1. Recall Theorem (B) from the handout Linear Combinations:

Let t1,t9,--- ,t,, be vectors in R™,

Every linear combination of (finitely many) linear combinations of t1,ts, -+ ,t, Is a
linear combination of t1,ts,--- ,t,,.

Also recall the definition for the notion of span:

Let 71,29, - - - , 7, be (‘finitely many’) vectors in R™.
The span of (the set of vectors) z1,zo, - -+ , 2, is defined to be the set
{y € R™ : y is a linear combination of z1,z9, - - - , Zy, }

We denote this set by Span ({z1,22, -+ ,2,}).

2. In this handout we need to handle ‘equality questions’ on sets. We introduce the definition
for the notion of set equality (or recall it from the handout The use of set notations in linear
algebra):

Let K, L be sets (of vectors in R").
We say that K, L are equal to each other, and write K = L if and only if both of (), (1)
are true:

(1) For any u, ifu € K thenu € L.

(1) For any v, if v € L thenv € K.
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. Theorem (1).

Let uy,us, - -+ ,u,, vy, Vo, -+, V. be vectors in R™.

Suppose each of vy, Vs, -,V IS a linear combination of uj, us, - - - , U,
Further suppose each of uy,uo, - - - , 1, is a linear combination of v, vy, - - -
Then

Span <{u17 U, - - 7un}> — Span <{V17 Vo, 7V/€}>

Remark.
The equality

‘Span ({111, Uy, - - - ’un}> — Span ({Vl, Vo, - 7Vk}>’

is a set equality:.

What such an equality means is that the statements (1), (1) below hold simultaneously:

<T> For any y < IRm? if y € Span <{u17 U, - - 7un}> then y € Span <{V17V27 t Jvk}>'
(1) For any y € R, if y € Span ({vy, Vs, ,vy}) then y € Span ({ug,us,--- ,u,}).

In plain words:

e (1) reads: every vector in Span ({uy,us,--- ,u,}) belongs to Span ({vy,vo, -+, Vi}).

e (I) reads: every vector in Span ({vy{, vy, -+ ,vy}) belongs to Span ({uy, us, -+ ,u,}).



4. Proof of Theorem (1).

Let uy,us,--- ,u,, vy, vo, -+, Vi be vectors in R™.
Suppose each of vy, vy, -+, vy is a linear combination of u;, us, - - - , u,.
Further suppose each of uy, us, - - - , 1, is a linear combination of vy, vy, -+, v}.

We deduce the statement (7):
(1) ‘For any y € R™, if y € Span ({ug,us, -+ ,u,}) then y € Span ({vy, v, ,vi})’
« Pick any y € R™. Suppose y € Span ({u,uy, -+ ,u,}).
[Reminder: We want to see why y belongs to Span ({vi,va, -+ ,Vvi}).]
By definition, y is a linear combination of uy, us, - - - , u,.
Each of uy, us, - -+ ,u,, is a linear combination of vy, vy, -+, vp.

Then, by Theorem (B), y is a linear combination of vy, vy, -+, vy.

Therefore y € Span ({vy,va, -, Vi}).

Modifying the above argument for (1), we also deduce the statement (I):
<i> ‘For any y < |Rm7 if y € Span <{V17 Vo, 7V]€}> then Yy € Span <{u17 U, - - - 7un}>'7

[t follows that Span ({uy,us, -+ ,u,}) = Span ({vi,va, -+, Vvi}).
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(f) ‘For any y € R™, if y € Span ({v1, Vg, -+, vg}) theny € Span ({ug,uy, -+ ,u,})’

It follows that Span ({uj,ug,--- ,u,}) = Span ({vy, v, -, vi}).



5. The converse of Theorem (1) is an immediate consequence of Lemma (2).

Lemma (2).
Suppose 71,29, - -+ , Z, are vectors in R™.
Then each of 1,2, - - - , Z, belongs to Span ({21, 22, ,2Zn}).

Theorem (3). (Converse of Theorem (1).)
Let uy,us, - -+ ,4u,,Vy, Vo, -+, V. be vectors in R™.
Suppose
Span ({uy,uy, - ,u,}) =Span ({vi,vo, -+, Vi}).
Then each of vi, vy, -+ ,V} is a linear combination of uj, us, - - - , U,

Also each of uy,uo, - -+ ,u,, is a linear combination of v{, vy, -+ , V.
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Theorem (3). (Converse of Theorem (1).)

Let uy,uy, -+ ,u,, vy, vy, -+, vg be vectors in R™.
Suppose | |

Span ({uy,ug,--- ,u,}) = Span ({vy, vy, -, vi}).

Then each of vi,vg, -+ ,Vy Is a linear combination of up, Ug, -+, Uy,

Also each of uy,ug, - -+ ,u, is a linear combination of vi,vg, -+, V}.



6. We may combine Theorem (1) and Theorem (3) to obtain Theorem (K):
Theorem (K).

Let uy,uo, -+ ,u,,Vvy, Ve, -,V be vectors in R™.

The statements below are logically equivalent:

(a) Each of vq,va, -+ , Vv is a linear combination of uy, ug, - -+ , u,, and
cach of uy, s, - -- ,u, Is a linear combination of vi,Vvsy, -+ , V.

(b) Span ({uy,us,--- ,u,}) =Span ({vy, Vo, -+, Vi})

7. Corollary to Theorem (K).

: m
Let uy,ug, - -- ,uy,,t1,ts, -+, t, be vectors in R™.

The statements below are logically equivalent:

(a) Fach of t1,ts,- -+ ,t, is a linear combination of uy, uy, - - - , u,.

<b> Span <{u17 U, - -+, Up, t17 t27 T 7tp}> — Span ({ula U, - - aun})
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Let g, ug, - -+ , Uy, ty, tg,- -, t, be vectors in R™.

The statements below are logically equivalent:

(a) Each of t1,ty, -+ ,t, is a linear combination of uy, ug, - - - , Uy,
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8. Illustrations of Theorem (K).

(a) Span 3
5

Reason: Each of

3

Below is the detail:

3
7
11

= Span
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9. We now state a pair of results (Lemma (4), Lemma (5)) describing whether square-matrix
multiplication from the left to matrices ‘preserves’ equality relations between column spaces
(though not necessarily the individual column spaces).

Lemma (4).
Let H be an (m X n)-matrix, and G be an (m X k)-matrix.
Suppose

« Aisa(m X m)-square matrix, and

- C(H) =C(G).
Then C(AH) = C(AG).
Lemma (5). (A ‘partial converse’ of Lemma (5).)

Let H be an (m X n)-matrix, and G be an (m X k)-matrix.

Suppose

. A is a non-singular (m X m)-square matrix, and

. C(AH) = C(AG).

Then C(H) = C(G).



10. We combine Lemma (4) and Lemma (5) to obtain Theorem (L) below:
Theorem (L).

Let H be an (m X n)-matrix, and G be an (m X k)-matrix.

Suppose A is a non-singular (m X m)-square matrix.

Then the statements below are logically equivalent:

(a) C(H) = C(G).
(b) C(AH) = C(AG).

Remark.

In plain words, this result is saying that

the equality between column spaces of matrices (though not necessarily the individual
matrices themselves) are preserved upon

the multiplication by the same non-singular matrix from the left to the matrices.

When we think in terms of row operations, this result is saying that

the equality between column spaces of matrices (though not necessarily the individual
matrices themselves) are preserved upon

the application of the same sequence of row operations to the matrices.
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11. Proof of Lemma (4).
Let H be an (m x n)-matrix, and G be an (m X k)-matrix.
Suppose A is a (m x m)-square matrix, and C(H) = C(G).

[We are going to verify the set equality C(AH) = C(AG).
This amount to deducing (with the assumption stated earlier) that both (1), (1) are true:
(1) Forany y € R™ if y € C(AG) theny € C(AH).

(f) For any y € R™, if y € C(AH) then y € C(AG).

We will the arguments in two separate passages, one for each of (1), (1).]



« [Here we verify (}).]

Suppose y € C(AH).

Then, by the definition of C(AH ), there exist some x € R" such that y = AHx.
[Reminder: We want to deduce y € C(AG).
So we ask whether we can conceive some appropriate w € R¥ which satisfies y =
(AG)w.
How to conceive such a w?
Compare the equality 'y = AHX’ which we have already known to be true, with the
desired equality 'y = AGw’, which we hope to be true.
This suggests we ask if there is indeed some w € R* which satisfies Hx = Gw.
[t turns out that the answer is yes.|

By the definition of C(H), Hx € C(H).

Then by assumption Hx € C(G).

Then, by the definition of C(G), there exists some w € R¥ such that Hx = Gw.
Nowy = AHx = AGw.

Then, by the definition of C(AG), we have y € C(AG).

« By modifying the above argument (through changing the symbols appropriately), we also
deduce that for any y € R™, if y € C(AG) then y € C(AH).
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12. Proof of Lemma (5).

(We are going to make a clever application of Lemma (4) so that we don’t have to prove a
set equality with direct reference to the definition of set equalities.]

Let H be an (m X n)-matrix, and G be an (m X k)-matrix.
Suppose A is a non-singular (m x m)-square matrix, and C(AH) = C(AG).

By assumption, A has a matrix inverse, namely the (m x m)-square matrix A~!.
We have H = A~ AH).

Then C(H) =C(A'(AH))

We also have G = A7 (AG).

Then C(G) = C(A7'(AG)).

By assumption, C(AH) = C(AG).

Then, by Lemma (4), we have C(A 1 (AH)) = C(A Y (AH)).

Therefore C(H) = C(A"Y(AH)) = C(A"(AG)) = C(Q).



13. Under the ‘dictionary’ between the notion of column space and span, Lemma (4), Lemma
(5) and Theorem (L) respectively translate into Lemma (47), Lemma (5’) and Theorem (1.")
below.

Lemma (4’).

Let uy,us, - -+ ,u,,Vvy, Vo, -+, V. be vectors in R™.
Suppose

« Aisa(m X m)-square matrix, and

* Span <{u17 Uz, - -~ 7un}> — Span ({Vb V2, 7Vk‘})-

Then Span ({Auy, Auy, - -- , Au, }) = Span ({Avy, Avy, - -+ | Avi}).

Lemma (5’). (A ‘partial converse’ of Lemma (4’).)
Let uy,us, - -+ ,u,, vy, Vo, - -+, V. be vectors in R™.

Suppose

. A is a non-singular (m X m)-square matrix, and

« Span ({Auy, Auy, - - , Au,}) = Span ({Avy, Avy, -+ | Avy}).

Then Span <{u17 U, - - 7un}> — Span <{V17 V2, 7V]€}>



Theorem (L’). (Re-formulation of Theorem (L) under the ‘dictionary’ be-
tween span and column space.)

Let uy,ug, -+ ,u,,Vvy, Ve, -,V be vectors in R™.

Suppose A is a non-singular (m X m)-square matrix.

Then the statements below are logically equivalent:
(a) Span ({uy, uy, -+, w,}) = Span ({Vi, vy, -+, Vi}).
(b) Span ({Auy, Auy, --- , Au,}) = Span ({Avy, Avy, -+, Avy}).

Remark.
In plain words, Theorem (L) says that

the equality between spans of vectors (though not necessarily the individual vectors them-
selves) are preserved upon

the multiplication by the same non-singular matrix from the left to the vectors.

When we think in terms of row operations, Theorem (L) says that

the equality between spans of vectors (though not necessarily the individual vectors them-
selves) are preserved upon

the application of the same sequence of row operations to the vectors.
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14. Theorem (6). (Generalization of Lemma (4) and Lemma (5).)
Let H be an (m x n)-matrix, and G be an (m X k)-matrix.
Let A be a (p X m)-matrix.
(a) Suppose C(H) = C(G).
Then C(AH) = C(AG).
(b) Suppose N'(A) = {0}, and C(AH) = C(AG).
Then C(AH) = C(AG).

Theorem (6’). (Generalization of Lemma (4’) and Lemma (5’).)

Let uy,uy, - -+ , Uy, Vi, Vo, - -+, Vi be vectors in R™. Let A be a (p X m)-matrix.

(a) Suppose Span ({uy, us, -+ ,u,}) = Span ({vy,va, -+, vi}).
Then Span ({Awuy, Auy, - -+, Au,}) = Span ({Avy, Ava, -+ Avi}).

(b) Suppose N(A) = {0}, and Span ({Auy, Auy, --- , Au,}) = Span ({Avy, Avy, -+, Avi}).
Then Span ({uy,uy,--- ,u,}) = Span ({vy, Vo, -+, Vi}).



