
MATH1030 How to obtain a basis for the intersection of two subspaces of Rn.

1. In the handout More on minimal spanning sets, we learnt how to obtain a basis for the sum of two given subspaces
of Rn whose bases are provided already.
Here we find out how to obtain a basis for the intersection of two given subspaces of Rn whose bases are provided
already.

2. Recall the definition for the notion of intersection of sets of vectors in Rn:

Let S, T be sets of vectors in Rn.
The intersection of S, T is defined to be the set {x ∈ Rn : x ∈ S and x ∈ T}, and is denoted by S ∩ T .

3. Lemma (1).
Suppose V,W are subspaces of Rn. Then V ∩W is a subspace of Rn.
Proof of Lemma (1). Exercise.

4. Lemma (2).
Let D1 be an (m1 × n)-matrix, and D2 be an (m2 × n)-matrix. Suppose D is the ((m1 +m2)× n)-matrix given by

D =
[
D1
D2

]
.

Then N (D) = N (D1) ∩N (D2).
Proof of Lemma (2). Exercise. (This result is a special of a result stated in the handout Geometry of solution
sets for systems of linear equations.)

5. Lemma (2) suggest how we can obtain a basis for the intersection of two given subspaces of Rn, each of them being
the null space of some matrices with the same number of columns.
‘Algorithm’ for determining a basis for the intersection of the null spaces of two given matrices.
Suppose B is an (m1 × n)-matrix, and C is an (m2 × n)-matrix. Suppose V = N (B) and W = N (C).
Then we may proceed to determine a basis for V ∩W as described in the ‘algorithm’ below:

• Step (1).

Form the matrix A =
[
B
C

]
.

• Step (2).
Obtain the reduced row-echelon form A′ which is row-equivalent to A.
Denote the rank of A by r.
If r = n then N (A) = {0n}.
If r < n, proceed to Step (3).

• Step (3).
Suppose r < n. Write p = n− r.
‘Read off’ from A′ those p solutions, denoted by u1,u2, · · · ,up, of the system LS(A′, 0), for which exactly one
of the free variables takes the value 1 and all other free variables take the value 0.
These p vectors u1,u2, · · · ,up constitute a basis for N (A). (This is guaranteed by Theorem (D) in the handout
Gaussian elimination and basis for null space.)

Remark. This is Theorem (D), proved in the handout Gaussian elimination and basis for null space:

Let A be an (m× n)-matrix, and A′ be the reduced row-echelon form which is row-equivalent to A.
Suppose the rank of A′ is r. Label the pivot columns of A′, from left to right, by d1, d2, · · · , dr.
Write p = n− r. Suppose p > 0. Label the free columns of A′, from left to right, by f1, f2, · · · , fp.
For each h = 1, 2, · · · , r, and each k = 1, 2, · · · , p, denote by shk the (dh, fk)-th entry of A′.
For each k = 1, 2, · · · , p, define uk to be the vector in Rn whose fk-th entry is 1, whose fj-th entry is 0 whenever
k ̸= j, and whose dh-th entry is −shk for each h = 1, 2, · · · , r.
Then the statements below hold:
(a) uk ∈ N (A) for each k = 1, 2, · · · , p.
(b) u1,u2, · · · ,up are linearly independent.
(c) Every vector in N (A) is a linear combination of u1,u2, · · · ,up.
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(d) u1,u2, · · · ,up constitute a basis for N (A).

6. Illustrations on how to determine a basis for the intersection of the null spaces of two given matrices.

(a) Let B =
[
1 2 2 4
1 3 3 5

]
, and C = [ 2 6 5 6 ].

We want to determine a basis for N (B) ∩N (C).

Define A =
[
B
C

]
. Then A =

[
1 2 2 4
1 3 3 5
2 6 5 6

]
, and N (A) = N (B) ∩N (C).

We obtain the reduced row-echelon form A′ which is row-equivalent to A by applying a sequence of row
operations to A:

A −→ · · · −→

[
1 0 0 2
0 1 0 −3
0 0 1 4

]
= A′

Note that LS(A′, 0) reads: {
x1 + 2x4 = 0

x2 − 3x4 = 0
x3 + 4x4 = 0

A basis for N (A) (which is N (B) ∩N (C)) is constituted by the vector u, in which u =

 −2
3
−4
1

.

(b) Let B =
[
1 2 7 1 −1
1 1 3 1 0

]
, and C =

[
3 2 5 −1 9
1 −1 −5 2 0

]
.

We want to determine a basis for N (B) ∩N (C).

Define A =
[
B
C

]
. Then A =

 1 2 7 1 −1
1 1 3 1 0
3 2 5 −1 9
1 −1 −5 2 0

, and N (A) = N (B) ∩N (C).

We obtain the reduced row-echelon form A′ which is row-equivalent to A by applying a sequence of row
operations to A:

A −→ · · · −→

 1 0 −1 0 3
0 1 4 0 −1
0 0 0 1 −2
0 0 0 0 0

 = A′

Note that LS(A′, 0) reads: 
x1 − x3 + 3x5 = 0

x2 + 4x3 − x5 = 0
x4 − 2x5 = 0

0 = 0

A basis for N (A) (which is N (B)∩N (C)) is constituted by the vectors u1,u2, in which u1 =


1
−4
1
0
0

, u2 =


−3
1
0
2
1

.

7. Question.
Suppose s1, s2, · · · , sk, t1, t2, · · · , tℓ are vectors in Rn, and V = Span ({s1, s2, · · · , sk}), W = Span ({t1, t2, · · · , tℓ}).
How do we find a basis for the subspace V ∩W of Rn?
Answer.
First recall the result (⋆) below, proved in the handout How to express the column space of a matrix as the null
space of some matrix:

(⋆) Let y1,y2, · · · ,yq ∈ Rn, and Y = [ y1 y2 · · · yq ].
Denote by Y ′ the reduced row-echelon form which is row-equivalent to Z. Denote the rank of Y ′ by r, and
suppose 0 < r < q. Write m = n− r.
Suppose D is a non-singular and invertible (n× n)-matrix which satisfies Y ′ = DY .
Denote by D

♮
the (m× n)-matrix constituted by the bottom m rows of D.

Then Span ({y1,y2, · · · ,yq}) = C(Y ) = N
(
D

♮

)
.
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According to the result (⋆), there exist some matrices B
♮
, C

♮
, each with n columns, such that V = N

(
B

♮

)
and

V ∩W = N
(
C

♮

)
.

According to Lemma (2), V ∩W = N (A), in which A =

[
B

♯

C
♮

]
.

Then a basis for V ∩W (which is regarded as the null space of A) can be obtained, as guaranteed by Theorem (D).
This answer actually provides an ‘algorithm’ that can be used in calculations.

8. ‘Algorithm’ for determining a basis for the intersection of two given spans of vectors.
Suppose s1, s2, · · · , sk, t1, t2, · · · , tℓ are vectors in Rn, and V = Span ({s1, s2, · · · , sk}), W = Span ({t1, t2, · · · , tℓ})
We proceed to determine a basis for V ∩W as described below:

• Step (1).
Form S = [ s1 s2 · · · sk ]. Further form the matrix [ S In ].
Apply row operations on [ S In ] so as to result in the matrix [ S′ B ], which is row-equivalent to [ S In ],
and in which S′ is the reduced row-echelon form row-equivalent to S.

• Step (2).
Form T = [ t1 t2 · · · tℓ ]. Further form the matrix [ T In ].
Apply row operations on [ T In ] so as to result in the matrix [ T ′ C ], which is row-equivalent to [ T In ],
and in which T ′ is the reduced row-echelon form row-equivalent to T .

• Step (3).
Inspect the matrices S′. Denote the rank of S′ by r1.

∗ Suppose r1 = n. Then V = Span ({s1, s2, · · · , sk}) = Rn, and V ∩W = W .
Label the pivot columns of T ′, from left to right, by d1, d2, · · · , dr2 .
A basis for V ∩W (regarded as W ) is constituted by td1

, td2
, · · · , tdr2

.
∗ If r1 < n, then proceed to Step (4).

• Step (4).
From now on we are supposing r1 < n.
Inspect the matrices T ′. Denote the rank of T ′ by r2.

∗ Suppose r2 = n. Then W = Span ({t1, t2, · · · , tℓ}) = Rn, and V ∩W = V .
Label the pivot columns of S′, from left to right, by d∗1, d

∗
2, · · · , d∗r1 .

A basis for V ∩W (regarded as V ) is constituted by s∗d1
, sd∗

2
, · · · , sd∗

r1
.

∗ If r2 < n, then proceed to Step (5).

• Step (5).
From now on we are supposing r1 < n and r2 < n.
Write m1 = n− r1 and m2 = n− r2.
Denote by B

♮
the (m1 × n)-matrix given by the bottom m1 rows of B. (We have V = N

(
B

♮

)
.)

Denote by C
♮

the (m2 × n)-matrix given by the bottom m2 rows of C. (We have W = N
(
C

♮

)
.)

Form the ((m1 +m2)× n)-matrix A by A =

[
B

♮

C
♮

]
. (We have V ∩W = N

(
B

♮

)
∩N

(
C

♮

)
= N (A).)

Obtain a basis for V ∩W , which is regarded as N (A), through, say, obtaining the reduced row-echelon form
A′ which is row-equivalent to A, and apply Theorem (D).
(It can happen that N (A) = {0n}. In this situation, the one and only one basis for V ∩W is the empty set.)

9. Illustrations on how to determine a basis for the intersection of two given spans of vectors.

(a) Let s1 =

[
1
1
0

]
, s2 =

[
1
0
1

]
, t1 =

[
0
1
1

]
, t2 =

[
1
1
1

]
.

Define V = Span ({s1, s2}), W = Span ({t1, t2}).
We want to find a basis for V ∩W .

• Define S = [ s1 s2 ], T = [ t1 t2 ].
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• We apply successive row operations starting from [ S I3 ], in such a way to obtain some matrix [ S′ B ]

in which S′ is the reduced row-echelon form which is row equivalent to S:

[ S I3 ] =

[
1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

]
−→ · · · · · · −→

[
1 0 1 0 −1
0 1 0 0 1
0 0 −1 1 1

]
= [ S′ B ]

in which S′ =

[
1 0
0 1
0 0

]
, B =

[
1 0 −1
0 0 1
−1 1 1

]
The rank of S′ is 2.
Define B

♮
= [ −1 1 1 ]. We have N

(
B

♮

)
= Span ({s1, s2}) = V .

• We apply successive row operations starting from [ T I3 ], in such a way to obtain some matrix [ T ′ C ]

in which T ′ is the reduced row-echelon form which is row equivalent to T :

[ T I3 ] =

[
0 1 1 0 0
1 1 0 1 0
1 1 0 0 1

]
−→ · · · · · · −→

[
1 0 −1 1 0
0 1 1 0 0
0 0 0 −1 1

]
= [ T ′ C ]

in which T ′ =

[
1 0
0 1
0 0

]
, C =

[
−1 1 0
1 0 0
0 −1 1

]
The rank of T ′ is 2.
Define C

♮
= [ 0 −1 1 ]. We have N

(
C

♮

)
= Span ({t1, t2}) = W .

• Define A =

[
B

♮

C
♮

]
. We have A =

[ −1 1 1
0 −1 1

]
. We have N (A) = N

(
B

♯

)
∩N

(
C

♯

)
= V ∩W .

We find the reduced row-echelon form A′ which is row-equivalent to A:

A −→ · · · · · · → A′ =
[
1 0 −2
0 1 −1

]
LS(A′, 0) reads as: {

x1 − 2x3 = 0
x2 − x3 = 0

Then a basis for N (A) (which is V ∩W ) is constituted by u, in which u =

[
2
1
1

]
.

(b) Let s1 =

11
0
0

, s2 =

01
0
1

, s3 =

00
1
1

, t1 =

 1
0
−1
0

, t2 =

 0
1
0
−1

, t3 =

 0
0
1
−1

.

Define V = Span ({s1, s2, s3}), W = Span ({t1, t2, t3}).
We want to find a basis for V ∩W .

• Define S = [ s1 s2 s3 ], T = [ t1 t2 t3 ].
• We apply successive row operations starting from [ S I4 ], in such a way to obtain some matrix [ S′ B ]

in which S′ is the reduced row-echelon form which is row equivalent to S:

[ S I4 ] =

 1 0 0 1 0 0 0
1 1 0 0 1 0 0
0 0 1 0 0 1 0
0 1 1 0 0 0 1

 −→ · · · · · · −→

 1 0 0 1 0 0 0
0 1 0 −1 1 0 0
0 0 1 0 0 1 0
0 0 0 1 −1 −1 1

 = [ S′ B ]

in which S′ =

 1 0 0
0 1 0
0 0 1
0 0 0

, B =

 1 0 0 0
−1 1 0 0
0 0 1 0
1 −1 −1 1


The rank of S′ is 3.
Define B

♮
= [ 1 −1 −1 1 ]. We have N

(
B

♮

)
= Span ({s1, s2, s3}) = V .

• We apply successive row operations starting from [ T I4 ], in such a way to obtain some matrix [ T ′ C ]

in which T ′ is the reduced row-echelon form which is row equivalent to T :

[ T I4 ] =

 1 0 0 1 0 0 0
0 1 0 0 1 0 0
−1 0 1 0 0 1 0
0 −1 −1 0 0 0 1

 −→ · · · · · · −→

 1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 1 1

 = [ T ′ C ]
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in which T ′ =

 1 0 0
0 1 0
0 0 1
0 0 0

, C =

 1 0 0 0
0 1 0 0
1 0 1 0
1 1 1 1


The rank of T ′ is 3.
Define C

♮
= [ 1 1 1 1 ]. We have N

(
C

♮

)
= Span ({t1, t2, t3}) = W .

• Define A =

[
B

♮

C
♮

]
. We have A =

[
1 −1 −1 1
1 1 1 1

]
. We have N (A) = N

(
B

♯

)
∩N

(
C

♯

)
= V ∩W .

We find the reduced row-echelon form A′ which is row-equivalent to A:

A −→ · · · · · · → A′ =
[
1 0 0 1
0 1 1 0

]
LS(A′, 0) reads as: {

x1 + x4 = 0
x2 + x3 = 0

Then a basis for N (A) (which is V ∩W ) is constituted by u1,u2, in which u1 =

 0
−1
1
0

, u2 =

−1
0
0
1

.

(c) Let s1 =

11
0
0

, s2 =

01
0
1

, t1 =

 1
0
−1
0

, t2 =

 0
0
1
−1

.

Define V = Span ({s1, s2}), W = Span ({t1, t2}).
We want to find a basis for V ∩W .

• Define S = [ s1 s2 ], T = [ t1 t2 ].
• We apply successive row operations starting from [ S I4 ], in such a way to obtain some matrix [ S′ B ]

in which S′ is the reduced row-echelon form which is row equivalent to S:

[ S I4 ] =

 1 0 1 0 0 0
1 1 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 1

 −→ · · · · · · −→

 1 0 1 0 0 0
0 1 −1 1 0 0
0 0 1 −1 0 1
0 0 0 0 1 0

 = [ S′ B ]

in which S′ =

 1 0
0 1
0 0
0 0

, B =

 1 0 0 0
−1 1 0 0
1 −1 0 1
0 0 1 0


The rank of S′ is 2.
Define B

♮
=

[
1 −1 0 1
0 0 1 0

]
. We have N

(
B

♮

)
= Span ({s1, s2}) = V .

• We apply successive row operations starting from [ T I4 ], in such a way to obtain some matrix [ T ′ C ]

in which T ′ is the reduced row-echelon form which is row equivalent to T :

[ T I4 ] =

 1 0 1 0 0 0
0 0 0 1 0 0
−1 1 0 0 1 0
0 −1 0 0 0 1

 −→ · · · · · · −→

 1 0 1 0 0 0
0 1 1 0 1 0
0 0 1 0 1 1
0 0 0 1 0 0

 = [ T ′ C ]

in which T ′ =

 1 0
0 1
0 0
0 0

, C =

 1 0 0 0
1 0 1 0
1 0 1 1
0 1 0 0


The rank of T ′ is 2.
Define C

♮
=

[
1 0 1 1
0 1 0 0

]
. We have N

(
C

♮

)
= Span ({t1, t2}) = W .

• Define A =

[
B

♮

C
♮

]
. We have A =

 1 −1 0 1
0 0 1 0
1 0 1 1
0 1 0 0

. We have N (A) = N
(
B

♯

)
∩N

(
C

♯

)
= V ∩W .

We find the reduced row-echelon form A′ which is row-equivalent to A:

A −→ · · · · · · → A′ =

 1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 0


LS(A′, 0) reads as: {

x1 + x4 = 0
x2 = 0

x3 = 0
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Then a basis for N (A) (which is V ∩W ) is constituted by u, in which u =

−1
0
0
1

.

(d) Let s1 =

11
1
1

, s2 =

 1
−1
1
−1

, t1 =

 1
1
−1
−1

, t2 =

 1
−1
−1
1

.

Define V = Span ({s1, s2}), W = Span ({t1, t2}).
We want to find a basis for V ∩W .

• Define S = [ s1 s2 ], T = [ t1 t2 ].
• We apply successive row operations starting from [ S I4 ], in such a way to obtain some matrix [ S′ B ]

in which S′ is the reduced row-echelon form which is row equivalent to S:

[ S I4 ] =

 1 1 1 0 0 0
1 −1 0 1 0 0
1 1 0 0 1 0
1 −1 0 0 0 1

 −→ · · · · · · −→

 1 0 1/2 1/2 0 0
0 1 1/2 −1/2 0 0
0 0 1 0 −1 0
0 0 0 1 0 −1

 = [ S′ B ]

in which S′ =

 1 0
0 1
0 0
0 0

, B =

 1/2 1/2 0 0
1/2 −1/2 0 0
1 0 −1 0
0 1 0 −1


The rank of S′ is 2.
Define B

♮
=

[
1 0 −1 0
0 1 0 −1

]
. We have N

(
B

♮

)
= Span ({s1, s2}) = V .

• We apply successive row operations starting from [ T I4 ], in such a way to obtain some matrix [ T ′ C ]

in which T ′ is the reduced row-echelon form which is row equivalent to T :

[ T I4 ] =

 1 1 1 0 0 0
1 −1 0 1 0 0
−1 −1 0 0 1 0
−1 1 0 0 0 1

 −→ · · · · · · −→

 1 0 −1/2 0 0 −1/2
0 1 1/2 0 0 1/2
0 0 1 0 1 0
0 0 0 1 0 1

 = [ T ′ C ]

in which T ′ =

 1 0
0 1
0 0
0 0

, C =

 −1/2 0 0 −1/2
1/2 0 0 1/2
1 0 1 0
0 1 0 1


The rank of T ′ is 2.
Define C

♮
=

[
1 0 1 0
0 1 0 1

]
. We have N

(
C

♮

)
= Span ({t1, t2}) = W .

• Define A =

[
B

♮

C
♮

]
. We have A =

 1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

. We have N (A) = N
(
B

♯

)
∩N

(
C

♯

)
= V ∩W .

We find the reduced row-echelon form A′ which is row-equivalent to A:

A −→ · · · · · · → A′ =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I4

LS(A′, 0) reads as: 
x1 = 0

x2 = 0
x3 = 0

x4 = 0

Then V ∩W = N (A) = {0}, and its basis is given by the empty set.
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