1. Recall the definition for the notion *transpose of a matrix* from the handout *Miscellanies* on matrices:

Let A be an $(m \times n)$ -matrix, whose (i, j)-th entry is denoted by a_{ij} .

The $(n \times m)$ -matrix whose (k, ℓ) -th entry is given by $a_{\ell k}$ is called the transpose of A, and is denoted by A^t .

$$(\text{So } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} \text{ whereas } A^{t} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ a_{13} & a_{23} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} .)$$

2. Theorem (α). (Basic properties of transpose.)

The statements below hold:

(a) Suppose A, B are $(m \times n)$ -matrices. Then $(A + B)^t = A^t + B^t$.

(b) Suppose A is an $(m \times n)$ -matrix, and α is a real number. Then $(\alpha A)^t = \alpha A^t$.

(c) Suppose A is an $(m \times n)$ -matrix, and B is an $(n \times p)$ -matrix. Then $(AB)^t = B^t A^t$.

(d) Suppose A is an $(m \times n)$ -matrix. Then $(A^t)^t = A$.

Proof of Theorem (α **).** Exercise. (It is necessary to go back to the definition for equalities between matrices in terms of equalities between respective entries.)

3. Theorem (β). (Transpose and nonsingularity.)

Let A be an $(n \times n)$ -square matrix.

Suppose A is non-singular and invertible.

Then A^t is non-singular and invertible, and the matrix inverse of A^t is given by

$$(A^t)^{-1} = (A^{-1})^t.$$

4. Proof of Theorem (β).

Let A be an $(n \times n)$ -square matrix. Suppose A is non-singular and invertible.

By assumption, the matrix inverse of A is well-defined. Write $B = A^{-1}$.

```
By definition, BA = I_n and AB = I_n.
```

Then $B^t A^t = (AB)^t = I_n^t = I_n$.

Also, $A^t B^t = (BA)^t = I_n^t = I_n$.

Therefore, by definition, A^t is non-singular and invertible, and the matrix inverse of A^t is given by

$$(A^t)^{-1} = B^t = (A^{-1})^t.$$

5. Definition. (Row space of a matrix.)

Let G be an $(m \times n)$ -matrix.

The row space of G is defined to be the column space of the $(n \times m)$ -matrix G^t . It is denoted by $\mathcal{R}(G)$.

Remark.

Denote the rows of G, from top to bottom, by $\mathbf{g}_1, \mathbf{g}_2, \cdots, \mathbf{g}_m$. So each \mathbf{g}_i is a $(1 \times n)$ -matrix and

$$G = \begin{bmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \\ \vdots \\ \mathbf{g}_m \end{bmatrix}.$$

Then, according to the 'dictionary' between the notions of *span* and *column space*, we have $\mathcal{R}(G) = \mathcal{C}(G^t) = \text{Span}(\{\mathbf{g}_1^t, \mathbf{g}_2^t, \cdots, \mathbf{g}_m^t\}).$

5. Definition. (Row space of a matrix.)

Let G be an $(m \times n)$ -matrix.

The row space of G is defined to be the column space of the $(n \times m)$ -matrix G^t . It is denoted by $\mathcal{R}(G)$.

Remark.

Denote the rows of G, from top to bottom, by $\mathbf{g}_1, \mathbf{g}_2, \cdots, \mathbf{g}_m$. So each \mathbf{g}_i is a $(1 \times n)$ -matrix and

$$G = \begin{bmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \\ \vdots \\ \mathbf{g}_m \end{bmatrix}$$

Then, according to the 'dictionary' between the notions of span and column space, we have

$$\mathcal{R}(G) = \mathcal{C}(G^t) = \text{Span} \left(\{ \mathbf{g}_1^t, \mathbf{g}_2^t, \cdots, \mathbf{g}_m^t \} \right).$$

$$\mathbf{f} = \mathbf{f} = \mathbf{$$

6. Lemma (γ) .

Suppose H is an $(n \times p)$ -matrix, and B is a non-singular $(p \times p)$ -matrix. Then $\mathcal{C}(HB) = \mathcal{C}(H)$.

Remark.

In plain words, this says:

The column space of a matrix is preserved upon multiplication of a non-singular square matrix from the right to the matrix.

Further remark.

The conclusion in Lemma (γ) is a set equality, which reads:

Both (\dagger) and (\ddagger) below hold:

(†) For any
$$\mathbf{y} \in \mathbb{R}^n$$
, if $\mathbf{y} \in \mathcal{C}(HB)$ then $\mathbf{y} \in \mathcal{C}(H)$.

(‡) For any $\mathbf{z} \in \mathbb{R}^n$, if $\mathbf{z} \in \mathcal{C}(H)$ then $\mathbf{z} \in \mathcal{C}(HB)$.

So the argument for Lemma (γ) should be made up of two independent passages, one concerned with (\dagger) and the other concerned with (\ddagger) .

7. Proof of Lemma (γ).

Suppose H is an $(n \times p)$ -matrix, and B is a non-singular $(p \times p)$ -matrix.

• [We verify (†): For any $\mathbf{y} \in \mathbb{R}^n$, if $\mathbf{y} \in \mathcal{C}(HB)$ then $\mathbf{y} \in \mathcal{C}(H)$.]

```
Pick any \mathbf{y} \in \mathbb{R}^n. Suppose \mathbf{y} \in \mathcal{C}(HB).
```

[Ask: Is it true that $\mathbf{y} \in \mathcal{C}(H)$? If yes, how to proceed further? What information can be extracted from ' $\mathbf{y} \in \mathcal{C}(HB)$ '?]

By definition, there exists some $\mathbf{s} \in \mathbb{R}^p$ such that $\mathbf{y} = (HB)\mathbf{s}$.

[We want to verify $\mathbf{y} \in \mathcal{C}(H)$.

We are in fact trying to verify that there is some $\mathbf{u} \in \mathbb{R}^p$ for which the equality $\mathbf{y} = H\mathbf{u}$ holds.

Ask: Can we name such a vector \mathbf{u} ? How about naming \mathbf{u} as $B\mathbf{s}$?]

Take $\mathbf{u} = B\mathbf{s}$. By definition, $\mathbf{u} \in \mathbb{R}^p$.

Also, $\mathbf{y} = (HB)\mathbf{s} = H(B\mathbf{s}) = H\mathbf{u}$.

Then, by definition, $\mathbf{y} \in \mathcal{C}(H)$.

7. Proof of Lemma (γ).

Suppose H is an $(n \times p)$ -matrix, and B is a non-singular $(p \times p)$ -matrix.

• [We verify (†): For any $\mathbf{y} \in \mathbb{R}^n$, if $\mathbf{y} \in \mathcal{C}(HB)$ then $\mathbf{y} \in \mathcal{C}(H)$.]

Pick any $\mathbf{y} \in \mathbb{R}^n$. Suppose $\mathbf{y} \in \mathcal{C}(HB)$.

[Ask: Is it true that $\mathbf{y} \in \mathcal{C}(H)$?

If yes, how to proceed further? What information can be extracted from ' $\mathbf{y} \in \mathcal{C}(HB)$ '?]

By definition, there exists some $\mathbf{s} \in \mathbb{R}^p$ such that $\mathbf{y} = (HB)\mathbf{s}$.

[We want to verify $\mathbf{y} \in \mathcal{C}(H)$.

We are in fact trying to verify that there is some $\mathbf{u} \in \mathbb{R}^p$ for which the equality $\mathbf{y} = H\mathbf{u}$ holds.

Why? We know y=HBs in the first place.

Ask: Can we name such a vector \mathbf{u} ? How about naming \mathbf{u} as $B\mathbf{s}$?]

Take $\mathbf{u} = B\mathbf{s}$. By definition, $\mathbf{u} \in \mathbb{R}^p$.

Also, $\mathbf{y} = (HB)\mathbf{s} = H(B\mathbf{s}) = H\mathbf{u}$.

Then, by definition, $\mathbf{y} \in \mathcal{C}(H)$.

• [We prove (\ddagger): For any $\mathbf{z} \in \mathbb{R}^n$, if $\mathbf{z} \in \mathcal{C}(H)$ then $\mathbf{z} \in \mathcal{C}(HB)$.]

Pick any $\mathbf{z} \in \mathbb{R}^n$. Suppose $\mathbf{z} \in \mathcal{C}(H)$.

[Ask: Is it true that $\mathbf{z} \in \mathcal{C}(HB)$?

If yes, how to proceed further? What information can be extracted from ' $\mathbf{z} \in \mathcal{C}(H)$ '?]

By definition, there exists some $\mathbf{t} \in \mathbb{R}^p$ such that $\mathbf{z} = H\mathbf{t}$.

[We want to verify $\mathbf{z} \in \mathcal{C}(HB)$. We are in fact trying to verify that there is some $\mathbf{v} \in \mathbb{R}^p$ for which the equality $\mathbf{z} = (HB)\mathbf{v}$ holds. Ask: Can we name such a vector \mathbf{v} ? How about naming \mathbf{v} as $B^{-1}\mathbf{t}$?]

Take $\mathbf{v} = B^{-1}\mathbf{t}$. By definition, $\mathbf{v} \in \mathbb{R}^p$.

Also, $\mathbf{z} = H\mathbf{t} = H(I_p\mathbf{t}) = H[(BB^{-1})\mathbf{t}] = H[B(B^{-1}t)] = H(B\mathbf{v}) = (HB)\mathbf{v}.$

Then, by definition, $\mathbf{z} \in \mathcal{C}(HB)$.

It follows that $\mathcal{C}(H) = \mathcal{C}(HB)$.

• [We prove (\ddagger): For any $\mathbf{z} \in \mathbb{R}^n$, if $\mathbf{z} \in \mathcal{C}(H)$ then $\mathbf{z} \in \mathcal{C}(HB)$.]

Pick any $\mathbf{z} \in \mathbb{R}^n$. Suppose $\mathbf{z} \in \mathcal{C}(H)$.

[Ask: Is it true that $\mathbf{z} \in \mathcal{C}(HB)$?

If yes, how to proceed further? What information can be extracted from ' $\mathbf{z} \in \mathcal{C}(H)$ '?]

By definition, (there exists some $\mathbf{t} \in \mathbb{R}^p$ such that $\mathbf{z} = H\mathbf{t}$.)

[We want to verify $\mathbf{z} \in \mathcal{C}(HB)$. We are in fact trying to verify that there is some $\mathbf{v} \in \mathbb{R}^p$ for which the equality $\mathbf{z} = (HB)\mathbf{v}$ holds. Ask: Can we name such a vector \mathbf{v} ? How about naming \mathbf{v} as $B^{-1}\mathbf{t}$?] Take $\mathbf{v} = B^{-1}\mathbf{t}$. By definition, $\mathbf{v} \in \mathbb{R}^p$. Take $\mathbf{v} = B^{-1}\mathbf{t}$. By definition, $\mathbf{v} \in \mathbb{R}^p$. Also, $\mathbf{z} = H\mathbf{t} = H(I_p\mathbf{t}) = H[(BB^{-1})\mathbf{t}] = H[B(B^{-1}t)] = H(B\mathbf{v}) = (HB)\mathbf{v}$.

Then, by definition, $\mathbf{z} \in \mathcal{C}(HB)$.

It follows that $\mathcal{C}(H) = \mathcal{C}(HB)$.

8. Theorem (δ).

Suppose G is an $(m \times n)$ -matrix, and A is a non-singular $(m \times m)$ -matrix. Then $\mathcal{R}(AG) = \mathcal{R}(G)$.

Proof of Theorem (δ) .

Suppose G is an $(m \times n)$ -matrix, and A is a non-singular $(m \times m)$ -matrix.

Note that A^t is a non-singular $(m \times m)$ -matrix.

Then

$$\mathcal{R}(AG) = \mathcal{C}((AG)^t) = \mathcal{C}(G^tA^t) = \mathcal{C}(G^t) = \mathcal{R}(G).$$

Remark.

In plain words, this result is saying that

the row space of a matrix is preserved upon multiplication of a non-singular square matrix from the left to the matrix.

When we think in terms of row operations, this result is saying that

the row space of a matrix is preserved upon the application of row operations on the matrix.

8. Theorem (δ).

Suppose G is an $(m \times n)$ -matrix, and A is a non-singular $(m \times m)$ -matrix. Then $\mathcal{R}(AG) = \mathcal{R}(G)$.

Proof of Theorem (δ).

Suppose G is an $(m \times n)$ -matrix, and A is a non-singular $(m \times m)$ -matrix.

Note that A^t is a non-singular $(m \times m)$ -matrix. $\mathcal{R}(AG) \bigoplus \mathcal{C}((AG)^t) = \mathcal{C}(G^t A^t) \bigoplus \mathcal{C}(G^t) \bigoplus \mathcal{R}(G).$ $\mathbb{L}_{\text{Lemma}(X)} \text{ is used here }.$

Then

Remark.

In plain words, this result is saying that

the row space of a matrix is preserved upon multiplication of a non-singular square matrix from the left to the matrix.

When we think in terms of row operations, this result is saying that the row space of a matrix is preserved upon the application of row operations on the matrix.

9. Theorem (ε).

Suppose G is an $(m \times n)$ -matrix, and \hat{G} is the reduced row-echelon form which is row-equivalent to G.

Then the statements below hold:

(a) $\mathcal{R}(\hat{G}) = \mathcal{R}(G).$

(b) Denote the rank of \hat{G} by r. Suppose r > 0. Denote the top r rows of \hat{G} by $\hat{\mathbf{g}}_1, \hat{\mathbf{g}}_2, \cdots, \hat{\mathbf{g}}_r$.

Then $\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \cdots, \hat{\mathbf{g}}_r^t$ constitute a basis for $\mathcal{R}(G)$.

9. Theorem (ε).

Suppose G is an $(m \times n)$ -matrix, and \hat{G} is the reduced row-echelon form which is row-equivalent to G.

Then the statements below hold:

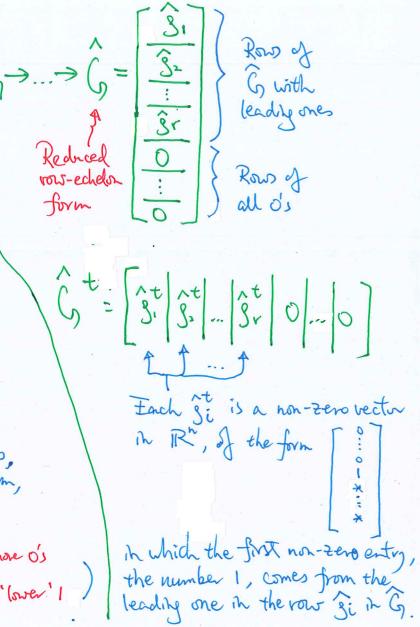
(a) $\mathcal{R}(\hat{G}) = \mathcal{R}(G).$

(b) Denote the rank of Ĝ by r. Suppose r > 0. Denote the top r rows of Ĝ by ĝ₁, ĝ₂, ..., ĝ_r. Then ĝ^t₁, ĝ^t₂, ..., ĝ^t_r constitute a basis for R(G).

•
$$\mathcal{R}(G) = \mathcal{R}(\widehat{G}) = Span(\{\widehat{S}^{t}, \widehat{S}^{t}, ..., \widehat{S}^{t}, 0, ..., 0\})$$

= $Span(\{\widehat{S}^{t}, \widehat{S}^{t}, ..., \widehat{S}^{t}, 3\}).$

• The different positioning of the first non-zero entries,
the is, in the respective
$$\hat{g}$$
; is, together with the 'O's' above them,
ensures linear independence of \hat{g} , \hat{g} , \hat{g} , \dots , \hat{g} , \hat{g} .
(Whenever i\hat{g}; \hat{g} , \hat{g} , \hat{g} , \dots , \hat{g} , \hat{g} , \dots , \hat{g} , $\hat{g$



10. Proof of Theorem (ε).

Suppose G is an $(m \times n)$ -matrix, and \hat{G} is the reduced row-echelon form which is row-equivalent to G.

(a) There exists some non-singular $(m \times m)$ -square matrix A such that $\hat{G} = AG$.

Then
$$\mathcal{R}(\hat{G}) = \mathcal{R}(AG) = \mathcal{R}(G).$$

(b) Denote the rank of
$$\hat{G}$$
 by r . Suppose $r > 0$.
Denote the top r rows of \hat{G} by $\hat{\mathbf{g}}_1, \hat{\mathbf{g}}_2, \cdots, \hat{\mathbf{g}}_r$.

Note that the bottom m - r rows of \hat{G} are rows of zeros. Their respective transposes are the zero vector in \mathbb{R}^n .

We verify that $\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \cdots, \hat{\mathbf{g}}_r^t$ constitute a basis for $\mathcal{R}(\hat{G})$:

• We have

$$\mathcal{R}(\hat{G}) = \mathcal{C}(\hat{G}^t) = \text{Span} \left(\{\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \cdots, \hat{\mathbf{g}}_r^t, \underbrace{\mathbf{0}_n, \mathbf{0}_n, \cdots, \mathbf{0}_n}_{m-r \text{ copies}}\}\right)$$
$$= \text{Span} \left(\{\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \cdots, \hat{\mathbf{g}}_r^t\}\right).$$

• [We want to verify that $\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \cdots, \hat{\mathbf{g}}_r^t$ are linearly independent.]

Label the pivot columns of \hat{G} , from left to right, by d_1, d_2, \dots, d_r . Then by definition, for each $i = 1, 2, \dots, r$ and $j = 1, 2, \dots, r$, the *j*-th entry c_{ij} of $\hat{\mathbf{g}}_i^t$ is given by

$$c_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Pick any $\alpha_1, \alpha_2, \cdots, \alpha_r \in \mathbb{R}$. Suppose $\alpha_1 \hat{\mathbf{g}}_1^t + \alpha_2 \hat{\mathbf{g}}_2^t + \cdots + \alpha_r \hat{\mathbf{g}}_r^t = \mathbf{0}_n$.

For each $j = 1, 2, \cdots, r$, the *j*-th entry of the vector

$$\alpha_1 \mathbf{\hat{g}}_1^t + \alpha_2 \mathbf{\hat{g}}_2^t + \dots + \alpha_r \mathbf{\hat{g}}_r^t$$

is given by

$$\alpha_1 c_{1j} + \alpha_2 c_{2j} + \dots + \alpha_r c_{rj} = \alpha_j.$$

The *j*-th entry of $\mathbf{0}_n$ is 0.

Then $\alpha_j = 0$.

Hence $\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \cdots, \hat{\mathbf{g}}_r^t$ are linearly independent.

It follows that $\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \cdots, \hat{\mathbf{g}}_r^t$ constitute a basis for $\mathcal{R}(\hat{G})$. Hence they also constitute a basis for $\mathcal{R}(G)$. 11. Theorem (ε) suggests another method for determining a basis for the span of several vectors (which is different from the method described in the handout *Minimal spanning set*).

'Algorithm' associated with Theorem (ε).

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ be non-zero vectors in \mathbb{R}^n . We proceed to determine a basis for Span ({ $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ }) as described below:

• Step (1).

Form the $(p \times n)$ -matrix $G = \begin{vmatrix} \frac{\mathbf{u}_1^t}{\mathbf{u}_2^t} \\ \vdots \end{vmatrix}$

$$\begin{bmatrix} \mathbf{u}_2^* \\ \vdots \\ \mathbf{u}_p^t \end{bmatrix}.$$

• Step (2).

Obtain the reduced row-echelon form \hat{G} which is row equivalent to G.

• Step (3).

Denote the rank of \hat{G} by r.

(Since G is not the zero matrix, \hat{G} is not the zero matrix. The rank of \hat{G} will be at least 1.)

Denote the top r rows of \hat{G} by $\hat{\mathbf{g}}_1, \hat{\mathbf{g}}_2, \cdots, \hat{\mathbf{g}}_r$. $\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \cdots, \hat{\mathbf{g}}_r^t$ constitute a basis for Span $(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p\})$. 11. Theorem (ε) suggests another method for determining a basis for the span of several vectors (which is different from the method described in the handout *Minimal spanning set*).
'Algorithm' associated with Theorem (ε).

Let $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ be non-zero vectors in \mathbb{R}^n . We proceed to determine a basis for Span ({ $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ }) as described below:

• Step (1).

Form the $(p \times n)$ -matrix $G = \left| \frac{\overline{\mathbf{u}_2^t}}{\frac{\mathbf{i}}{\mathbf{u}_1^t}} \right|$.

• Step (2).

Obtain the reduced row-echelon form \hat{G} which is row equivalent to G.

• Step (3).

Denote the rank of \hat{G} by r.

(Since G is not the zero matrix, \hat{G} is not the zero matrix. The rank of \hat{G} will be at least 1.)

Denote the top r rows of \hat{G} by $\hat{\mathbf{g}}_1, \hat{\mathbf{g}}_2, \cdots, \hat{\mathbf{g}}_r$. $\hat{\mathbf{g}}_1^t, \hat{\mathbf{g}}_2^t, \cdots, \hat{\mathbf{g}}_r^t$ constitute a basis for Span $(\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p\})$. 12. Illustrations.

(a) Let
$$\mathbf{u}_1 = \begin{bmatrix} 7\\6\\12\\33 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 5\\5\\7\\24 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1\\0\\4\\5 \end{bmatrix}$, and $V = \text{Span} (\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\})$.
We want to obtain a basis for V .
Define $G = \begin{bmatrix} \frac{\mathbf{u}_1^t}{\mathbf{u}_2^t}\\ \frac{\mathbf{u}_2^t}{\mathbf{u}_3^t} \end{bmatrix}$.

We find the reduced row-echelon form \hat{G} which is row equivalent to G:

$$G = \begin{bmatrix} 7 & 6 & 12 & 33 \\ 5 & 5 & 7 & 24 \\ 1 & 0 & 4 & 5 \end{bmatrix} \longrightarrow \dots \longrightarrow \hat{G} = \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix}.$$

We have
$$\mathbf{t}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -3 \end{bmatrix}$$
, $\mathbf{t}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 5 \end{bmatrix}$, $\mathbf{t}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix}$. A basis for V is constituted by $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3$.

12. Illustrations.

(a) Let
$$\mathbf{u}_1 = \begin{bmatrix} 7\\6\\12\\33 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 5\\5\\7\\24 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1\\0\\4\\5 \end{bmatrix}$, and $V = \text{Span}(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\})$.
We want to obtain a basis for V .
Define $G = \begin{bmatrix} \frac{\mathbf{u}_1^t}{\mathbf{u}_2^t}\\ \frac{\mathbf{u}_2^t}{\mathbf{u}_3^t} \end{bmatrix}$.

We find the reduced row-echelon form \hat{G} which is row equivalent to G:

We have
$$\mathbf{t}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -3 \end{bmatrix}$$
, $\mathbf{t}_2 = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$, $\mathbf{t}_3 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$. A basis for V is constituted by $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3$.
Fxpected to be linearly independent
because of the positioning of the 1's and 0's catributed by the leading one's a b

(b) Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 2 \\ 7 \\ 1 \\ -1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 3 \\ 2 \\ 5 \\ -1 \\ 9 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 1 \\ -1 \\ -5 \\ 2 \\ 0 \end{bmatrix}$ and $V = \text{Span} (\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}).$

We want to obtain a basis for V. $\begin{bmatrix} -t \end{bmatrix}$

Define
$$G = \begin{bmatrix} \frac{\mathbf{u}_1^t}{\mathbf{u}_2^t} \\ \frac{\mathbf{u}_3^t}{\mathbf{u}_4^t} \end{bmatrix}$$
.

We find the reduced row-echelon form \hat{G} which is row equivalent to G:

$$G = \begin{bmatrix} 1 & 2 & 7 & 1 & -1 \\ 1 & 1 & 3 & 1 & 0 \\ 3 & 2 & 5 & -1 & 9 \\ 1 & -1 & -5 & 2 & 0 \end{bmatrix} \longrightarrow \dots \longrightarrow \hat{G} = \begin{bmatrix} 1 & 0 & -1 & 0 & 3 \\ 0 & 1 & 4 & 0 & -1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

We have
$$\mathbf{t}_1 = \begin{bmatrix} 1\\0\\-1\\0\\3 \end{bmatrix}$$
, $\mathbf{t}_2 = \begin{bmatrix} 0\\1\\4\\0\\-1 \end{bmatrix}$, $\mathbf{t}_3 = \begin{bmatrix} 0\\0\\0\\1\\-2 \end{bmatrix}$. A basis for V is constituted by $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3$.

(b) Let
$$\mathbf{u}_1 = \begin{bmatrix} 1\\2\\7\\1\\-1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 1\\1\\3\\1\\0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 3\\2\\5\\-1\\9 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 1\\-1\\-5\\2\\0 \end{bmatrix}$ and $V = \text{Span}(\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\})$.
We want to obtain a basis for V .
Define $G = \begin{bmatrix} \frac{\mathbf{u}_1^t}{\mathbf{u}_2^t}\\ \frac{\mathbf{u}_3^t}{\mathbf{u}_4^t} \end{bmatrix}$.

We find the reduced row-echelon form \hat{G} which is row equivalent to G:

$$G = \begin{bmatrix} 1 & 2 & 7 & 1 & -1 \\ 1 & 1 & 3 & 1 & 0 \\ 3 & 2 & 5 & -1 & 9 \\ 1 & -1 & -5 & 2 & 0 \end{bmatrix} \longrightarrow \dots \longrightarrow \hat{G} = \begin{bmatrix} 1 & 0 & -1 & 0 & 3 \\ \hline 0 & 1 & 4 & 0 & -1 \\ \hline 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}. \iff \mathcal{R}(\mathcal{G}) \cong \mathcal{R}(\mathcal{G}).$$

We have
$$\mathbf{t}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 3 \end{bmatrix}$$
, $\mathbf{t}_2 = \begin{bmatrix} 0 \\ 1 \\ 4 \\ 0 \\ -1 \end{bmatrix}$, $\mathbf{t}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ -2 \end{bmatrix}$. A basis for V is constituted by $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3$.
Expected to be linearly independent
because of the positioning of the ls and o's contributed by the leading one's h is and the zeros to there left.

(c) Let
$$\mathbf{u}_{1} = \begin{bmatrix} 0 \\ 0 \\ 2 \\ 3 \\ 5 \\ -7 \\ 12 \end{bmatrix}$$
, $\mathbf{u}_{2} = \begin{bmatrix} -1 \\ 2 \\ 1 \\ -1 \\ 0 \\ -2 \\ 0 \end{bmatrix}$, $\mathbf{u}_{3} = \begin{bmatrix} 2 \\ -4 \\ -1 \\ 3 \\ 2 \\ 1 \\ 5 \end{bmatrix}$, $\mathbf{u}_{4} = \begin{bmatrix} 3 \\ -6 \\ -1 \\ 5 \\ 4 \\ 0 \\ 10 \end{bmatrix}$ and $V = \text{Span} (\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\}).$
We want to obtain a basis for V .

Define
$$G = \begin{bmatrix} \frac{\mathbf{u}_1^{t}}{\mathbf{u}_2^{t}}\\ \frac{\mathbf{u}_3^{t}}{\mathbf{u}_4^{t}} \end{bmatrix}$$
.

We find the reduced row-echelon form \hat{G} which is row equivalent to G:

$$G = \begin{bmatrix} 0 & 0 & 2 & 3 & 5 & -7 & 12 \\ -1 & 2 & 1 & -1 & 0 & -2 & 0 \\ 2 & -4 & -1 & 3 & 2 & 1 & 5 \\ 3 & -6 & -1 & 5 & 4 & 0 & 10 \end{bmatrix} \longrightarrow \dots \longrightarrow \hat{G} = \begin{bmatrix} 1 & -2 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 1 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

We have
$$\mathbf{t}_{1} = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{t}_{2} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ -2 \\ 3 \end{bmatrix}$, $\mathbf{t}_{3} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ -1 \\ 2 \end{bmatrix}$. A basis for V is constituted by $\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}$.