1. Lemma (ζ) .

Let $\mathbf{y} \in \mathbb{R}^p$. The statements below are logically equivalent:

- (a) $y = 0_p$.
- (b) For any $\mathbf{z} \in \mathbb{R}^p$, $\mathbf{y}^t \mathbf{z} = 0$.

2. Proof of Lemma (ζ).

Let $\mathbf{y} \in \mathbb{R}^p$. The statements below are logically equivalent:

- Suppose $\mathbf{y} = \mathbf{0}_p$. Pick any $\mathbf{z} \in \mathbb{R}^p$. We have $\mathbf{y}^t \mathbf{z} = \mathbf{0}_p^t \mathbf{z} = 0$.
- Suppose that for any $\mathbf{z} \in \mathbb{R}^p$, $\mathbf{y}^t \mathbf{z} = 0$. Denote the *j*-th entry of \mathbf{y} by y_j for each $j = 1, 2, \cdots, p$. We have $\mathbf{y} = y_1 \mathbf{e}_1^{(p)} + y_2 \mathbf{e}_2^{(p)} + \cdots + y_p \mathbf{e}_p^{(p)}$. Then, for each $j = 1, 2, \cdots, p$, we have $y_j = \mathbf{y}^t \mathbf{e}_j^{(p)} = 0$. Therefore $\mathbf{y} = \mathbf{0}_p$.

3. Theorem (η) .

Let A be an $(m \times n)$ -matrix.

Suppose $\mathcal{C}(A) = \mathbb{R}^n$. Then $\mathcal{N}(A^t) = \{\mathbf{0}_m\}$.

4. Proof of Theorem (η) .

Let A be an $(m \times n)$ -matrix.

Suppose $\mathcal{C}(A) = \mathbb{R}^n$.

[We want to verify that $\mathbf{0}_m$ is the only vector in $\mathcal{N}(A^t)$.]

Pick any $\mathbf{v} \in \mathbb{R}^m$. Suppose $\mathbf{v} \in \mathcal{N}(A^t)$. [Ask: is it true that $\mathbf{v} = \mathbf{0}_m$?]

We verify that for any $\mathbf{w} \in \mathbb{R}^m$, $\mathbf{v}^t \mathbf{w} = 0$:

Pick any w ∈ ℝ^m.
Since C(A) = ℝ^m, there exists some x ∈ ℝⁿ such that w = Ax.
Then v^tw = v^t(Ax) = (v^tA)x = (A^tv)^tx.
Recall that v ∈ N(A^t). Then by definition, A^tv = 0_n.
Now we have v^tw = (A^tv)^tx = 0_n^tx = 0.
Therefore, by Lemma (ζ), v = 0_m.

It follows that $\mathcal{N}(A^t) = \{\mathbf{0}_m\}.$

5. The converse of Theorem (η) is also true. The argument relies on the result below:

Theorem (θ) .

Let C be an $(p \times q)$ -matrix. Suppose K is a non-singular $(p \times p)$ -square matrix. Then the equalities below hold:

(a)
$$\mathcal{N}(KC) = \mathcal{N}(C)$$
.

(b)
$$\mathcal{R}(KC) = \mathcal{R}(C).$$

6. Proof of Theorem (θ).

Let C be an $(p \times q)$ -matrix. Suppose K is a non-singular $(p \times p)$ -square matrix.

(a) $\mathcal{N}(KC)$ is the solution set of the homogeneous system $\mathcal{LS}(KC, \mathbf{0}_p)$.

 $\mathcal{N}(C)$ is the solution set of the homogeneous system $\mathcal{LS}(C, \mathbf{0}_p)$.

By assumption, KC is row-equivalent to C. Then $\mathcal{LS}(C, \mathbf{0}_p)$ is equivalent to $\mathcal{LS}(KC, \mathbf{0}_p)$. (So every solution of the former is a solution of the latter, and every solution of the latter is a solution of the former.) Therefore $\mathcal{N}(KC) = \mathcal{N}(C)$.

(b) According to Theorem (δ) in the handout Transpose and row space, we have $\mathcal{R}(KC) = \mathcal{R}(K)$.

7. Theorem (ι). (Converse of Theorem (η).)

Let A be an $(m \times n)$ -matrix.

Suppose $\mathcal{N}(A^t) = \{\mathbf{0}_m\}$. Then $\mathcal{C}(A) = \mathbb{R}^n$.

Proof of Theorem (ι) .

Let A be an $(m \times n)$ -matrix.

Suppose $\mathcal{N}(A^t) = \{\mathbf{0}_m\}.$

Denote by the B the reduced row-echelon form which is row-equivalent to A^t .

Then $\mathcal{N}(B) = \mathcal{N}(A^t)$. (Why?)

Since B is a reduced row-echelon form and $\mathcal{N}(B) = \{\mathbf{0}_m\}$, every column of B is a pivot column.

Then
$$n \ge m$$
, and $B = \left[\frac{I_m}{\mathcal{O}_{(n-m)\times m}}\right]$.

Therefore $B^t = [I_m | \mathcal{O}_{m \times (n-m)}]$. We have $\mathcal{C}(B^t) = \mathbb{R}^m$.

Recall that by Theorem (ϵ), we have $\mathcal{R}(A^t) = \mathcal{R}(B)$.

Then $\mathcal{C}(A) = \mathcal{R}(A^t) = \mathcal{R}(B) = \mathcal{C}(B^t) = \mathbb{R}^m$.

8. Recall that we say some given vectors $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ spans \mathbb{R}^p exactly when every vector in \mathbb{R}^p is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$. In set language, we may present this as in the form of the equality $\mathbb{R}^p = \text{Span}(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\})$. Combining Theorem (η) and Theorem (ι) , we obtain the result below:

Theorem (κ). (Duality between spanning and linear independence.)

Let A be an $(m \times n)$ -matrix.

- (a) The statements below are logically equivalent:
 - i. The columns of A (regarded as column vectors in \mathbb{R}^m) span \mathbb{R}^m .
 - ii. $\mathcal{C}(A) = \mathbb{R}^m$.
 - iii. $\mathcal{N}(A^t) = \{\mathbf{0}_m\}.$
 - iv. The columns of A^t (regarded as column vectors in \mathbb{R}^n) are linearly independent.
- (b) The statements below are logically equivalent:
 - i. The columns of A^t (regarded as column vectors in \mathbb{R}^n) span \mathbb{R}^n .
 - ii. $\mathcal{C}(A^t) = \mathbb{R}^n$.
 - iii. $\mathcal{N}(A) = \{\mathbf{0}_n\}.$
 - iv. The columns of A (regarded as column vectors in \mathbb{R}^m) are linearly independent.

9. Theorem (κ) can also be re-formulated in terms of systems of linear equations. Such a formulation is useful in various branches of 'applied mathematics'.

Theorem (λ). (Re-formulation of Theorem (κ).)

Let A be an $(m \times n)$ -matrix.

- (a) The statements below are logically equivalent:
 - i. For any $\mathbf{b} \in \mathbb{R}^m$, the system $\mathcal{LS}(A, \mathbf{b})$ is consistent.
 - ii. $\mathcal{C}(A) = \mathbb{R}^m$.

iii. $\mathcal{N}(A^t) = \{\mathbf{0}_m\}.$

- iv. The trivial solution is the only solution of the system $\mathcal{LS}(A^t, \mathbf{0}_n)$.
- (b) The statements below are logically equivalent:
 - i. For any $\mathbf{c} \in \mathbb{R}^n$, the system $\mathcal{LS}(A^t, \mathbf{c})$ is consistent.
 - ii. $\mathcal{C}(A^t) = \mathbb{R}^n$.
 - iii. $\mathcal{N}(A) = \{\mathbf{0}_n\}.$
 - iv. The trivial solution is the only solution of the system $\mathcal{LS}(A, \mathbf{0}_m)$.