MATH1030 Further examples on basis for \mathbb{R}^n

1. Consider the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \cdots, \mathbf{u}_n$ of \mathbb{R}^n . Determine whether such a collection constitutes a basis for \mathbb{R}^n .

(a)
$$\mathbf{u}_1 = \begin{bmatrix} 1\\4\\7 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 2\\5\\8 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 3\\6\\9 \end{bmatrix}$.

(b)
$$\mathbf{u}_1 = \begin{bmatrix} 0 \\ 5 \\ 2 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix}$.

(c)
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ 2 \\ 1 \\ 3 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} -1 \\ 0 \\ 3 \\ 3 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 4 \\ 2 \\ 2 \\ 4 \end{bmatrix}$.

(d)
$$\mathbf{u}_1 = \begin{bmatrix} 0\\1\\1\\2 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 1\\0\\1\\2 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 2\\1\\2\\3 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 2\\1\\1\\5 \end{bmatrix}$.

(e)
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 3 \\ 1 \\ 2 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 5 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 2 \\ -2 \\ 4 \\ 5 \end{bmatrix}$.

Answer.

Recall the result from the handout Bases for subspaces of \mathbb{R}^n :

Suppose $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ are vectors in \mathbb{R}^n , and U is the $(n \times n)$ -square matrix given by $U = [\mathbf{u}_1 \mid \mathbf{u}_2 \mid \dots \mid \mathbf{u}_n]$. Then the statements below are logically equivalent:

- (a) U is non-singular.
- (b) U is invertible.
- (c) Every vector in \mathbb{R}^n is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$.
- (d) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ are linearly independent.
- (e) $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n$ constitute a basis for \mathbb{R}^n .
- 1. (a) $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ is not a basis for \mathbb{R}^3 because $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are linearly dependent. Reason:

$$\left[\begin{array}{c|c} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{array}\right] \longrightarrow \cdots \longrightarrow \left[\begin{array}{ccc} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 0 \end{array}\right]$$

(b) $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ is a basis for \mathbb{R}^3 because $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are linearly independent. Reason:

$$\left[\begin{array}{c|c} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{array}\right] \longrightarrow \cdots \longrightarrow \left[\begin{array}{ccc} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{array}\right]$$

(c) $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ is not a basis for \mathbb{R}^4 because $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ are linearly dependent. Reason:

(d) $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ is a basis for \mathbb{R}^4 because $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ are linearly independent. Reason:

(e) $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ is not a basis for \mathbb{R}^4 because $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ are linearly dependent. Reason:

$$\left[\begin{array}{c|cccc} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{u}_4\end{array}\right] \longrightarrow \cdots \longrightarrow \left[\begin{array}{ccccc} 1 & * & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$$