
MATH1030 Bases for subspaces of Rn.

1. Definition. (Basis for a subspace of Rn.)
Let V be a subspace of Rn.
We declare that if V is the zero subspace of Rn then the empty set is the basis for V .
From now on suppose V is not the zero subspace of Rn.
Suppose u1,u2, · · · ,up are vectors in V .
Then the vectors u1,u2, · · · ,up are said to constitute a basis for V (or the set {u1,u2, · · · ,up} is said to be a basis
for V ) if and only if both of the statements (BL), (BS) below hold:

(BL) u1,u2, · · · ,up are linearly independent.
(BS) Every vector in V is a linear combination of u1,u2, · · · ,up.

Remarks.

(a) In the set-up of this definition, V is assumed to be a subspace of Rn. Then it is trivially true that every linear
combination of u1,u2, · · · ,up is a vector in V .
For this reason, the statement (BS) holds if and only if V = Span ({u1,u2, · · · ,up}).
In fact, some people will replace (BS) by

(BS’) ‘V = Span ({u1,u2, · · · ,up})’
in the definition for the notion of basis above.

(b) In books where set language is used thoroughly, and ‘span of general sets’ are defined, the ‘declaration’ that
the empty set is the basis for the zero subspace can be incorporated naturally into the rest of the definition.

2. Example of basis: Standard base for Rn.
Fix any positive integer n.

For each k = 1, 2, · · · , n, denote by e
(n)
k the vector in Rn whose k-th entry is 1 and whose every other entry is 0.

(So e
(n)
k = En,1

k,1 =



0
...
0
1
0
...
0


.)

The n vectors e
(n)
1 , e

(n)
2 , · · · , e(n)n are collectively called the standard base for Rn.

3. Theorem (1).
Let V be a subspace of Rn.
Suppose u1,u2, · · · ,up be vectors in V .
Then the statements below are logically equivalent:

(♯) u1,u2, · · · ,up constitute a basis for V .
(♭) For any x ∈ V , there exist some unique α1, α2, · · · , αp ∈ R such that x = α1u1 + α2u2 + · · ·+ αpup.

Remark. The ‘existence-and-uniqueness statement’

‘For any x ∈ V , there exists some unique α1, α2, · · · , αp ∈ R such that x = α1u1 + α2u2 + · · ·+ αpup’

is to be understood as a very terse presentation of the passage below:

Both statements (E), (U) are true:
(E) For any x ∈ V , there exists some α1, α2, · · · , αp ∈ R such that x = α1u1 + α2u2 + · · ·+ αpup.
(U) For any x ∈ V , for any β1, β2, · · · , βp, γ1, γ2, · · · , γp ∈ R, if x = β1u1 + β2u2 + · · · + βpup and x =

γ1u1 + γ2u2 + · · ·+ γpup then β1 = γ1, β2 = γ2, ..., βp = γp.

Further remark. The significance of Theorem (1) is that it allows us to think of a subspace of Rn, say, V ,
with a basis, say, u1,u2, · · · ,up as a copy of Rp, by setting up a ‘dictionary’ between the subspace V of Rn and the
subspace Rp of Rp. This ‘dictionary’ is described below:
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For each x ∈ V , we identify x as the vector


α1
α2
...
αp

 exactly when the vector x is expressed as the uniquely

determined linear combination x = α1u1 + α2u2 + · · ·+ αpup.

Vector addition and scalar multiplication are preserved in the following sense:

• Suppose the vectors x,y of V are ‘identified’ as the respective vectors


α1
α2
...
αp

 ,


β1
β2
...
βp

.

Then the vector x+ y of V is ‘identified’ as the vector


α1 + β1
α2 + β2

...
αp + βp

, which is in fact the sum of


α1
α2
...
αp

 ,


β1
β2
...
βp

.

Moreover, for any real number γ, the vector γx of V is ‘identified’ as the vector


γα1
γα2

...
γαp

, which is in fact the

scalar multiple γ


α1
α2
...
αp

.

4. Proof of Theorem (1).
Let V be a subspace in Rn. Suppose u1,u2, · · · ,up be vectors in V .
We want to verify that the statement (♯), (♭) are logically equivalent:

(♯) u1,u2, · · · ,up constitute a basis for V .
(♭) For any x ∈ V , there exist some unique α1, α2, · · · , αp ∈ R such that x = α1u1 + α2u2 + · · ·+ αpup.

• Suppose (♯) holds. [We want to verify that (♭) holds.]
Pick any x ∈ V .
∗ By (BS), x is a linear combination of u1,u2, · · · ,up. Then there exist some α1, α2, · · · , αp ∈ R such that
x = α1u1 + α2u2 + · · ·+ αpup.

∗ Pick any β1, β2, · · · , βp ∈ R. Suppose x = β1u1 + β2u2 + · · ·+ βpup.
Then α1u1 + α2u2 + · · ·+ αpup = x = β1u1 + β2u2 + · · ·+ βpup.
Therefore

(β1 − α1)u1 + (β2 − α)u2 + · · ·+ (βp − αp)up = (β1u1 + β2u2 + · · ·+ βpup)− (α1u1 + α2u2 + · · ·+ αpup)

= x− x = 0

By (BL), β1 − α1 = β2 − α2 = · · · = βp − αp = 0.
Hence α1 = β1, α2 = β2, ..., αp = βp.

Hence (♭) holds.
• Suppose (♭) holds. [We want to verify that (♯) holds.]

By assumption, for any x ∈ V , there exist some unique α1, α2, · · · , αp ∈ R such that x = α1u1 + α2u2 + · · ·+
αpup.
∗ [Ask: Is (BS) true? In other words, is it true that every vector is a linear combination of u1,u2, · · · ,up?]

Pick any x ∈ V . Then by (♭), there exist some α1, α2, · · · , αp ∈ R such that x = α1u1+α2u2+ · · ·+αpup.
Therefore (BS) holds.

∗ [Ask: Is (BL) true? In other words, is it true that u1,u2, · · · ,up are linearly independent?]
Pick any β1, β2, · · · , βp ∈ R. Suppose β1u1 + β2u2 + · · ·+ βpup = 0.
Note that 0 = 0 · u1 + 0 · u2 + · · ·+ 0 · up.
Then by (♭), we have β1 = β2 = · · · = βp = 0.
Therefore (BL) holds.

Hence (♭) holds.

2



5. Theorem (2). (Re-formulation of the notion of basis in terms of systems of equations.)
Let V be a non-zero subspace of Rn.
Suppose u1,u2, · · · ,up be vectors in V , and U is the (n× p)-matrix given by U = [ u1 u2 · · · up ].
Then the statements below are logically equivalent:

(a) u1,u2, · · · ,up constitute a basis for V .
(b) Both statements (BL1), (BS1) are true:

(BL1) The homogeneous system LS(U, 0) has no non-trivial solution.
(BS1) For any b ∈ V , the system LS(U, b) is consistent.

Remark. The re-formulation in terms of systems of equations is not something convenient to use in practice.
Proof of Theorem (2). This is a direct consequence of the application of the respective ‘dictionaries’ between
linear combinations and systems of linear equations, and between linear dependence and systems of linear equations.

6. ‘Dictionary’ between non-singular (n× n)-square matrices and basis for Rn.
Recall the result (⋆) from the handout How to determine whether a given vector is the linear combination of some
vectors, and the result (⋆⋆) from the handout Linear dependence and linear independence:

(⋆) Suppose u1,u2, · · · ,un are vectors in Rn, and U is the (n×n)-square matrix given by U = [ u1 u2 · · · un ].
Then the statements below are logically equivalent:
(a) Every vector in Rn is a linear combination of u1,u2, · · · ,un.
(b) U is non-singular.
(c) U is invertible.

(⋆⋆) Suppose u1,u2, · · · ,un are vectors in Rn, and U is the (n×n)-square matrix given by U = [ u1 u2 · · · un ].
Then the statements below are logically equivalent:
(a) u1,u2, · · · ,un are linearly independent.
(b) U is non-singular.
(c) U is invertible.

The results (⋆) and (⋆⋆) to give Theorem (3) below.
Theorem (3).
Suppose u1,u2, · · · ,un are vectors in Rn, and U is the (n× n)-square matrix given by U = [ u1 u2 · · · un ].
Then the statements below are logically equivalent:

(a) U is non-singular.
(b) U is invertible.
(c) Every vector in Rn is a linear combination of u1,u2, · · · ,un.
(d) u1,u2, · · · ,un are linearly independent.
(e) u1,u2, · · · ,un constitute a basis for Rn.

Remark. This result will be merged with Theorem (E) in the Handout Existence and uniqueness of solutions
for a system of linear equations whose coefficient matrix is a square matrix later, alongside more re-formulations
for the notion of non-singularity.

7. Theorem (A).
Suppose V is a subspace of Rn. Then every basis for V has at most n vectors.
Proof of Theorem (A).
Suppose V is a subspace of Rn.

• If V is the zero subspace of Rn then its only basis, namely the empty set, has no vectors in it.
• From now on suppose V is not the zero subspace of Rn. Suppose u1,u2, · · · ,up constitute a basis for V .

By definition, u1,u2, · · · ,up are vectors in Rn, and they are linearly independent.
Then p ≤ n.
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8. Theorem (B).
Any two bases for a subspace of Rn have the same number of vectors.
Proof of Theorem (B). Postponed. (This result is a consequence of the ‘Replacement Theorem’.)
Remark. In the light of the validity of this result, it makes sense to talk about the dimension of a subspace of
Rn, which is introduced later.

9. Theorem (C).
Suppose V is a non-zero subspace of Rn. Then V has a basis which consists of at least one and at most n vectors
in Rn.
Comment on the significance of Theorem (C).
We have already known that:

• the null space of a matrix with n columns is a subspace of Rn, and the span of several vectors of Rn is a
subspace of Rn, and furthermore,

• the null space of a matrix with n columns is the span of some vectors in Rn, while the span of several vectors
in Rn is the null space of some matrix with n columns.

According to Theorem (C), a subspace in Rn is the span of some vectors in Rn. It follows that it is also the null
space of some matrix with n columns.
So the notions of subspace, null space, span, column space are manifestations of the same mathematical concept.

10. Preparation for the proof of Theorem (C).
As preparation for the proof of Theorem (C), recall the result (∗) below, from the handout More on linear dependence
and linear independence:

(∗) Let w1,w2, · · · ,wk,v be vectors in Rn.
Suppose w1,w2, · · · ,wk are linearly independent.
Then the statements below are logically equivalent:
(a) w1,w2, · · · ,wk,v are linearly independent.
(b) v is not a linear combination of w1,w2, · · · ,wk.

Also recall the result (∗∗) below, from the handout Linear dependence and linear independence:

(∗∗) Let w1,w2, · · · ,wℓ be vectors in Rn. Suppose w1,w2, · · · ,wℓ are linearly independent. Then ℓ ≤ n.

11. Proof of Theorem (C).
Suppose V is a non-zero subspace of Rn.
By assumption there is some vector, say, u1, which is not the zero vector in V .
u1 is linearly independent.
If every vector in V is a linear combination of u1 then, u1 constitutes a basis for V .
Suppose that not every vector in V is a linear combination of u1. Then there is some vector in V , say, u2, so that
u2 is not a linear combination of u1.
By (∗), u1,u2 are linearly independent.
If every vector in V is a linear combination of u1,u2 then, u1,u2 constitute a basis for V .
Suppose that not every vector in V is a linear combination of u1,u2. Then there is some vector in V , say, u3, so
that u3 is not a linear combination of u1,u2.
By (∗), u1,u2,u3 are linearly independent.
By repeating the above construction for j times, we obtain, in succession, some vectors u1,u2, · · · ,uj in V , which
are linearly independent vectors in Rn.
By (∗∗), we have j ≤ n. So there is the last time, say, the p-th time of the construction. We have obtained the
vectors u1,u2, · · · ,up in V , which are linearly independent vectors in Rn.
It is then necessarily true that every vector in V is a linear combination of u1,u2, · · · ,up. (Otherwise, we could
repeat the construction for the (p+ 1)-th time. That would be a contradiction.)
It follows that the p vectors u1,u2, · · · ,up constitute a basis for V .
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