1. Recall the definition for the notion transpose of a matriz from the handout Miscellanies
on matrices:

Let A be an (m x n)-matrix, whose (i, j)-th entry is denoted by a;;.

The (n x m)-matrix whose (k,{)-th entry is given by ag is called the transpose of A,
and is denoted by A’

B - ailz a1 -+ Qmi
apip ai2 aiz -+ 0ain
(21 Q22 d23 - 42 iz faz
(So A = . . _ | whereas A' = | ai3 as3 <+ amo |.)
Am1 Am2 Am3 * - Amp
B - | Q1n Q2n " Amn




2. Theorem («). (Basic properties of transpose.)

The statements below hold:
a) Suppose A, B are (m X n)-matrices. Then (A+ B)' = A" + B'.

(

(b) Suppose A is an (m X n)-matrix, and « Is a real number. Then (aA)! = a A’

(¢) Suppose A is an (m X n)-matrix, and B is an (n X p)-matrix. Then (AB)"' = B'A".
(d) Suppose A is an (m X n)-matrix. Then (A")' = A.

Proof of Theorem (a).  Exercise. (It is necessary to go back to the definition for
equalities between matrices in terms of equalities between respective entries.)



3. Theorem (). (Transpose and nonsingularity.)
Let A be an (n X n)-square matrix.
Suppose A is non-singular and invertible.

Then A is non-singular and invertible, and the matrix inverse of Al is given by

(AY =AY,

4. Proof of Theorem (/).

Let A be an (n X n)-square matrix. Suppose A is non-singular and invertible.

By assumption, the matrix inverse of A is well-defined. Write B = A~

By definition, BA = I,, and AB = I,

Then B'A' = (AB) = I,/ = I,,.

Also, A'B' = (BA)! = I, = I,,.

Therefore, by definition, A* is non-singular and invertible, and the matrix inverse of A? is

given by
/

(AY T =B'= (A7,



5. Definition. (Row space of a matrix.)
Let G be an (m X n)-matrix.

The row space of G is defined to be the column space of the (n x m)-matrix G".
It is denoted by R(G).

Remark.
Denote the rows of GG, from top to bottom, by g1, g2, - , Em.

So each g; is a (1 X n)-matrix and

| 8m _
Then, according to the ‘dictionary’ between the notions of span and column space, we have

R(G) =C(G") = Span ({g1", 82, ,gn'}).



5. Definition. (Row space of a matrix.)
Let G be an (m X m)-matrix.
The row space of G is defined to be the column space of the (n x m)-matrix G*.

It is denoted by R(G).

Remark. |
Denote the rows of GG, from top to bottom, by g1,89, -+ , Em.
So each g; is a (1 X n)-matrix and

| 8m

Then, according to the ‘dictionary’ between the notions of span and column space, we have

R(G) = C(G') = Span ({&1", 8"+ gm'}).
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6. Lemma (7).

Suppose H is an (n X p)-matrix, and B is a non-singular (p X p)-matrix.
Then C(HB) =C(H).

Remark.

In plain words, this says:

The column space of a matrix is preserved upon multiplication of a non-singular square
matrix from the right to the matrix.

Further remark.

The conclusion in Lemma () is a set equality, which reads:
Both (1) and (1) below hold:

(1) For anyy € R", ify € C(HB) theny € C(H).
(1) For anyz € R", ifz € C(H) then z € C(HB).

So the argument for Lemma () should be made up of two independent passages, one
concerned with (1) and the other concerned with (I).



7. Proof of Lemma (7).
Suppose H is an (n X p)-matrix, and B is a non-singular (p X p)-matrix.

«  [We verify (): Foranyy € R, ify € C(HB) theny € C(H)]
Pick any y € R". Suppose y € C(HB).

|Ask: Is it true that y € C(H)?
If yes, how to proceed further? What information can be extracted from 'y € C(HB)'?]

By definition, there exists some s € R such that y = (HB)s.

(We want to verify y € C(H).
We are in fact trying to verify that there is some u € RP for which the equality y = Hu

holds.

Ask: Can we name such a vector u? How about naming u as Bs?]
Take u = Bs. By definition, u € R?.
Also, y = (HB)s = H(Bs) = Hu.
Then, by definition, y € C(H).



7. Proof of Lemma (7).
Suppose H is an (n X p)-matrix, and B is a non-singular (p X p)-matrix.

«  [We verity (f): For anyy € R", ify € C(HB) theny € C(H) |
Pick any y € R". Suppose y € C(HB).

|Ask: Ts it true that y € C (H)?

If yes, how to proceed further? What information can be extracted from ‘y € C(H B)’?]
e ——— ———
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By deﬁmtion,@dsts some s € RP such that y = (H BE 4_,—)
[We want to verify y € C(H). i) e

We are in fact trying to verify that there is some u € RP for which the equality y = Hu
LN N\ A

holds.

Ask: Can we name such a vector u? How about naming u as Bs?]

Wha ?2 W knswr jZHBS'
Take u = Bs. By definition, u € RP, W the freCp lace .

Also, y = (HB)s = H(Bs) = Hu.

Then, by definition, y € C(H).



« [We prove (I): Foranyz € R", ifz € C(H) thenz € C(HB).]
Pick any z € R". Suppose z € C(H).

[Ask: Is it true that z € C(H B)?
If yes, how to proceed further? What information can be extracted from ‘z € C(H)'?]

By definition, there exists some t € RP such that z = Ht.

[(We want to verify z € C(HB).

We are in fact trying to verify that there is some v € [RP for which the equality
z = (H B)v holds.

Ask: Can we name such a vector v? How about naming v as B~'t7]

Take v = B~'t. By definition, v € R?.
Also, z = Ht = H(Lt) = H[(BB )t = H[B(B~'t)] = H(Bv) = (HB)v.
Then, by definition, z € C(H B).

It follows that C(H) = C(HB).



e  [We prove (1): For.any z € R ifz € C(H) then z € C(HB).]
Pick any z € R". Suppose z € C(H).

[Ask: Is it true that z € C(HB)?
If yes, how to proceed further? What information can be extracted from ‘z € C(H)’?]

e

By deﬁnition,@er; exists some t € R? such that z = Ht. ) &

[We want to verify z € C(HB).
We are in fact trying to verify that there is some v € [RP for which the equality
= (H B)v holds.

Ask: Can we name such a vector v? How about naming v as B~1¢7]
\/»/L\j') We Lhﬂ\f z:= Ht l\'t‘l\e/ f(ﬁ‘)(km,

Take v = B~'t. By definition, v € RP. omd  HE=HIye:HBE'L
Also, z = Ht = H(I,t) = H[(BB ')t] = H[B(B™'t)] = H(Bv) = (HB)V.
Then, by definition, z € C(HB).

It follows that C(H) = C(H B).



8. Theorem (9).
Suppose G is an (m X n)-matrix, and A is a non-singular (m x m)-matrix.

Then R(AG) = R(G).

Proof of Theorem ().

Suppose G is an (m X n)-matrix, and A is a non-singular (m x m)-matrix.

Note that A" is a non-singular (m x m)-matrix.

Then
R(AG) = C((AG)t) = C(GtAt) = C(Gt) =R(G).

Remark.

In plain words, this result is saying that

the row space of a matrix is preserved upon multiplication of a non-singular square matrix
from the left to the matrix.

When we think in terms of row operations, this result is saying that

the row space of a matrix is preserved upon the application of row operations on the
matrix.



8. Theorem (9).
Suppose G' is an (m X n)-matrix, and A is a non-singular (m X m)-matrix.

Then R(AG) = R(G).

Proof of Theorem (J).
Suppose G is an (m X n)-matrix, and A is a non-singular (m x m)-matrix.

Note that A is a non-singular (m x m) matrix.

T Dkt A mr gpace Sused hew
Then K f 06 i
R(AG)DC((AG)") = C(G"A) OC(Gt)@R (@).
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Remark.
In plain words, this result is saying that

the row space of a matrix is preserved upon multiplication of a non-singular square matrix
from the left to the matrix.

When we think in terms of row operations, this result is saying that

the row space of a matrix is preserved upon the application of row operations on the
matrix.



9. Theorem (¢).

Suppose G is an (m X n)-matrix, and G is the reduced row-echelon form which is row-
equivalent to G.

Then the statements below hold:
(a) R(G) — R(Q).

(b) Denote the rank of G by r. Suppose r > 0.
Denote the top r rows of G by 1,89, , &

Then gi,8h,--- , & constitute a basis for R(G).



9. Theorem (&).
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10. Proof of Theorem (¢).

Suppose G is an (m X m)-matrix, and G is the reduced row-echelon form which is row-
equivalent to G.

(a) There exists some non-singular (m x m)-square matrix A such that G = AG.

Then R(G) — R(AG) = R(G).

(b) Denote the rank of G by r. Suppose r > 0.
Denote the top r rows of G by €1,89, -, &

Note that the bottom m — r rows of G' are rows of zeros.
Their respective transposes are the zero vector in R".

We verify that gt, g5, --- , &' constitute a basis for R(é)
« We have

R(G) =c(G') = Span ({8, &h -+ &1 00, 0u -+, O})

Vv
m — r copies

— Span ({gﬁ) gg: e 7gf"}>




o [We want to verify that g%, g%, --- , &’ are linearly independent.
y 1) 82 r

Label the pivot columns of G, from left to right, by dy, dy, - - - , d,.
Then by definition, for each ¢ = 1,2,--- ,r and 7 = 1,2,--- ,r, the j-th entry ¢;; of

1 if §=
Ci; —
/ 0 if i

Pick any ag, o, -+ - ,a, € R. Suppose a8} + asgh + - -+ + o, 8L = 0,,.

g! is given by

For each j = 1,2,--- ,r, the j-th entry of the vector
a1y + s+ - + a8,

is given by
X1C1j + QaCj 4+ * + + Oy Crj = Q.

The j-th entry of 0, is 0.
Then «; = 0.

Hence g, 8%, - -+, &’ are linearly independent.

It follows that g%, gh,--- , & constitute a basis for R(G)
Hence they also constitute a basis for R(G).



11. Theorem (e) suggests another method for determining a basis for the span of several vectors
(which is different from the method described in the handout Minimal spanning set).

‘Algorithm’ associated with Theorem (¢).

Let uy, up, -+, u, be non-zero vectors in R".
We proceed to determine a basis for Span ({uy, ug, - -+ ,u,}) as described below:
. Step (1).
T
;

Form the (p x n)-matrix G = |—|.

. Step (2).

Obtain the reduced row-echelon form G which is row equivalent to G.
. Step (3).

Denote the rank of G by 7.

(Since G is not the zero matrix, G is not the zero matrix. The rank of G will be at least
1.)

Denote the top r rows of G by 81,89, -+, &

g, 8., .-+ 8 constitute a basis for Span ({uy,ug, -+ ,u,}).



11. Theorem (e) suggests another method for determining a basis for the span of several vectors
(which is different from the method described in the handout Minimal spanning set).

‘Algorithm’ associated with Theorem (¢).

Let ug, ug, - -+, u, be non-zero vectors in R™

We proceed to determine a basis for Span ({u,ug, -+ ,u,}) as described below:

- Step (1). ¢
ol \
e

N ; _ | Y2 ¢—
Form the (p X n)-matrix G = |——|. " t([u‘( L’“l l u(’] > 4
= LG = RIG) = RG)

- Step (2). = /

Obtain the reduced row-echelon form G which is row cquivalent to G.
- Step (3).
Denote the rank of G by 7.
(Since G is not the zero matrix, G is not the zero matrix. The rank of G will be at least
1.)
Denote the top 7 rows of G by 81,89, - , &

81,85, , & constitute a basis for Span ({uy, ug, -+, u,}).




12. Illustrations.

5 1
(a) Let uy = 162 , Uy = ? , Uz = 2 , and V = Span ({uy,us, us}).
|33 ] |24 | 5
We want to o_btajn_ a basis for V.
'
Define G = | uy |.
| ug’

We find the reduced row-echelon form G which is row equivalent to G-

[ 76 12 33 ] ) (100 —3]
G=|557 24| — -cevnn... —G=1010 5
1104 5 001 2 |

The rank of G is 3. For each 1, denote the transpose of the 7-th row of G by t;.

1 0 0
0 1 0 . . .

We have t1 = 0 | to = 0l t3 = K A basis for V' is constituted by tq, to, ts.
—3 5 2




12. Illustrations.

7 5, 1
6 5 0
(a) Let u; = ol W= u= 1,0, and V = Span ({uy, ug, us}).
33 ] 124 i3l LX
We want to Obﬁeﬁn a basis for V. VE L (Twi]wl WBI ) " L(C);‘) - '52\(%) B
Define G = E
U_3t

We find the reduced row-echelon form G which is row equivalent to G-

76 12 33 o0 —3

G=1[88 720 —5 . 5vivs —G=|000 5 |. @62(@):@2(@);
I 000 2
The rank of G is 3. For each i, denote the transpose of the i-th row of G By B
V®' 0 0]
We have t; = O Tty = %D by = % . A basis for V' is constituted by tq, to, ts.
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2
(b) Letuy = | 7 |, uy =
1
—1
We want to obtain a basis for V.
ult
112t
Define G = ;
us
114t

, U3

— W = =

0

, Uyq

and V = Span ({uy, us, us, uy}).

We find the reduced row-echelon form G which is row equivalent to G-

1
1
3
1

2 7 1
1 3 1
2 5 -1
-1 -5 2

10 -10 3
ORI L0140l
00 0 1 =2
00 0 0 0

The rank of G is 3. For each 7, denote the transpose of the i-th row of G by t;.

We have t; =

7t2

7t3

. A basis for V' is constituted by tq, to, t3.




F] [ B iy
J 1 2 —1
(b) Letuy = | 7 |,up=|3|,u3= | 5 |, ws= |—5| and V = Span ({uy, uy, uz, uy}).
1 1 — 2 : T
—1 0 9 0 .
We want to obtain a basis for V. v: Z,(D"‘\“‘\u) kl’\“]> - t/((‘) > - BQ <C)>
ult 1
7
Define G = u—2t .
u3
s’

We find the reduced row-echelon form G which is row equivalent to G-

(12 7 1 -1 Y 10 a1 |
113 1 0 A |QD 4 0 1| oo <077
G= s 9 5 _1 g | — G = QOO 02| DQ(C?) p(@)

|1 -1 -5 2 0 | 00 0 0 0

The rank of G is 3. For each 4, denote the transpose of the 7-th row of G by t;.

@ © ©)
0 @ ©
We haveti = |—1]|,to= | 4 |, t5= @ . A basis for V' is constituted by t1, to, ts.
0 0 @
3 —1 —ZJ
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0 —1 2 3
0 2 —4 —6
2 1 —1 —1
(¢c) Letu;=| 3 |,us=|—-1|,u3=| 3 |,uy= | 5 | and V = Span ({uy,us,us,us}).
5 0 2 4
—7 —2 1 0
12 0 5 10
We want to obtain a basis for V.
ult
lth
Define G = ;
us
uj

We find the reduced row-echelon form G which is row equivalent to G:

o 0 2 3 5 =712
-1 2 1 -10 -2 0 2
G = 5 4 -1 3 9 1 =5 N — G =

3 =6 -1 5 4 0 10

The rank of G is 3. For each 4, denote the transpose of the i-th row of G by t

o OO =

7

o O O

1 0 0
-2 0 0
0 1 0
Wehavet; = | 0 |,to= | 0 |,t3= | 1 |[. A basis for V is constituted by tq, to, t3.
0 1 1
1 —2 —1
1 3 2




