vector in V is a linear combination of u1,u2, · · · ,up.

Also recall Theorem (B) below, from the handout Bases for subspaces of Rn:

Any two bases for a subspace of Rn have the same number of vectors.

Further recall Theorem (C) below, from the handout Bases for subspaces of Rn:

Suppose V is a non-zero subspace of Rn. Then V has a basis which consists of at least one and at most n
vectors in Rn.

They combine to make sense of the definition for the notion of dimension, introduced below.

2. Definition. (Dimension.)
Let V be a subspace of Rn.
When V is not the zero subspace of Rn, the number of vectors in a basis for V is called the dimension of V . When
this number is p, we write dim(V ) = p, and we refer to V as a p-dimensional subspace of Rn.
We declare the dimension of the zero subspace of Rn to be 0.
Remark. By definition, when V is a subspace of Rn, it happens that dim(V ) ≤ n. (Why? A basis for V is
necessarily a collection of linearly independent vectors in Rn; there are at most n vectors in such a collection.)

3. Theorem (1).
Rn is an n-dimensional subspace of Rn.
Proof of Theorem (1).

The n vectors e
(n)
1 , e

(n)
2 , · · · , e(n)n constitute a basis for Rn.

4. Examples.

(a) Let A =

[
1 2 2 4
1 3 3 5
2 6 5 6

]
, and V = N (A).

After some work, we find that a basis for V is constituted by the vector u, in which u =

[ −2
3
−4
1

]
.

Then dim(V ) = 1.

(b) Let A =

[
1 2 0 1 7
1 1 1 −1 3
3 1 5 −7 1

]
, and V = N (A).

After some work, we find that a basis for V is constituted by the vectors u1,u2,u3, in which u1 =

 −2
1
1
0
0

,

u2 =

 3
−2
0
1
0

, u3 =

 1
−4
0
0
1

.

Hence dim(V ) = 3.

(c) Let u1 =

[1
1
3
2

]
,u2 =

[1
0
4
2

]
,u3 =

[ 1
−1
4
1

]
,u4 =

[1
0
3
1

]
, and V = Span ({u1,u2,u3,u4}).

After some work, we find that a basis for V is constituted by u1,u2,u3.
Hence dim(V ) = 3.
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(d) Let u1 =

 1
2
7
1
−1

, u2 =

113
1
0

, u3 =

 3
2
5
−1
9

, u4 =

 1
−1
−5
2
0

 and V = Span ({u1,u2,u3,u4}).

After some work, we find that a basis for V is constituted by t1, t2, t3, in which t1 =

 1
0
−1
0
3

, t2 =

 0
1
4
0
−1

,

t3 =

 0
0
0
1
−2

.

Hence dim(V ) = 3.

5. Recall the Replacement Theorem (Theorem (F)) from the handout More on minimal spanning set:

Let W be a subspace of Rn.
Let s1, s2, · · · , sp, t1, t2, · · · , tq be vectors in W . Suppose none of these vectors is the zero vector.
Suppose s1, s2, · · · , sp are linearly independent.
Further suppose t1, t2, · · · , tq constitute a basis for W .
Then, q ≥ p, and there is a basis for W which is constituted by s1, s2, · · · , sp together with some q − p vectors
from amongst t1, t2, · · · , tq.

A consequence of this result is Theorem (2).

6. Theorem (2).
Rn is the only n-dimensional subspace of Rn.
Proof of Theorem (2).
[We are going to prove the statement ‘if V is an n-dimensional subspace of Rn then V = Rn.’]
Let V be a subspace of Rn. Suppose that dim(V ) = n.
There is some basis with n vectors in V , say, v1,v2, · · · ,vn. They are n linearly independent vectors in Rn.

Note that e
(n)
1 , e

(n)
2 , · · · , e(n)n constitute some basis for Rn.

Then by the Replacement Theorem, v1,v2, · · · ,vn, together with possibly some vectors from amongst e(n)1 , e
(n)
2 , · · · , e(n)n ,

constitute a basis for Rn.
However, since dim(Rn) = n, the n vectors v1,v2, · · · ,vn already constitute a basis for Rn.
It follows that Rn = Span ({v1,v2, · · · ,vn}) = V .
Remark. This argument can be generalized to give an important theoretical tool with wide applications. See
the handout Inequalities on dimension.

7. Recall Theorem (G) from the handout More on minimal spanning set:

Let W be a non-zero subspace of Rn, and u1,u2, · · · ,up be vectors in W .
Further suppose that u1,u2, · · · ,up are linearly independent.
Then, there is some basis for W , which is constituted of at most n vectors, amongst them being the vectors
u1,u2, · · · ,up.

According to this result, whenever we have k linearly independent vectors in a subspace, say, W , of Rn, these k
vectors will be part of a basis for W . Then it is necessary for W to have dimension at least k.
Out of this discussion, we obtain Theorem (H) below.

8. Theorem (H).
Let W be a p-dimensional subspace of Rn, and u1,u2, · · · ,uk be vectors in W .
Suppose u1,u2, · · · ,uk are linearly independent. Then k ≤ p.
Proof of Theorem (H).
By assumption there is some basis for W which is constituted by p vectors in W , amongst them being these k
vectors. Then k ≤ p.
Remark. This is a generalization of the result below, from the handout Linear dependence and linear indepen-
dence:

Let v1,v2, · · · ,vℓ be vectors in Rm. Suppose v1,v2, · · · ,vℓ are linearly independent. Then ℓ ≤ m.

9. According to logic, Theorem (H) is saying the same thing as Corollary to Theorem (H) below:
Corollary to Theorem (H).
Any p+ 1 or more vectors in a p-dimensional subspace of Rn are linearly dependent.
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