
MATH1030 Transpose and row space.

1. Recall the definition for the notion transpose of a matrix from the handout Miscellanies on matrices:

Let A be an (m× n)-matrix, whose (i, j)-th entry is denoted by aij .
The (n×m)-matrix whose (k, ℓ)-th entry is given by aℓk is called the transpose of A, and is denoted by At.

(So A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
...

...
...

...
am1 am2 am3 · · · amn

 whereas At =


a11 a21 · · · am1
a12 a22 · · · am2
a13 a23 · · · am2
...

...
...

a1n a2n · · · amn

.)

2. Theorem (α). (Basic properties of transpose.)
The statements below hold:

(a) Suppose A,B are (m× n)-matrices. Then (A+B)t = At +Bt.
(b) Suppose A is an (m× n)-matrix, and α is a real number. Then (αA)t = αAt.
(c) Suppose A is an (m× n)-matrix, and B is an (n× p)-matrix. Then (AB)t = BtAt.
(d) Suppose A is an (m× n)-matrix. Then (At)t = A.

Proof of Theorem (α). Exercise. (It is necessary to go back to the definition for equalities between matrices
in terms of equalities between respective entries.)

3. Theorem (β). (Transpose and nonsingularity.)
Let A be an (n× n)-square matrix.
Suppose A is non-singular and invertible.

Then At is non-singular and invertible, and the matrix inverse of At is given by (At)
−1

= (A−1)
t.

4. Proof of Theorem (β).
Let A be an (n× n)-square matrix. Suppose A is non-singular and invertible.

By assumption, the matrix inverse of A is well-defined. Write B = A−1.
By definition, BA = In and AB = In.

Then BtAt = (AB)t = In
t = In.

Also, AtBt = (BA)t = In
t = In.

Therefore, by definition, At is non-singular and invertible, and the matrix inverse of At is given by (At)
−1

= Bt =

(A−1)
t.

5. Definition. (Row space of a matrix.)
Let G be an (m× n)-matrix.
The row space of G is defined to be the column space of the (n×m)-matrix Gt. It is denoted by R(G).
Remark. Denote the rows of G, from top to bottom, by g1,g2, · · · ,gm. So each gi is a (1× n)-matrix and

G =


g1
g2
...

gm

.
Then, according to the ‘dictionary’ between the notions of span and column space, we have R(G) = C(Gt) =

Span ({g1
t,g2

t, · · · ,gm
t}).

6. Lemma (γ).
Suppose H is an (n× p)-matrix, and B is a non-singular (p× p)-matrix. Then C(HB) = C(H).
Remark. In plain words, this says:

The column space of a matrix is preserved upon multiplication of a non-singular square matrix from the right
to the matrix.
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Further remark. The conclusion in Lemma (γ) is a set equality, which reads:

Both (†) and (‡) below hold:
(†) For any y ∈ Rn, if y ∈ C(HB) then y ∈ C(H).
(‡) For any z ∈ Rn, if z ∈ C(H) then z ∈ C(HB).

So the argument for Lemma (γ) should be made up of two independent passages, one concerned with (†) and the
other concerned with (‡).

7. Proof of Lemma (γ).
Suppose H is an (n× p)-matrix, and B is a non-singular (p× p)-matrix.

• [We verify (†): For any y ∈ Rn, if y ∈ C(HB) then y ∈ C(H).]
Pick any y ∈ Rn. Suppose y ∈ C(HB).

[Ask: Is it true that y ∈ C(H)?
If yes, how to proceed further? What information can be extracted from ‘y ∈ C(HB)’?]

By definition, there exists some s ∈ Rp such that y = (HB)s.
[We want to verify y ∈ C(H).
We are in fact trying to verify that there is some u ∈ Rp for which the equality y = Hu holds.
Ask: Can we name such a vector u? How about naming u as Bs?]

Take u = Bs. By definition, u ∈ Rp.
Also, y = (HB)s = H(Bs) = Hu.
Then, by definition, y ∈ C(H).

• [We prove (‡): For any z ∈ Rn, if z ∈ C(H) then z ∈ C(HB).]
Pick any z ∈ Rn. Suppose z ∈ C(H).

[Ask: Is it true that z ∈ C(HB)?
If yes, how to proceed further? What information can be extracted from ‘z ∈ C(H)’?]

By definition, there exists some t ∈ Rp such that z = Ht.

[We want to verify z ∈ C(HB).
We are in fact trying to verify that there is some v ∈ Rp for which the equality z = (HB)v holds.
Ask: Can we name such a vector v? How about naming v as B−1t?]

Take v = B−1t. By definition, v ∈ Rp.
Also, z = Ht = H(Ipt) = H[(BB−1)t] = H[B(B−1t)] = H(Bv) = (HB)v.
Then, by definition, z ∈ C(HB).

It follows that C(H) = C(HB).

8. Theorem (δ).
Suppose G is an (m× n)-matrix, and A is a non-singular (m×m)-matrix. Then R(AG) = R(G).
Proof of Theorem (δ).
Suppose G is an (m× n)-matrix, and A is a non-singular (m×m)-matrix.
Note that At is a non-singular (m×m)-matrix.
Then R(AG) = C((AG)t) = C(GtAt) = C(Gt) = R(G).
Remark. In plain words, this result is saying that

the row space of a matrix is preserved upon multiplication of a non-singular square matrix from the left to
matrix.

When we think in terms of row operations, this result is saying that

the row space of a matrix is preserved upon the application of row operations on the matrix.

9. Theorem (ε).

Suppose G is an (m × n)-matrix, and Ĝ is the reduced row-echelon form which is row-equivalent to G. Then the
statements below hold:
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(a) R
(
Ĝ
)
= R(G).

(b) Denote the rank of Ĝ by r. Suppose r > 0.
Denote the top r rows of Ĝ by ĝ1, ĝ2, · · · , ĝr.
Then ĝt

1, ĝ
t
2, · · · , ĝt

r constitute a basis for R(G).

10. Proof of Theorem (ε).

Suppose G is an (m× n)-matrix, and Ĝ is the reduced row-echelon form which is row-equivalent to G.

(a) There exists some non-singular (m×m)-square matrix A such that Ĝ = AG.

Then R
(
Ĝ
)
= R(AG) = R(G).

(b) Denote the rank of Ĝ by r. Suppose r > 0.
Denote the top r rows of Ĝ by ĝ1, ĝ2, · · · , ĝr.
Note that the bottom m− r rows of Ĝ are rows of zeros. Their respective transposes are the zero vector in Rn.

We verify that ĝt
1, ĝ

t
2, · · · , ĝt

r constitute a basis for R
(
Ĝ
)

:

• We have R
(
Ĝ
)
= C

(
Ĝt

)
= Span ({ĝt

1, ĝ
t
2, · · · , ĝt

r,0n,0n, · · · ,0n︸ ︷︷ ︸
m− r copies

}) = Span ({ĝt
1, ĝ

t
2, · · · , ĝt

r}).

• [We want to verify that ĝt
1, ĝ

t
2, · · · , ĝt

r are linearly independent.]
Label the pivot columns of Ĝ, from left to right, by d1, d2, · · · , dr.
Then by definition, for each i = 1, 2, · · · , r and j = 1, 2, · · · , r, the j-th entry cij of ĝt

i is given by

cij =

{
1 if i = j
0 if i ̸= j

Pick any α1, α2, · · · , αr ∈ R. Suppose α1ĝ
t
1 + α2ĝ

t
2 + · · ·+ αrĝ

t
r = 0n.

For each j = 1, 2, · · · , r, the j-th entry of the vector α1ĝ
t
1 + α2ĝ

t
2 + · · ·+ αrĝ

t
r is given by α1c1j + α2c2j +

· · ·+ αrcrj = αj .
The j-th entry of 0n is 0.
Then αj = 0.
Hence ĝt

1, ĝ
t
2, · · · , ĝt

r are linearly independent.

It follows that ĝt
1, ĝ

t
2, · · · , ĝt

r constitute a basis for R
(
Ĝ
)

. Hence they also constitute a basis for R(G).

11. Theorem (ε) suggests another method for determining a basis for the span of several vectors (which is different from
the method described in the handout Minimal spanning set).
‘Algorithm’ associated with Theorem (ε).
Let u1,u2, · · · ,up be non-zero vectors in Rn.
We proceed to determine a basis for Span ({u1,u2, · · · ,up}) as described below:

• Step (1).

Form the (p× n)-matrix G =


u1

t

u2
t

...
up

t

.

• Step (2).
Obtain the reduced row-echelon form Ĝ which is row equivalent to G.

• Step (3).
Denote the rank of Ĝ by r.
(Since G is not the zero matrix, Ĝ is not the zero matrix. The rank of Ĝ will be at least 1.)
Denote the top r rows of Ĝ by ĝ1, ĝ2, · · · , ĝr.
ĝt
1, ĝ

t
2, · · · , ĝt

r constitute a basis for Span ({u1,u2, · · · ,up}).

12. Illustrations.
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(a) Let u1 =

 7
6
12
33

, u2 =

 5
5
7
24

, u3 =

10
4
5

, and V = Span ({u1,u2,u3}).

We want to obtain a basis for V .

Define G =

[
u1

t

u2
t

u3
t

]
.

We find the reduced row-echelon form Ĝ which is row equivalent to G:

G =

[
7 6 12 33
5 5 7 24
1 0 4 5

]
−→ · · · · · · · · · −→ Ĝ =

[
1 0 0 −3
0 1 0 5
0 0 1 2

]
.

The rank of Ĝ is 3. For each i, denote the transpose of the i-th row of Ĝ by ti.

We have t1 =

 1
0
0
−3

, t2 =

01
0
5

, t3 =

00
1
2

.

A basis for V is constituted by t1, t2, t3.

(b) Let u1 =


1
2
7
1
−1

, u2 =


1
1
3
1
0

, u3 =


3
2
5
−1
9

, u4 =


1
−1
−5
2
0

 and V = Span ({u1,u2,u3,u4}).

We want to obtain a basis for V .

Define G =

 u1
t

u2
t

u3
t

u4
t

.

We find the reduced row-echelon form Ĝ which is row equivalent to G:

G =

 1 2 7 1 −1
1 1 3 1 0
3 2 5 −1 9
1 −1 −5 2 0

 −→ · · · · · · · · · −→ Ĝ =

 1 0 −1 0 3
0 1 4 0 −1
0 0 0 1 −2
0 0 0 0 0

.
The rank of Ĝ is 3. For each i, denote the transpose of the i-th row of Ĝ by ti.

We have t1 =


1
0
−1
0
3

, t2 =


0
1
4
0
−1

, t3 =


0
0
0
1
−2

.

A basis for V is constituted by t1, t2, t3.

(c) Let u1 =


0
0
2
3
5
−7
12

, u2 =


−1
2
1
−1
0
−2
0

, u3 =


2
−4
−1
3
2
1
5

, u4 =


3
−6
−1
5
4
0
10

 and V = Span ({u1,u2,u3,u4}).

We want to obtain a basis for V .

Define G =

 u1
t

u2
t

u3
t

u4
t

.

We find the reduced row-echelon form Ĝ which is row equivalent to G:

G =

 0 0 2 3 5 −7 12
−1 2 1 −1 0 −2 0
2 −4 −1 3 2 1 5
3 −6 −1 5 4 0 10

 −→ · · · · · · · · · −→ Ĝ =

 1 −2 0 0 0 1 1
0 0 1 0 1 −2 3
0 0 0 1 1 −1 2
0 0 0 0 0 0 0

.
The rank of Ĝ is 3. For each i, denote the transpose of the i-th row of Ĝ by ti.

We have t1 =


1
−2
0
0
0
1
1

, t2 =


0
0
1
0
1
−2
3

, t3 =


0
0
0
1
1
−1
2

.

A basis for V is constituted by t1, t2, t3.
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