- 1. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^m . Prove that the vectors $\mathbf{u} \mathbf{v}, \mathbf{v} \mathbf{w}, \mathbf{w} \mathbf{u}$ are linearly dependent.
- 2. Let \mathbf{u}, \mathbf{v} be vectors in \mathbb{R}^m . Prove that the statements below are logically equivalent:
 - (1) \mathbf{u}, \mathbf{v} are linearly dependent.
 - (2) One of \mathbf{u}, \mathbf{v} is a scalar multiple of the other.
- 3. Let \mathbf{u}, \mathbf{v} be vectors in \mathbb{R}^m . Prove that the statements below are logically equivalent:
 - (1) The vectors \mathbf{u}, \mathbf{v} are linearly independent.
 - (2) The vectors \mathbf{u} , $-\mathbf{v}$ are linearly independent.
 - (3) The vectors $\mathbf{u} + \mathbf{v}$, \mathbf{u} are linearly independent.
 - (4) The vectors $\mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v}$ are linearly independent.
- 4. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^m . Prove that the statements below are logically equivalent:
 - (1) The vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent.
 - (2) The vectors $\mathbf{u}, \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} + \mathbf{w}$ are linearly independent.
 - (3) The vectors $\mathbf{u} + \mathbf{v}, \mathbf{v} + \mathbf{w}, \mathbf{w} + \mathbf{u}$ are linearly independent.
- 5. Let $\mathbf{t}_1, \mathbf{t}_2$ be vectors in \mathbb{R}^m .

Let A be a (2×2) -square matrix, whose (i, j)-th entry is a_{ij} .

Define $\mathbf{u}_1 = a_{11}\mathbf{t}_1 + a_{21}\mathbf{t}_2$ and $\mathbf{u}_2 = a_{12}\mathbf{t}_1 + a_{22}\mathbf{t}_2$.

Suppose $\mathbf{t}_1, \mathbf{t}_2$ are linearly independent.

Prove that the statements below are logically equivalent:

- (1) The vectors $\mathbf{u}_1, \mathbf{u}_2$ are linearly independent.
- (2) The matrix A is non-singular.
- 6. Let $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3, \mathbf{t}_4$ be vectors in \mathbb{R}^m .

Let A be a (4×4) -square matrix, whose (i, j)-th entry is a_{ij} .

For each j = 1, 2, 3, 4, define $\mathbf{u}_j = a_{1j}\mathbf{t}_1 + a_{2j}\mathbf{t}_2 + a_{3j}\mathbf{t}_3 + a_{4j}\mathbf{t}_4$.

Suppose $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3, \mathbf{t}_4$ are linearly independent.

Prove that the statements below are logically equivalent:

- (1) The vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ are linearly independent.
- (2) The matrix A is non-singular.
- 7. Let $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3$ be vectors in \mathbb{R}^m .

Let A be a (5×3) -square matrix, whose (i, j)-th entry is a_{ij} .

For each j = 1, 2, 3, define $\mathbf{u}_j = a_{1j}\mathbf{t}_1 + a_{2j}\mathbf{t}_2 + a_{3j}\mathbf{t}_3 + a_{4j}\mathbf{t}_4 + a_{5j}\mathbf{t}_5$.

Suppose $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3, \mathbf{t}_4, \mathbf{t}_5$ are linearly independent.

Prove that the statements below are logically equivalent:

- (1) The vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are linearly independent.
- (2) $\mathcal{N}(A) = \{\mathbf{0}_3\}.$