
MATH1030 Duality between spanning and linear independence.

1. Lemma (ζ).
Let y ∈ Rp. The statements below are logically equivalent:

(a) y = 0p.

(b) For any z ∈ Rp, ytz = 0.

2. Proof of Lemma (ζ).
Let y ∈ Rp. The statements below are logically equivalent:

• Suppose y = 0p.
Pick any z ∈ Rp. We have ytz = 0p

tz = 0.

• Suppose that for any z ∈ Rp, ytz = 0.
Denote the j-th entry of y by yj for each j = 1, 2, · · · , p.

We have y = y1e
(p)
1 + y2e

(p)
2 + · · ·+ ype

(p)
p .

Then, for each j = 1, 2, · · · , p, we have yj = yte
(p)
j = 0.

Therefore y = 0p.

3. Theorem (η).
Let A be an (m× n)-matrix.
Suppose C(A) = Rn. Then N (At) = {0m}.

4. Proof of Theorem (η).
Let A be an (m× n)-matrix.
Suppose C(A) = Rn.
[We want to verify that 0m is the only vector in N (At).]
Pick any v ∈ Rm. Suppose v ∈ N (At). [Ask: is it true that v = 0m?]
We verify that for any w ∈ Rm,vtw = 0:

• Pick any w ∈ Rm.
Since C(A) = Rm, there exists some x ∈ Rn such that w = Ax.
Then vtw = vt(Ax) = (vtA)x = (Atv)tx.
Recall that v ∈ N (At). Then by definition, Atv = 0n.
Now we have vtw = (Atv)tx = 0n

tx = 0.
Therefore, by Lemma (ζ), v = 0m.

It follows that N (At) = {0m}.

5. The converse of Theorem (η) is also true. The argument relies on the result below:
Theorem (θ).
Let C be an (p× q)-matrix. Suppose K is a non-singular (p× p)-square matrix. Then the equalities below hold:

(a) N (KC) = N (C).
(b) R(KC) = R(C).

6. Proof of Theorem (θ).
Let C be an (p× q)-matrix. Suppose K is a non-singular (p× p)-square matrix.

(a) N (KC) is the solution set of the homogeneous system LS(KC, 0p).
N (C) is the solution set of the homogeneous system LS(C, 0p).
By assumption, KC is row-equivalent to C. Then LS(C, 0p) is equivalent to LS(KC, 0p). (So every solution
of the former is a solution of the latter, and every solution of the latter is a solution of the former.)
Therefore N (KC) = N (C).

(b) According to Theorem (δ) in the handout Transpose and row space, we have R(KC) = R(K).
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7. Theorem (ι). (Converse of Theorem (η).)
Let A be an (m× n)-matrix.
Suppose N (At) = {0m}. Then C(A) = Rn.
Proof of Theorem (ι).
Let A be an (m× n)-matrix.
Suppose N (At) = {0m}.
Denote by the B the reduced row-echelon form which is row-equivalent to At.
Then N (B) = N (At). (Why?)
Since B is a reduced row-echelon form and N (B) = {0m}, every column of B is a pivot column.

Then n ≥ m, and B =

[
Im

O(n−m)×m

]
.

Therefore Bt = [ Im Om×(n−m) ]. We have C(Bt) = Rm.

Recall that by Theorem (ϵ), we have R(At) = R(B).
Then C(A) = R(At) = R(B) = C(Bt) = Rm.

8. Recall that we say some given vectors u1,u2, · · · ,uk spans Rp exactly when every vector in Rp is a linear combination
of u1,u2, · · · ,uk. In set language, we may present this as in the form of the equality Rp = Span ({u1,u2, · · · ,uk}).
Combining Theorem (η) and Theorem (ι), we obtain the result below:
Theorem (κ). (Duality between spanning and linear independence.)
Let A be an (m× n)-matrix.

(a) The statements below are logically equivalent:
i. The columns of A (regarded as column vectors in Rm) span Rm.
ii. C(A) = Rm.
iii. N (At) = {0m}.
iv. The columns of At (regarded as column vectors in Rn) are linearly independent.

(b) The statements below are logically equivalent:
i. The columns of At (regarded as column vectors in Rn) span Rn.
ii. C(At) = Rn.
iii. N (A) = {0n}.
iv. The columns of A (regarded as column vectors in Rm) are linearly independent.

9. Theorem (κ) can also be re-formulated in terms of systems of linear equations. Such a formulation is useful in
various branches of ‘applied mathematics’.
Theorem (λ). (Re-formulation of Theorem (κ).)
Let A be an (m× n)-matrix.

(a) The statements below are logically equivalent:
i. For any b ∈ Rm, the system LS(A, b) is consistent.
ii. C(A) = Rm.
iii. N (At) = {0m}.
iv. The trivial solution is the only solution of the system LS(At, 0n).

(b) The statements below are logically equivalent:
i. For any c ∈ Rn, the system LS(At, c) is consistent.
ii. C(At) = Rn.
iii. N (A) = {0n}.
iv. The trivial solution is the only solution of the system LS(A, 0m).
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