1. Question ().
Given a number of vectors in R”, can we extract from these vectors a basis for the span of
these vectors?

Answer to Question (x).
The answer is yes, and it is explained in full by Theorem (E).



2. Theorem (E).
Let uy,uy, - - - ,u, be vectors in R, and U be the (n x q)-matrix given by U = [ u; ‘ us ‘ e ‘ u, }
Let V = Span ({uy,uy, -+ ,u,}).

Denote by U’ the reduced row-echelon form which is row-equivalent to U.

Denote the j-th column of U" by u.
Denote the rank of U’ by r.

Suppose r > 1, and label the pivot columns of U’, from left to right, by di,ds,--- ,d,.
Then ug,ug,, - - ,uq, constitute a basis for V.

Moreover, for each j =1,2,--- ,q,
the vector u; is the linear combination of ug, ug,, - - - , g, and the respective scalars o, aa, - -+, Qi
if and only if
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Remark.

Once we make sense of the notion of dimension, it will turn that the dimension of V' is r,
because one base for V', namely, ug,, ug,, - - -, uq, is constituted by r vectors.

Further remark.

ug,, Ug,, - , Uy can be thought of as constituting a ‘minimal spanning set’” for V' in the
sense that they span V', and any » — 1 or fewer vectors from amongst them definitely fail
to span V.

. In many situations we only need the validity of the result below, which is a consequence of
Theorem (E), to affirm the existence of basis for a span of vectors.

Corollary to Theorem (E).
Suppose uy, Uy, - - - , U, are non-zero vectors in R".

Then some vectors amongst Uy, Uy, - - - , U, constitute a basis for Span ({uy, ug, -+ ,u,}).



4. ‘Algorithm’ associated with Theorem (E).

When a collection of vectors, say, u, us, - -+ ,u, in K", are given to us in ‘concrete’ terms,
Theorem (E) combined with what we know about solving equations, suggest an ‘algorithm’
for obtaining a basis for V' = Span ({uy,uy, - ,u,}).
. Step (1).

Form the matrix U = [u1u2--- uq].
. Step (2).

Obtain the reduced row-echelon form U’ which is row equivalent to U.

. Step (3).
Read off from U’, the rank r of U’, and the pivot columns of U’.
Label the pivot columns of U’, from left to right, by di, do, - - - , d,.

. Step (4).
Conclude that the vectors ug,, ug,, - -+ ,uq, a basis for V.



4. ‘Algorithm’ associated with Theorem (E).

When a collection of vectors, say, uj, ug, - -+ ,u, in R", are given to us in ‘concrete’ terms,
Theorem (E) combined with what we know about solving equations, suggest an ‘algorithm’
for obtaining a basis for V' = Span ({uy,ug, -+ ,u,}).
. Step (1).

Form the matrix U = [ul‘uQ]-- - |u%}
. Step (2).

Obtain the reduced row-echelon form U’ which is row equivalent to U.
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5. Illustrations.

0 1 —2
(a) Letuy = |—1| ,us = |—2| ,u3= | 3 |, and V = Span ({u,us, us}).
2 7 —12

We want to find extract a basis from uy, uy, us for V.
Define U = [111112113}.

We find the reduced row-echelon form U’ which is row equivalent to U:

0 1 =2 (10 1 |
U= | -1 -2 3 | —3eeeene-. —sU'=101-2].
2 7 —12 ] 00 0

The rank of U’ is 2, and the pivot columns are the first and second columns.
Hence a basis for V' is constituted by uy, us.

As a bonus, we also see that
Uy — u] — 2112.



5. Illustrations.
0 1 —2
(a) Let yy = |—1| ,u9= |—=2|,us=| 3 |, and V = Span ({uy, us, us}).
| 2 7 —12

We want to find extract a basis from uj, uy, us for V.
Define U = [111‘112‘113].

We find the reduced row-echelon form U’ which is row equivalent to U:

0} 1]-2 110 1
U=|-11-2| 3 N — U =10/11-2
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The rank of U’ is 2, and the pivot columns are the first and second columns.
Hence a basis for V' is constituted by uyp, us.

As a bonus, we also see that
Us — up — 2112.
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V' = Span ({uy, uy, us, uy, us, ug}).
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We want to find extract a basis from uy, us, us, Uy, us, ug for V.

Define U = [u1u2u3u4u5u6]

We find the reduced row-echelon form U’ which is row equivalent to U:
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The rank of U’ is 3, and the pivot columns are the first, second, and fourth columns.

Hence a basis for V' is constituted by uy, us, uy.

As a bonus, we also see that

U3 — U —|—112,

U5 = U + Uy,

Ug — 10111 — 8112 + 5114.



0 1 1 2 2 2
(b)Letu1: 1 s Ug = 2 , Uy — d ,Ug = 2 , Uy — 9 , Ug — 4 ,and
—2 —1 -3 3 1 3
V = Span ({ula Uy, Uz, Uy, Us, u6}>
We want to find extract a basis from uy, ug, us, Uy, Us, Ug for V.
Define U = [ul‘ug‘u3‘u4‘u5|u6].
We find the reduced row-echelon form U’ which is row equivalent to U:
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The rank of U’ is 3, and the pivot columns are the first, second, and fourth columns.

Hence a basis for V' is constituted by uy, usg, uy.

As a bonus, we also see that

us =u; +Uy, us=u;+u, ug=10u;— 8uy+ duy.



(c) Let uy = , and V = Span ({uy, us, us, uy}).
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We want to find extract a basis from uy, us, us, uy for V.
Define U = [u1u2u3u4].

We find the reduced row-echelon form U’ which is row equivalent to U:
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The rank of U’ is 3, and the pivot columns are the first, second, and third columns.
Hence a basis for V' is constituted by uy, us, us.

As a bonus, we also see that
Uy = Uu; — Us + Us.
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(c) Let u; = , and V' = Span ({uy, ug, us, uy}).
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We want to find extract a basis from uy, uy, us, uy for V.
Define U = [111’112.’1131114].

We find the reduced row-echelon form U’ which is row equivalent to U:
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The rank of U’ is 3, and the pivot columns are the first, second, and third columns.

Hence a basis for V' is constituted by uj, us, us.

As a bonus, we also see that
Uy — u; — U + us.
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(d)Letul— ; , Uy = ; , U3 = ? , Uy = _11 , Uy — 8 ,and
1 —1 —5 2 0

V' = Span ({ul,u2,u3,u4,u5})
We want to find extract a basis from 1y, Uy, us, Uy, us for V.
Define U = [u1u2u3u4u5].

We find the reduced row-echelon form U’ which is row equivalent to U:
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The rank of U’ is 3, and the pivot columns are the first, second, and forth columns.
Hence a basis for V' is constituted by uy, us, uy.

As a bonus, we also see that us = —u; + 4uy, us = 3u; — Uy — 2uy.
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(d) Letu1: 9 s Uy — 9 , U3 = 5 , Ug — il , Uy = 9 ,and
w4 =ik | —9 | | 2 | 0]

V= Span ({ula Uy, U3, Uy, U5})
We want to find extract a basis from uy, uy, us, u4, us for V.
Define U = [u1|u2‘u3}U4‘u5}.

We find the reduced row-echelon form U’ which is row equivalent to U:

(1] 2] 7| 1)-1] [ 1{0|—1 0| 3 ]
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The rank of U’ is 3, and the pivot columns are the first, second, and forth columns.
Hence a basis for V' is constituted by uy, us, uy.

As a bonus, we also see that ug = —uy + 4uy, us = 3u; — uy — 2uy.
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and V' = Span <{u17 Uz, Uz, Uy, Us, Ug, u7}>
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We want to find extract a basis from uy, ug, us, Uy, us, Ug, U7 for V.

Define U = [111112113114115116117].

We find the reduced row-echelon form U’ which is row equivalent to U:
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The rank of U’ is 3, and the pivot columns are the first, third, and fourth columns.

Hence a basis for V' is constituted by uy, us, uy.

As a bonus, we also see that

Uy = —2U;,U; = U3 + Uy, Ug = U; — 2U3 — Uy, Uy = Uj + 3us + 2uy.




(e) Let
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and V' = Span ({uy, ug, us, uy, us, ug, ur}).
We want to find extract a basis from uy, usg, us, uy, us, ug, uy for V.

Define U = [111‘112’113}114'115‘116.117].

We find the reduced row-echelon form U’ which is row equivalent to U:
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The rank of U’ is 3, and the pivot columns are the first, third, and fourth columns. 7&) (‘t’)‘/
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Hence a basis for V' is constituted by uy, us, uy. R0 ‘
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As a bonus, we also see that

U = —2U1, U5 = U3 + Uy, Ug = Uy — 2U3 — Uy, Uy = Uy + 3us + 2uy.
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6. Preparation towards proving Theorem (E).

Recall the result (I) below, from the handout More on span of vectors and column space of
a matrix:
(I) Let 1,892, ,Sp, t1,t2,- -+, tx be vectors in R".

The statements below are logically equivalent:

(a) Each of t1,t9, - ,t Is a linear combination of sy, 89, -+ , Sy

<b> Span <{817 S2, ", Sp, t17 t27 T 7t]€}) — Span <{Sla S92, * 7Sp}>'

With the help of the result (I), we are going to prove Lemma (1), which looks trivial but is
in fact the cornerstone for the proof of Theorem (E).

Lemma (1).
Let H be an (n X q)-matrix.

Suppose H is a reduced row-echelon form.
Denote the rank of H by r.
(a) Suppose r = 0. Then C(H) = {0,}.

(b) Suppose r > 1. Then C(H) = Span ({e(ln), eén), e ,e&”)}) .



Proof of Lemma (1).
Let H be an (n X g)-matrix.

Suppose H is a reduced row-echelon form. Denote the rank of H by r.

(a) Suppose r = 0.
Then H is the zero matrix.
Therefore C(H) ={0,,}.

(b) Suppose r > 1.
Denote the columns of H, from left to right, by hy, hy,---  hy,.

Label the pivot columns of H, from left to right, by di, ds, - - - , d,.
The vectors e§”), eén), o ,97@ are amongst hy, hy, -+ - hg; in fact they are respectively
the di-th, do-th, ..., d,~th columns of H.

The bottom n — r entries of each of hy, hy,---  h, are all zero.

Then each of them is a linear combination of e(ln), egn), e ,eq(an).

It follows, from the result (I), that

C(H) = Span ({hy, hy,--- ,h,}) = Span ({e{”, e\, .- e,



7. Further preparation towards proving Theorem (E).

Next recall the result (IT) below, from the handout Row operations and row equivalence in
terms of multiplication by non-singular and invertible matrices:

(IT) Let C', D be (n x q)-matrices.

The statements below are logically equivalent:

(a) C' is row-equivalent to D.

(b) There exists some non-singular and invertible (n x n)-square matrix A such that D =

AC.

Also recall the collection of results (II1.1), (II1.2), (II1.3) from the handouts Linear combi-
nations, More on span of vectors and column space of a matrix, More on linear dependence
and linear independence:



(ITIL.1) Let s1,89, - ,8,,t be vectors in R" and oy, g, - - -, v, be real numbers.

Suppose A is a non-singular (n X n)-square matrix.

Then the statements below are logically equivalent:

(a) t is a linear combination of the vectors sy, Sg, - - - ,8, and the respective scalars aq, ag, - - -, v,

(b) At is a linear combination of the vectors Asy, Asy, - - - , As, and the respective scalars oy, o, -+ , a.

(II1.2) Let s1,89,- - ,8p, t1,t2,- -+, t, be vectors in R™.

Suppose A is a non-singular (n X n)-square matrix.

Then the statements below are logically equivalent:

(a> Span ({Slv 82, 7Sp}) = Span ({t17 by, - 7tq})'
(b) Span ({Asy, Asg, - -+, As,}) = Span ({Aty, Aty --- | At,}).

(IIL.3) Let ty,t9,- - -, t, be vectors in R".
Suppose A is a non-singular (n X n)-square matrix.

Then the statements below are logically equivalent:

(a) t1,te,- -, t, are linearly independent.
(b) Aty, Ato, - - -, At, are linearly independent.

Equipped with Lemma (1) and the results (II), (II1.1) (I1.2), (II1.3), we are ready to prove Theorem (E).



8. Proof of Theorem (E).
Let up, ug, - - - , u, be vectors in R”, and U be the (nx¢)-matrix given by U = [ u; | ug |- |y } .
Let V' = Span ({uy,ug,--- ,u,}).

Denote by U’ the reduced row-echelon form which is row-equivalent to U.

Denote the j-th column of U’ by u’;.

Denote the rank of U’ by r.
Suppose r > 1, and label the pivot columns of U’, from left to right, by di,ds, - - - , d,.

According to the result (1),

there exists some non-singular and invertible (n x n)-square matrix A such that U" = AU.

For the same matrix A, we have u; = Au; for each j =1,2,--- ,¢.

« |We apply the result (II1.3) to verify that ug,, ug,,- - -, ug, are linearly independent.]

By Lemma (1), u&k = egcn) foreach k =1,2,--- ,r.
Then u; ,ug, - - ,u&k are linearly independent.

Since A is a non-singular and invertible matrix, ug,, ug,, -+ ,ug, are linearly indepen-
dent, according to the result (II1.3).



» |We apply the result (I11.2) to verify that V' = Span ({ug,, ug,, - ,ug,}).]

Since r > 1, U’ is not the zero matrix.
By Lemma (1), we have

Span {uf,uj,--- ,u/} = C(U') = Span ({egn),eén), e ,eff‘)})

q
— Span <{u£i17 uiig? e 7u£ir}>'

Since A is a non-singular (n X n)-square matrix,
V' = Span {uj,uy,--- ,u,} = Span ({ug,ug, - ,uq}),

according to the result (I11.2).

It follows that ug,, ug,, -+ ,ug, constitute a basis for V.



Let j=1,2,-+- .q.

According to the result (II1.1), the statements below are logically equivalent:

(a) u; is the linear combination of

Ug,, Ug,, " -, Uy,
and the respective scalars aq, ag, - - -, .
(b) u} is the linear combination of
uéh’ uzb’ o 7u2lr
and the respective scalars aq, amg, - - -, .
Recall that u/, = el(gm).
k
o
&%)
Hence the latter statement is equivalent to the equality u} = |,
0
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9. The results (I1.1), (I1.3) also combine immediately to give Theorem (2), whose proof is left
as an exercise. (Imitate the argument for Theorem (E).)

Another argument for Theorem (2) is given by an application of Theorem (E).

(Start by asking what the reduced row echelon form which is row-equivalent to the matrix
[111112"' uq}, and what that is to the matrix [AUlAU.Q"‘ Auq] )

Theorem (2).

Let V' be a subspace of R", and uy,ug,--- ,u, be vectors in V..

Let A be a non-singular and invertible (n X n)-square matrix, and

W = Span ({Auy, Auy, - -- , Au,}).
Let p be an integer between 1 and q.

Suppose ji1, J2, -+ , Jp are integers between 1 and q, and satisty 1 < g1 < jo < --- < 3, < q.

Then the statements below are logically equivalent:
(a) uj,uj,,- -+ ,u;, constitute a basis for V.
(b) Auj,, Auy,, - -, Auy, constitute a basis for W.



