
MATH1030 Gaussian elimination and basis for null space.

1. Refer to the handout Homogeneous systems and null spaces. There we learn what to do when we try to give an
explicit description for the null space of a matrix:

Suppose we are given an (m× n) matrix A.
To determine N (A) is the same as giving an ‘explicit’ description of the solution set of the homogeneous system
LS(A, 0) through set language, in terms of (hopefully just a few) solutions of the system. That amounts to
finding all solutions of LS(A, 0).
Suppose A′ is the reduced row-echelon form which is row-equivalent to A.
Suppose the rank of A′ is r. Write p = n− r.
∗ When p = 0, N (A) = {0}.
∗ Suppose p > 0. Then those (few) solutions u1,u2, · · · ,up of LS(A, 0) needed for expressing all solutions

of LS(A, 0) are ‘read off’ as solutions of LS(A′, 0) for which one free variable takes the value 1 and all
other free variable take the value 0.
In conclusion we have

N (A) = N (A′) = {c1u1 + c2u2 + · · ·+ cpup | c1, c2, · · · , cp ∈ R} = Span ({u1,u2, · · · ,up}).

According to Theorem (D) below, what we are actually doing in this procedure is to find a basis for N (A). In short,
to ‘solve’ a homogeneous system of linear equations is the same as finding a basis for the null space of the coefficient
matrix for the system.

2. Theorem (D).
Let A be an (m× n)-matrix, and A′ be the reduced row-echelon form which is row-equivalent to A.
Suppose the rank of A′ is r. Label the pivot columns of A′, from left to right, by d1, d2, · · · , dr.
Write p = n− r. Suppose p > 0. Label the free columns of A′, from left to right, by f1, f2, · · · , fp.
For each h = 1, 2, · · · , r, and each k = 1, 2, · · · , p, denote by shk the (dh, fk)-th entry of A′.
For each k = 1, 2, · · · , p, define uk to be the vector in Rn whose fk-th entry is 1, whose fj-th entry is 0 whenever
k ̸= j, and whose dh-th entry is −shk for each h = 1, 2, · · · , r.
Then the statements below hold:

(a) uk ∈ N (A) for each k = 1, 2, · · · , p.
(b) u1,u2, · · · ,up are linearly independent.
(c) Every vector in N (A) is a linear combination of u1,u2, · · · ,up.
(d) u1,u2, · · · ,up constitute a basis for N (A).

Remark. Once we make sense of the notion of dimension, it will turn that the dimension of N (A) is p, because
one base for N (A), namely, u1,u2, · · · ,up is constituted by p vectors.

3. Proof of Theorem (D).
Suppose k = 1, 2, · · · , p. Denote the ℓ-th entry of uk by uk,ℓ.
By assumption,

uk,ℓ =

{ −shk if ℓ = dh and 1 ≤ h ≤ r
1 if ℓ = fk
0 if ℓ = fj and j ̸= k

Denote the (i, ℓ)-th entry of A′ by a′iℓ.

(a) • Suppose i > r. Then a′iℓ = 0 for each ℓ. Therefore the i-th entry of A′uk is given by a′i1uk,1 + a′i2uk,2 +

· · ·+ a′inuk,n = 0.
• Suppose i = 1, 2, · · · , r. Then

a′iℓ =

{
1 if ℓ = di
0 if ℓ = dh and h ̸= i
sij if ℓ = fj and 1 ≤ j ≤ p

Note that whenever h ̸= i, we have a′idh
uk,dh

= 0. Also, whenever j ̸= k, we have a′ifjuk,fj = 0.
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Hence the i-th entry of A′uk is given by

a′i1uk,1 + a′i2uk,2 + · · ·+ a′inuk,n

= (a′id1
uk,d1

+ a′id2
uk,d2

+ · · ·+ a′idr
uk,dr

) + (a′if1uk,f1 + a′if2uk,f2 + · · ·+ a′ifpuk,fp)

= a′idi
uk,di

+ a′ifkuk,fk

= 1 · (−sik) + sik · 1 = 0.

Therefore A′uk = 0. It follows that ‘x = uk’ is a solution of LS(A′, 0), and hence a solution of LS(A, 0) as
well. Therefore uk ∈ N (A).

(b) Pick any α1, α2, · · · , αp ∈ R.
Suppose α1u1 + α2u2 + · · ·αpup = 0n.
Suppose j = 1, 2, · · · , p. Recall that uj,fj = 1, and uk,fj = 0 whenever k ̸= j.
Then the fj-th entry of the vector α1u1+α2u2+ · · ·αpup is given by α1u1,fj +α2u2,fj +αpup,fj = αjuj,fj = αj .
The fj-th entry of 0n is 0. Therefore αj = 0.
It follows that u1,u2, · · · ,up are linearly independent.

(c) Pick any x ∈ N (A). Denote the i-th entry of x by xi.
Then A′x = 0. Therefore,

xd1
= −s11xf1 − s12xf2 − · · · − s1pxfp

xd2
= −s21xf1 − s22xf2 − · · · − s2pxfp
...

xdr = −sr1xf1 − sr2xf2 − · · · − srpxfp

.

Therefore x = xf1u1 + xf2u2 + · · ·+ xfpup. (Why?)
It follows that x is a linear combination of u1,u2, · · · ,up.

(d) According to definition, u1,u2, · · · ,up is a basis for N (A).

4. Illustrations of the content of Theorem (D).

(a) Let A =

[
1 2 2 4
1 3 3 5
2 6 5 6

]
.

We obtain the reduced row-echelon form A′ which is row-equivalent to A by applying a sequence of row
operations to A:

A =

[
1 2 2 4
1 3 3 5
2 6 5 6

]
−→ · · · −→

[
1 0 0 2
0 1 0 −3
0 0 1 4

]
= A′

Note that LS(A′, 0) reads: {
x1 + 2x4 = 0

x2 − 3x4 = 0
x3 + 4x4 = 0

We have N (A) = {cu | c ∈ R} , in which u =

−2
3
−4
1

.

A basis for N (A) is constituted by the vector u.

(b) Let A =

[
1 2 0 1
1 1 1 −1
3 1 5 −7

]
.

We obtain the reduced row-echelon form A′ which is row-equivalent to A by applying a sequence of row
operations to A:

A =

[
1 2 0 1
1 1 1 −1
3 1 5 −7

]
−→ · · · −→

[
1 0 2 −3
0 1 −1 2
0 0 0 0

]
= A′

Note that LS(A′, 0) reads: {
x1 + 2x3 − 3x4 = 0

x2 − x3 + 2x4 = 0
0 = 0
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We have
N (A) = {c1u1 + c2u2 | c1, c2 ∈ R} ,

in which u1 =

−2
1
1
0

, u2 =

 3
−2
0
1

.

A basis for N (A) is constituted by the vectors u1,u2.

(c) Let A =

[
1 2 0 1 7
1 1 1 −1 3
3 1 5 −7 1

]
.

We obtain the reduced row-echelon form A′ which is row-equivalent to A by applying a sequence of row
operations to A:

A =

[
1 2 0 1 7
1 1 1 −1 3
3 1 5 −7 1

]
−→ · · · −→

[
1 0 2 −3 −1
0 1 −1 2 4
0 0 0 0 0

]
= A′

Note that LS(A′, 0) reads: {
x1 + 2x3 − 3x4 − x5 = 0

x2 − x3 + 2x4 + 4x5 = 0
0 = 0

We have
N (A) = {c1u1 + c2u2 + c3u3 | c1, c2, c3 ∈ R} ,

in which u1 =


−2
1
1
0
0

, u2 =


3
−2
0
1
0

, u3 =


1
−4
0
0
1

.

A basis for N (A) is constituted by the vectors u1,u2,u3.

(d) Let A =

 1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

.

We obtain the reduced row-echelon form A′ which is row-equivalent to A by applying a sequence of row
operations to A:

A =

 1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

 −→ · · · −→

 1 4 0 0 2 1 −3
0 0 1 0 1 −3 5
0 0 0 1 2 −6 6
0 0 0 0 0 0 0

 = A′

Note that LS(A′, 0) reads:
x1 + 4x2 + 2x5 + x6 − 3x7 = 0

x3 + x5 − 3x6 + 5x7 = 0
x4 + 2x5 − 6x6 + 6x7 = 0

0 = 0

We have
N (A) = {c1u1 + c2u2 + c3u3 + c4u4 | c1, c2, c3, c4 ∈ R} ,

in which u1 =


−4
1
0
0
0
0
0

, u2 =


−2
0
−1
−2
1
0
0

, u3 =


−1
0
3
6
0
1
0

, u4 =


3
0
−5
−6
0
0
1

.

A basis for N (A) is constituted by the vectors u1,u2,u3,u4.
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