1. Refer to the handout *Homogeneous systems and null spaces*. There we learn what to do when we try to give an explicit description for the null space of a matrix:

Suppose we are given an $(m \times n)$ matrix A.

To determine $\mathcal{N}(A)$ is the same as giving an 'explicit' description of the solution set of the homogeneous system $\mathcal{LS}(A, \mathbf{0})$ through set language, in terms of (hopefully just a few) solutions of the system. That amounts to finding all solutions of $\mathcal{LS}(A, \mathbf{0})$.

Suppose A' is the reduced row-echelon form which is row-equivalent to A.

Suppose the rank of A' is r. Write p = n - r.

- * When p = 0, $\mathcal{N}(A) = \{0\}$.
- * Suppose p > 0. Then those (few) solutions $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ of $\mathcal{LS}(A, \mathbf{0})$ needed for expressing all solutions of $\mathcal{LS}(A, \mathbf{0})$ are 'read off' as solutions of $\mathcal{LS}(A', \mathbf{0})$ for which one free variable takes the value 1 and all other free variable take the value 0. In conclusion we have

$$\mathcal{N}(A) = \mathcal{N}(A') = \{c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_p\mathbf{u}_p \mid c_1, c_2, \dots, c_p \in \mathbb{R}\} = \mathsf{Span} \ (\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}).$$

According to Theorem (D) below, what we are actually doing in this procedure is to find a basis for $\mathcal{N}(A)$. In short, to 'solve' a homogeneous system of linear equations is the same as finding a basis for the null space of the coefficient matrix for the system.

2. Theorem (D).

Let A be an $(m \times n)$ -matrix, and A' be the reduced row-echelon form which is row-equivalent to A.

Suppose the rank of A' is r. Label the pivot columns of A', from left to right, by d_1, d_2, \dots, d_r .

Write p = n - r. Suppose p > 0. Label the free columns of A', from left to right, by f_1, f_2, \dots, f_p .

For each $h = 1, 2, \dots, r$, and each $k = 1, 2, \dots, p$, denote by s_{hk} the (d_h, f_k) -th entry of A'.

For each $k = 1, 2, \dots, p$, define \mathbf{u}_k to be the vector in \mathbb{R}^n whose f_k -th entry is 1, whose f_j -th entry is 0 whenever $k \neq j$, and whose d_h -th entry is $-s_{hk}$ for each $h = 1, 2, \dots, r$.

Then the statements below hold:

- (a) $\mathbf{u}_k \in \mathcal{N}(A)$ for each $k = 1, 2, \cdots, p$.
- (b) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent.
- (c) Every vector in $\mathcal{N}(A)$ is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$.
- (d) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ constitute a basis for $\mathcal{N}(A)$.

Remark. Once we make sense of the notion of *dimension*, it will turn that the dimension of $\mathcal{N}(A)$ is p, because one base for $\mathcal{N}(A)$, namely, $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ is constituted by p vectors.

3. Proof of Theorem (D).

Suppose $k = 1, 2, \dots, p$. Denote the ℓ -th entry of \mathbf{u}_k by $u_{k,\ell}$. By assumption,

$$u_{k,\ell} = \begin{cases} -s_{hk} & \text{if } \ell = d_h \text{ and } 1 \le h \le r \\ 1 & \text{if } \ell = f_k \\ 0 & \text{if } \ell = f_j \text{ and } j \ne k \end{cases}$$

Denote the (i, ℓ) -th entry of A' by $a'_{i\ell}$.

- (a) Suppose i > r. Then $a'_{i\ell} = 0$ for each ℓ . Therefore the *i*-th entry of $A'\mathbf{u}_k$ is given by $a'_{i1}u_{k,1} + a'_{i2}u_{k,2} + \cdots + a'_{in}u_{k,n} = 0$.
 - Suppose $i = 1, 2, \cdots, r$. Then

$$a_{i\ell}' = \left\{ \begin{array}{ll} 1 & \text{if} \quad \ell = d_i \\ 0 & \text{if} \quad \ell = d_h \text{ and } h \neq i \\ s_{ij} & \text{if} \quad \ell = f_j \text{ and } 1 \leq j \leq p \end{array} \right.$$

Note that whenever $h \neq i$, we have $a'_{id_h}u_{k,d_h} = 0$. Also, whenever $j \neq k$, we have $a'_{if_i}u_{k,f_j} = 0$.

Hence the *i*-th entry of $A'\mathbf{u}_k$ is given by

$$\begin{aligned} a'_{i1}u_{k,1} + a'_{i2}u_{k,2} + \cdots + a'_{in}u_{k,n} \\ &= (a'_{id_1}u_{k,d_1} + a'_{id_2}u_{k,d_2} + \cdots + a'_{id_r}u_{k,d_r}) + (a'_{if_1}u_{k,f_1} + a'_{if_2}u_{k,f_2} + \cdots + a'_{if_p}u_{k,f_p}) \\ &= a'_{id_i}u_{k,d_i} + a'_{if_k}u_{k,f_k} \\ &= 1 \cdot (-s_{ik}) + s_{ik} \cdot 1 = 0. \end{aligned}$$

Therefore $A'\mathbf{u}_k = \mathbf{0}$. It follows that ' $\mathbf{x} = \mathbf{u}_k$ ' is a solution of $\mathcal{LS}(A', \mathbf{0})$, and hence a solution of $\mathcal{LS}(A, \mathbf{0})$ as well. Therefore $\mathbf{u}_k \in \mathcal{N}(A)$.

(b) Pick any $\alpha_1, \alpha_2, \cdots, \alpha_p \in \mathbb{R}$.

Suppose $\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \cdots + \alpha_p \mathbf{u}_p = \mathbf{0}_n$. Suppose $j = 1, 2, \cdots, p$. Recall that $u_{j,f_j} = 1$, and $u_{k,f_j} = 0$ whenever $k \neq j$. Then the f_j -th entry of the vector $\alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \cdots + \alpha_p \mathbf{u}_p$ is given by $\alpha_1 u_{1,f_j} + \alpha_2 u_{2,f_j} + \alpha_p u_{p,f_j} = \alpha_j u_{j,f_j} = \alpha_j$. The f_j -th entry of $\mathbf{0}_n$ is 0. Therefore $\alpha_j = 0$. It follows that $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ are linearly independent.

(c) Pick any $\mathbf{x} \in \mathcal{N}(A)$. Denote the *i*-th entry of \mathbf{x} by x_i . Then $A'\mathbf{x} = \mathbf{0}$. Therefore,

$$\begin{cases} x_{d_1} = -s_{11}x_{f_1} - s_{12}x_{f_2} - \cdots - s_{1p}x_{f_p} \\ x_{d_2} = -s_{21}x_{f_1} - s_{22}x_{f_2} - \cdots - s_{2p}x_{f_p} \\ \vdots \\ x_{d_r} = -s_{r1}x_{f_1} - s_{r2}x_{f_2} - \cdots - s_{rp}x_{f_p} \end{cases}$$

Therefore $\mathbf{x} = x_{f_1}\mathbf{u}_1 + x_{f_2}\mathbf{u}_2 + \dots + x_{f_p}\mathbf{u}_p$. (Why?)

It follows that \mathbf{x} is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$.

(d) According to definition, $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p$ is a basis for $\mathcal{N}(A)$.

4. Illustrations of the content of Theorem (D).

(a) Let
$$A = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 1 & 3 & 3 & 5 \\ 2 & 6 & 5 & 6 \end{bmatrix}$$
.

We obtain the reduced row-echelon form A' which is row-equivalent to A by applying a sequence of row operations to A:

$$A = \begin{bmatrix} 1 & 2 & 2 & 4 \\ 1 & 3 & 3 & 5 \\ 2 & 6 & 5 & 6 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \end{bmatrix} = A'$$

Note that $\mathcal{LS}(A', \mathbf{0})$ reads:

$$\begin{cases} x_1 & + 2x_4 = 0 \\ x_2 & - 3x_4 = 0 \\ x_3 & + 4x_4 = 0 \end{cases}$$

We have
$$\mathcal{N}(A) = \{ c\mathbf{u} \mid c \in \mathbb{R} \}$$
, in which $\mathbf{u} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix}$

A basis for $\mathcal{N}(A)$ is constituted by the vector **u**.

(b) Let
$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & -1 \\ 3 & 1 & 5 & -7 \end{bmatrix}$$
.

We obtain the reduced row-echelon form A' which is row-equivalent to A by applying a sequence of row operations to A:

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & -1 \\ 3 & 1 & 5 & -7 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} = A'$$

Note that $\mathcal{LS}(A', \mathbf{0})$ reads:

$$\begin{cases} x_1 & + 2x_3 & - 3x_4 &= 0\\ & x_2 & - x_3 & + 2x_4 &= 0\\ & & 0 &= 0 \end{cases}$$

We have

$$\mathcal{N}(A) = \{ c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 \mid c_1, c_2 \in \mathbb{R} \},\$$

in which
$$\mathbf{u}_1 = \begin{bmatrix} -2\\1\\1\\0 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 3\\-2\\0\\1 \end{bmatrix}$.

A basis for $\mathcal{N}(A)$ is constituted by the vectors $\mathbf{u}_1, \mathbf{u}_2$.

(c) Let
$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & 7 \\ 1 & 1 & 1 & -1 & 3 \\ 3 & 1 & 5 & -7 & 1 \end{bmatrix}$$
.

We obtain the reduced row-echelon form A' which is row-equivalent to A by applying a sequence of row operations to A:

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & 7 \\ 1 & 1 & 1 & -1 & 3 \\ 3 & 1 & 5 & -7 & 1 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 0 & 2 & -3 & -1 \\ 0 & 1 & -1 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = A'$$

Note that $\mathcal{LS}(A', \mathbf{0})$ reads:

$$\begin{cases} x_1 & + 2x_3 & - 3x_4 & - x_5 &= 0\\ x_2 & - x_3 & + 2x_4 & + 4x_5 &= 0\\ 0 & 0 &= 0 \end{cases}$$

We have

$$\mathcal{N}(A) = \{ c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3 \mid c_1, c_2, c_3 \in \mathbb{R} \},\$$

in which
$$\mathbf{u}_1 = \begin{bmatrix} -2\\1\\1\\0\\0 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 3\\-2\\0\\1\\0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1\\-4\\0\\0\\1 \end{bmatrix}$.

A basis for $\mathcal{N}(A)$ is constituted by the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.

(d) Let
$$A = \begin{bmatrix} 1 & 4 & 0 & -1 & 0 & 7 & -9 \\ 2 & 8 & -1 & 3 & 9 & -13 & 7 \\ 0 & 0 & 2 & -3 & -4 & 12 & -8 \\ -1 & -4 & 2 & 4 & 8 & -31 & 37 \end{bmatrix}$$
.

We obtain the reduced row-echelon form A' which is row-equivalent to A by applying a sequence of row operations to A:

$$A = \begin{bmatrix} 1 & 4 & 0 & -1 & 0 & 7 & -9 \\ 2 & 8 & -1 & 3 & 9 & -13 & 7 \\ 0 & 0 & 2 & -3 & -4 & 12 & -8 \\ -1 & -4 & 2 & 4 & 8 & -31 & 37 \end{bmatrix} \longrightarrow \dots \longrightarrow \begin{bmatrix} 1 & 4 & 0 & 0 & 2 & 1 & -3 \\ 0 & 0 & 1 & 0 & 1 & -3 & 5 \\ 0 & 0 & 0 & 1 & 2 & -6 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = A'$$

Note that $\mathcal{LS}(A', \mathbf{0})$ reads:

We have

$$\mathcal{N}(A) = \{ c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3 + c_4 \mathbf{u}_4 \mid c_1, c_2, c_3, c_4 \in \mathbb{R} \},\$$

in which
$$\mathbf{u}_1 = \begin{bmatrix} -4\\1\\0\\0\\0\\0\\0 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -2\\0\\-1\\-2\\1\\0\\0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} -1\\0\\3\\6\\0\\1\\0 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 3\\0\\-5\\-6\\0\\1\\0 \end{bmatrix}$.

A basis for $\mathcal{N}(A)$ is constituted by the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$.