
MATH1030 Replacement Theorem.

0. Here we going to give another proof for the Replacement Theorem (which is Theorem (F) in the handout More on
minimal spanning set.)
It will be a direct argument for the Replacement Theorem: we do not have to rely on what we have learnt about
reduced row-echelon form and non-singular matrices. All we need will be the definitions for the notions of linear
combinations, span, linear independence, and bases.

1. Lemma (1). (Baby version of Replacement Theorem.)
Let V be a subspace of Rn. Suppose t1, t2, · · · , tk constitute a basis for V .
Let u be a non-zero vector in Rn. Suppose u is a linear combination of t1, t2, · · · , tk.
Then, after relabelling the indices of t1, t2, · · · , tk if necessary, u, t2, · · · , tk constitute a basis for V .

2. Proof of Lemma (1).
Let V be a subspace of Rn. Suppose t1, t2, · · · , tk constitute a basis for V .
Let u be a non-zero vector in Rn. Suppose each of u is a linear combination of t1, t2, · · · , tk.
By assumption, there exist some α1, α2, · · · , αk such that u = α1t1 + α2t2 + · · ·+ αktk.
By assumption u ̸= 0. Then at least one of α1, α2, · · · , αk is non-zero.
Without loss of generality, suppose α1 ̸= 0. (Otherwise, choose the first i for which αi is non-zero. Then relabel
α1, t1 as αi, ti respectively, and αi, ti as α1, t1 respectively.)
We verify that u, t2, t3, · · · , tk constitute a basis for V :

• Pick any β, γ2, γ3, · · · , γk ∈ R.
Suppose βu+ γ2t2 + γ3t3 + · · ·+ γktk = 0.
Then

0 = β(α1t1 + α2t2 + · · ·+ αktk) + γ2t2 + γ3t3 + · · ·+ γktk

= βα1t1 + (βα2 + γ2)t2 + (βα3 + γ3)t3 + · · ·+ (βαk + γk)tk

By assumption t1, t2, · · · , tk are linearly independent. Then

βα1 = 0 = βα2 + γ2 = βα3 + γ3 = · · · = βαk + γk.

Recall that α1 ̸= 0. Then β = 0. Therefore γ2 = γ3 = · · · = γk = 0.
It follows that u, t2, t3, · · · , tk are linearly independent.

• By definition, V = Span ({t1, t2, t3 · · · , tk}).
By assumption u is a linear combination of t1, t2, t3 · · · , · · · , tk. Then V = Span ({t1, t2, t3, · · · , tk,u}).

Note that t1 =
1

α1
u− α2

α1
t2 −

α3

α1
t3 − · · · − αk

α1
tk.

Then t1 is a linear combination of u, t2, t3, · · · , tk.
Therefore V = Span ({u, t2, t3, · · · , tk}).

It follows that u, t2, t3, · · · , tk constitute a basis for V .

3. Theorem (2). (Replacement Theorem.)
Let V be a subspace of Rn. Suppose t1, t2, · · · , tp, tp+1, · · · , tp+s constitute a basis for V .
Let u1,u2, · · · ,up be vectors in V . Suppose u1,u2, · · · ,up are linearly independent.
Then, after relabelling the indices of t1, t2, · · · , tp, tp+1, · · · , tp+s if necessary, u1,u2, · · · ,up, tp+1, · · · , tp+s consti-
tute a basis for V .

4. Proof of Theorem (2).
Let V be a subspace of Rn. Suppose t1, t2, · · · , tp, tp+1, · · · , tp+s constitute a basis for V .
Let u1,u2, · · · ,up be vectors in V . Suppose u1,u2, · · · ,up are linearly independent.

• u1 is a linear combination of t1, t2, · · · , tp+s. Moreover, u1 ̸= 0. (Why?)
We apply Lemma (1): after relabelling the indices of t1, t2, · · · , tp+s if necessary, u1, t2, t3, · · · , tp, tp+1 · · · , tp+s

constitute a basis for V .
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• Suppose 1 ≤ j < p, and suppose that after relabelling the indices of t1, t2, · · · , tp+s if necessary,
u1, · · · ,uj , tj+1, · · · , tp+s constitute a basis for V .
uj+1 is a linear combination of u1, · · · ,uj , tj+1, tj+2, · · · , tp+s.
Then there exist some κ1, · · · , κj , λ, µj+2, · · · , · · · , µp+s ∈ R such that
uj+1 = κ1u1 + · · ·+ κjuj + λtj+1 + µj+2tj+2 + · · ·+ µp+stp+s.
λ, µj+2, · · · , · · · , µp+s are not all zero. (Otherwise, uj+1 = κ1u1 + κ2u2 + · · · + κjuj . Then u1,u2, · · · ,up

would be linearly dependent.)
Without loss of generality, suppose λ ̸= 0.
We verify that u1, · · · ,uj ,uj+1, tj+2 · · · , tp+s constitute a basis for V :
∗ Pick any α1, · · · , αj , β, γj+2, · · · , γp+s ∈ R.

Suppose α1u1 + · · ·+ αjuj + βuj+1 + γj+2tj+2 + · · ·+ γp+stp+s = 0.
Then

0 = α1u1 + · · ·+ αjuj

+β(κ1u1 + · · ·+ κjuj + λtj+1 + µj+2tj+2 + · · ·+ µp+stp+s)

+γj+2tj+2 + · · ·+ γp+stp+s

= (βκ1 + α1)t1 + · · ·+ (βκj + αj)tj + βλtj+1 + (βµj+2 + γj+2)tj+2 + · · ·+ (βµp+s + γp+s)tp+s

Note that u1, · · · ,uj , tj+1, · · · , tp+s are linearly independent. Then

βλ = 0 = βκ1 + α1 = · · · = βκj + αj = βµj+2 + γj+2 = · · · = βµp+s + γp+s.

Recall that λ ̸= 0. Then β = 0. Therefore α1 = · · · = αj = γj+2 = · · · = γp+s = 0.
It follows that u1, · · · ,uj ,uj+1, tj+2, · · · , tp+s are linearly independent.

∗ Note that V = Span ({u1, · · · ,uj , tj+1, · · · , tp+s}), and uj+1 is a linear combination of u1, · · · ,uj , tj+1 · · · , tp+s.
Then V = Span ({u1, · · · ,uj , tj+1, · · · , tp+s,uj+1}).

Note that tj+1 =
1

λ
uj+1 −

κ1

λ
u1 − · · · − κj

λ
uj −

µj+2

λ
tj+2 − · · · − µp+s

λ
tp+s.

Then tj+1 is a linear combination of u1, · · · ,uj ,uj+1, tj+2, · · · , tp+s.
Then V = Span ({u1, · · · ,uj ,uj+1, tj+2, · · · , tp+s}).

It follows that u1, · · · ,uj ,uj+1, tj+2 · · · , tp+s constitute a basis for V .

Hence inductively, we deduce that, after relabelling the indices of t1, t2, · · · , tp, tp+1, · · · , tp+s if necessary,
u1,u2,u3,u4,u5, · · · ,up, tp+1, · · · , tp+s constitute a basis for V .

5. Comments on the arguments for the Replacement Theorem.
This is for students (such as MATH/BMED students) who need to take MATH2040.
Refer also to Theorem (E) in the handout Minimal spanning set, and Theorem (F) in the handout More on minimal
spanning set.

(a) The argument above for the Replacement Theorem is ‘general’ in the sense that we do not rely on the specific
nature of the vectors in Rn as ‘column vectors with n entries’.
For this reason, this argument can be adapted (with minimal change) to give a proof for the ‘Replacement
Theorem’ to abstract linear algebra (in which the objects of study are no longer simply vectors, matrices, and
systems of linear equations.)

(b) The Replacement Theorem in this course can be seen as a consequence of Theorem (E) and the considerations
on ‘sums of subspaces of Rn’ leading towards Theorem (F) in the handout More on minimal spanning set. The
argument there relies heavily on the specific nature of the vectors in Rn as ‘column vectors with n entries’. (We
need to form matrices with these vectors as various columns to do various manipulations.)
For this reason, that argument cannot be immediately and directly adapted to abstract linear algebra. However,
it provides an easy method of calculations in the context where vectors in Rn is involved.

The comments above also apply to what we are going to do next: we give a direct argument for Theorem (B) below,
as an application of the Replacement Theorem. In contrast to what has been done in the handout More on minimal
spanning set, our argument here can be adapted immediately to abstract linear algebra.

6. Theorem (B).
Any two bases for a subspace of Rn have the same number of vectors.
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7. Proof of Theorem (B).
Let V be a subspace of Rn. When V is the zero subspace of Rn, the empty set is its one and only one basis, and
there is nothing to prove here.
From now on we suppose V is not the zero subspace of Rn.
Suppose x1,x2, · · · ,xp is a basis for V .
Also suppose y1,y2, · · · ,y′

p is a basis for V .

Further suppose it were true that p ̸= p′. Without loss of generality, assume p < p′. Then there would be some
positive integer q, namely q = p′ − p, so that p′ = p+ q.
By assumption y1,y2, · · · ,yp,yp+1, · · · ,yp′ constitute a basis for V .
By assumption x1,x2, · · · ,xp constitute a basis for V . Then they are are vectors in V and they are linearly
independent.
Therefore, by the Replacement Theorem, after relabelling the indices of y1,y2, · · · ,yp,yp+1, · · · ,yp+q if necessary,
x1,x2, · · · ,xp,yp+1, · · · ,yp+q would constitute a basis for V .
Therefore, in particular, x1,x2, · · · ,xp,yp+1, · · · ,yp+q would be linearly independent.
Again recall that x1,x2, · · · ,xp constitute a basis for V . Since yp+1 is a vector in V , yp+1 would be a linear
combination of x1,x2, · · · ,xp. Contradiction arises.
Therefore it would be impossible for p < p′ to hold.
Similarly, it would be impossible for p > p′ to hold.
Hence p = p′ in the first place.
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