
1. Question (∗).
Given a number of vectors in Rn, can we extract from these vectors a basis for the span of
these vectors?

Answer to Question (∗).
The answer is yes, and it is explained in full by Theorem (E).
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2. Theorem (E).
Let u1,u2, · · · ,uq be vectors in Rn, and U be the (n× q)-matrix given by U =

[
u1 u2 · · · uq

]
.

Let V = Span ({u1,u2, · · · ,uq}).

Denote by U ′ the reduced row-echelon form which is row-equivalent to U .
Denote the j-th column of U ′ by u′

j.
Denote the rank of U ′ by r.

Suppose r ≥ 1, and label the pivot columns of U ′, from left to right, by d1, d2, · · · , dr.

Then ud1,ud2, · · · ,udr constitute a basis for V .

Moreover, for each j = 1, 2, · · · , q,

the vector uj is the linear combination of ud1,ud2, · · · ,udr and the respective scalars α1, α2, · · · , αr

if and only if

u′
j =



α1

α2...
αr

0
...
0


.
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Remark.
Once we make sense of the notion of dimension, it will turn that the dimension of V is r,
because one base for V , namely, ud1,ud2, · · · ,udr is constituted by r vectors.

Further remark.
ud1,ud2, · · · ,udr can be thought of as constituting a ‘minimal spanning set’ for V in the
sense that they span V , and any r − 1 or fewer vectors from amongst them definitely fail
to span V .

3. In many situations we only need the validity of the result below, which is a consequence of
Theorem (E), to affirm the existence of basis for a span of vectors.

Corollary to Theorem (E).
Suppose u1,u2, · · · ,uq are non-zero vectors in Rn.
Then some vectors amongst u1,u2, · · · ,uq constitute a basis for Span ({u1,u2, · · · ,uq}).
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4. ‘Algorithm’ associated with Theorem (E).
When a collection of vectors, say, u1,u2, · · · ,uq in Rn, are given to us in ‘concrete’ terms,
Theorem (E) combined with what we know about solving equations, suggest an ‘algorithm’
for obtaining a basis for V = Span ({u1,u2, · · · ,uq}).

• Step (1).
Form the matrix U =

[
u1 u2 · · · uq

]
.

• Step (2).
Obtain the reduced row-echelon form U ′ which is row equivalent to U .

• Step (3).
Read off from U ′, the rank r of U ′, and the pivot columns of U ′.
Label the pivot columns of U ′, from left to right, by d1, d2, · · · , dr.

• Step (4).
Conclude that the vectors ud1,ud2, · · · ,udr a basis for V .
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5. Illustrations.

(a) Let u1 =

 0
−1
2

 ,u2 =

 1
−2
7

 ,u3 =

−2
3

−12

, and V = Span ({u1,u2,u3}).

We want to find extract a basis from u1,u2,u3 for V .

Define U =
[
u1 u2 u3

]
.

We find the reduced row-echelon form U ′ which is row equivalent to U :

U =

 0 1 −2
−1 −2 3
2 7 −12

 −→ · · · · · · · · · −→ U ′ =

 1 0 1
0 1 −2
0 0 0

.

The rank of U ′ is 2, and the pivot columns are the first and second columns.

Hence a basis for V is constituted by u1,u2.

As a bonus, we also see that
u3 = u1 − 2u2.
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(b) Let u1 =

 0
1
−2

 ,u2 =

 1
2
−1

 ,u3 =

 1
3
−3

 ,u4 =

22
3

 ,u5 =

23
1

 ,u6 =

24
3

, and

V = Span ({u1,u2,u3,u4,u5,u6}).

We want to find extract a basis from u1,u2,u3,u4,u5,u6 for V .

Define U =
[
u1 u2 u3 u4 u5 u6

]
.

We find the reduced row-echelon form U ′ which is row equivalent to U :

U =

 0 1 1 2 2 2
1 2 3 2 3 4
−2 −1 −3 3 1 3

 −→ · · · · · · · · · −→ U ′ =

 1 0 1 0 1 10
0 1 1 0 0 −8
0 0 0 1 1 5

.

The rank of U ′ is 3, and the pivot columns are the first, second, and fourth columns.

Hence a basis for V is constituted by u1,u2,u4.

As a bonus, we also see that
u3 = u1 + u2, u5 = u1 + u4, u6 = 10u1 − 8u2 + 5u4.
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(c) Let u1 =


1
1
3
2

 ,u2 =


1
0
4
2

 ,u3 =


1
−1
4
1

 ,u4 =


1
0
3
1

, and V = Span ({u1,u2,u3,u4}).

We want to find extract a basis from u1,u2,u3,u4 for V .

Define U =
[
u1 u2 u3 u4

]
.

We find the reduced row-echelon form U ′ which is row equivalent to U :

U =


1 1 1 1
1 0 −1 0
3 4 4 3
2 2 1 1

 −→ · · · · · · · · · −→ U ′ =


1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 0

.

The rank of U ′ is 3, and the pivot columns are the first, second, and third columns.

Hence a basis for V is constituted by u1,u2,u3.

As a bonus, we also see that
u4 = u1 − u2 + u3.
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(d) Let u1 =


1
1
3
1

 ,u2 =


2
1
2
−1

 ,u3 =


7
3
5
−5

 ,u4 =


1
1
−1
2

 ,u5 =


−1
0
9
0

, and

V = Span ({u1,u2,u3,u4,u5}).

We want to find extract a basis from u1,u2,u3,u4,u5 for V .

Define U =
[
u1 u2 u3 u4 u5

]
.

We find the reduced row-echelon form U ′ which is row equivalent to U :

U =


1 2 7 1 −1
1 1 3 1 0
3 2 5 −1 9
1 −1 −5 2 0

 −→ · · · · · · · · · −→ U ′ =


1 0 −1 0 3
0 1 4 0 −1
0 0 0 1 −2
0 0 0 0 0

.

The rank of U ′ is 3, and the pivot columns are the first, second, and forth columns.

Hence a basis for V is constituted by u1,u2,u4.

As a bonus, we also see that u3 = −u1 + 4u2, u5 = 3u1 − u2 − 2u4.

8





(e) Let

u1=


0
−1
2
3

 ,u2=


0
2
−4
6

 ,u3=


2
1
−1
−1

 ,u4=


3
−1
3
5

 ,u5=


5
0
2
4

 ,u6=


−7
−2
−1
0

 ,u7=


12
0
5
10

 ,

and V = Span ({u1,u2,u3,u4,u5,u6,u7}).

We want to find extract a basis from u1,u2,u3,u4,u5,u6,u7 for V .

Define U =
[
u1 u2 u3 u4 u5 u6 u7

]
.

We find the reduced row-echelon form U ′ which is row equivalent to U :

U =


0 0 2 3 5 −7 12
−1 2 1 −1 0 −2 0
2 −4 −1 3 2 1 5
3 −6 −1 5 4 0 10

 −→ · · · · · · · · · −→ U ′ =


1 −2 0 0 0 1 1
0 0 1 0 1 −2 3
0 0 0 1 1 −1 2
0 0 0 0 0 0 0

.
The rank of U ′ is 3, and the pivot columns are the first, third, and fourth columns.

Hence a basis for V is constituted by u1,u3,u4.
As a bonus, we also see that

u2 = −2u1,u5 = u3 + u4,u6 = u1 − 2u3 − u4,u7 = u1 + 3u3 + 2u4.
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6. Preparation towards proving Theorem (E).
Recall the result (I) below, from the handout More on span of vectors and column space of
a matrix:

(I) Let s1, s2, · · · , sp, t1, t2, · · · , tk be vectors in Rn.

The statements below are logically equivalent:
(a) Each of t1, t2, · · · , tk is a linear combination of s1, s2, · · · , sp.

(b) Span ({s1, s2, · · · , sp, t1, t2, · · · , tk}) = Span ({s1, s2, · · · , sp}).

With the help of the result (I), we are going to prove Lemma (1), which looks trivial but is
in fact the cornerstone for the proof of Theorem (E).

Lemma (1).
Let H be an (n× q)-matrix.
Suppose H is a reduced row-echelon form.

Denote the rank of H by r.
(a) Suppose r = 0. Then C(H) = {0n}.
(b) Suppose r ≥ 1. Then C(H) = Span ({e(n)1 , e

(n)
2 , · · · , e(n)r }) .

10



Proof of Lemma (1).
Let H be an (n× q)-matrix.
Suppose H is a reduced row-echelon form. Denote the rank of H by r.

(a) Suppose r = 0.
Then H is the zero matrix.
Therefore C(H) = {0n}.

(b) Suppose r ≥ 1.
Denote the columns of H , from left to right, by h1,h2, · · · ,hq.
Label the pivot columns of H , from left to right, by d1, d2, · · · , dr.

The vectors e(n)1 , e
(n)
2 , · · · , e(n)r are amongst h1,h2, · · · ,hq; in fact they are respectively

the d1-th, d2-th, ..., dr-th columns of H .

The bottom n− r entries of each of h1,h2, · · · ,hq are all zero.

Then each of them is a linear combination of e(n)1 , e
(n)
2 , · · · , e(n)r .

It follows, from the result (I), that

C(H) = Span ({h1,h2, · · · ,hq}) = Span ({e(n)1 , e
(n)
2 , · · · , e(n)r }).
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7. Further preparation towards proving Theorem (E).
Next recall the result (II) below, from the handout Row operations and row equivalence in
terms of multiplication by non-singular and invertible matrices:

(II) Let C,D be (n× q)-matrices.

The statements below are logically equivalent:
(a) C is row-equivalent to D.

(b) There exists some non-singular and invertible (n×n)-square matrix A such that D =
AC.

Also recall the collection of results (III.1), (III.2), (III.3) from the handouts Linear combi-
nations, More on span of vectors and column space of a matrix, More on linear dependence
and linear independence:
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(III.1) Let s1, s2, · · · , sp, t be vectors in Rn and α1, α2, · · · , αp be real numbers.
Suppose A is a non-singular (n× n)-square matrix.

Then the statements below are logically equivalent:
(a) t is a linear combination of the vectors s1, s2, · · · , sp and the respective scalars α1, α2, · · · , αp.
(b) At is a linear combination of the vectors As1, As2, · · · , Asp and the respective scalars α1, α2, · · · , αp.

(III.2) Let s1, s2, · · · , sp, t1, t2, · · · , tq be vectors in Rn.
Suppose A is a non-singular (n× n)-square matrix.

Then the statements below are logically equivalent:
(a) Span ({s1, s2, · · · , sp}) = Span ({t1, t2, · · · , tq}).
(b) Span ({As1, As2, · · · , Asp}) = Span ({At1, At2, · · · , Atq}).

(III.3) Let t1, t2, · · · , tq be vectors in Rn.
Suppose A is a non-singular (n× n)-square matrix.

Then the statements below are logically equivalent:
(a) t1, t2, · · · , tq are linearly independent.
(b) At1, At2, · · · , Atq are linearly independent.

Equipped with Lemma (1) and the results (II), (III.1) (II.2), (III.3), we are ready to prove Theorem (E).
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8. Proof of Theorem (E).
Let u1,u2, · · · ,uq be vectors in Rn, and U be the (n×q)-matrix given by U =

[
u1 u2 · · · uq

]
.

Let V = Span ({u1,u2, · · · ,uq}).

Denote by U ′ the reduced row-echelon form which is row-equivalent to U .
Denote the j-th column of U ′ by u′

j.
Denote the rank of U ′ by r.
Suppose r ≥ 1, and label the pivot columns of U ′, from left to right, by d1, d2, · · · , dr.

According to the result (II),

there exists some non-singular and invertible (n× n)-square matrix A such that U ′ = AU .

For the same matrix A, we have u′
j = Auj for each j = 1, 2, · · · , q.

• [We apply the result (III.3) to verify that ud1,ud2, · · · ,udk are linearly independent.]

By Lemma (1), u′
dk
= e

(n)
k for each k = 1, 2, · · · , r.

Then u′
d1
,u′

d2
, · · · ,u′

dk
are linearly independent.

Since A is a non-singular and invertible matrix, ud1,ud2, · · · ,udk are linearly indepen-
dent, according to the result (III.3).
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• [We apply the result (III.2) to verify that V = Span ({ud1,ud2, · · · ,udk}).]

Since r ≥ 1, U ′ is not the zero matrix.
By Lemma (1), we have

Span {u′
1,u

′
2, · · · ,u′

q} = C(U ′) = Span ({e(n)1 , e
(n)
2 , · · · , e(n)r })

= Span ({u′
d1
,u′

d2
, · · · ,u′

dr
}).

Since A is a non-singular (n× n)-square matrix,
V = Span {u1,u2, · · · ,uq} = Span ({ud1,ud2, · · · ,udr}),

according to the result (III.2).

It follows that ud1,ud2, · · · ,udr constitute a basis for V .
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Let j = 1, 2, · · · , q.

According to the result (III.1), the statements below are logically equivalent:
(a) uj is the linear combination of

ud1,ud2, · · · ,udr

and the respective scalars α1, α2, · · · , αr.
(b) u′

j is the linear combination of

u′
d1
,u′

d2
, · · · ,u′

dr

and the respective scalars α1, α2, · · · , αr.

Recall that u′
dk
= e

(m)
k .

Hence the latter statement is equivalent to the equality u′
j =



α1

α2...
αr

0
...
0


.
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9. The results (II.1), (II.3) also combine immediately to give Theorem (2), whose proof is left
as an exercise. (Imitate the argument for Theorem (E).)

Another argument for Theorem (2) is given by an application of Theorem (E).

(Start by asking what the reduced row echelon form which is row-equivalent to the matrix[
u1 u2 · · · uq

]
, and what that is to the matrix

[
Au1 Au2 · · · Auq

]
)

Theorem (2).
Let V be a subspace of Rn, and u1,u2, · · · ,uq be vectors in V .

Let A be a non-singular and invertible (n× n)-square matrix, and
W = Span ({Au1, Au2, · · · , Auq}).

Let p be an integer between 1 and q.
Suppose j1, j2, · · · , jp are integers between 1 and q, and satisfy 1 ≤ j1 < j2 < · · · < jp ≤ q.

Then the statements below are logically equivalent:
(a) uj1,uj2, · · · ,ujp constitute a basis for V .
(b) Auj1, Auj2, · · · , Aujp constitute a basis for W .
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